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ABSTRACT 

This study derived analytical solutions for the deflection of a rectangular cross sectional uniformly 

tapered cantilever beam with varying configurations of width and breadth acting under an end point 

load. The deflection equations were derived using a numerical analysis method known as the finite 

element method. The verification of these analytical solutions was done by deterministic 

optimisation of the equations using the ModelCenter reliability analysis software and the Abaqus 

finite element modelling and optimisation software. The results obtained show that the best 

element type for the finite element analysis of a tapered cantilever beam acting under an end point 

load is the C3D20RH (A 20-node quadratic brick, hybrid element with linear pressure and reduced 

integration) beam element; it predicted an end displacement of 0.05035 m for the tapered width, 

constant height cantilever beam which was the closest value to the analytical optimum of 0.05352 

m.  The little difference in the deflection value accounted for the numerical error which is inevitably 

present in the analyses of structural systems. It is recommended that detailed and accurate 

numerical analysis be adopted in the design of complex structural systems in order to ascertain the 

degree of uncertainty in design. 
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1. INTRODUCTION  

There are numerous analytical methods for finding 

deflection of beams such as the Double integration 

method, the Macaulay method and the moment area 

methods [1].  However, these methods are applicable 

to simple structural systems where there is simple 

loading and where the beam is prismatic and of 

uniform cross section. In real life situations where the 

beam may have a varying cross section, or subjected 

to multiple or complex loading; other methods such as 

the finite element method may have to be employed. 

This research work used the principle of virtual work 

and finite element theory to find the deflection 

equations for tapered cantilever beams of rectangular 

cross sectional areas acting under an end point load. 

The verification of these equations was done by 

deterministic optimisation in ModelCenter reliability 

analysis software and in Abaqus. Abaqus is a software 

application used for modelling and analysis of 

mechanical components [2]. It is used in finite element 

modelling and analysis. 

Engineering designs aim at getting the best 

parameters that will reduce the cost of production and 

increase the performance. The process of doing this is 

known as optimisation [3]. Structural optimisation 

theory involves stating of structural engineering 

problems as mathematical programming problems. It 

is better than the conventional structural design 

methods because of its efficiency and time-saving 

ability. The theory and application of structural 

optimisation have increased greatly over the years 

basically as a result of the implementation of high 

computing and the finite element method in 

engineering [4]. In a conventional optimisation 

problem, the set of design parameters which are 

changed in order to get the optimum performance are 

known as the design variables while the mathematical 

model used for investigating the merits of the 

engineering performance is known as the objective 

function. The function dividing the design space 

between feasible and invalid region is known as the 

constraint. The constraints are divided into the 
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inequality constraints and the equality constraints. The 

design variables are usually contained in the objective 

function and the constraints [5].  In mathematical 

terms, an optimisation problem is typically stated as 

follows; 

 

𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒            𝑓(𝑥),                                            (𝑎)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:      g𝑖(𝑥) ≤ 0,    𝑖 = 1, … , 𝐼,             (𝑏)

                         ℎ𝑗(𝑥) = 0,      𝑗 = 1, … 𝐽,                (𝑐)
       } (1) 

 

Where x∊X is a set of design variables and f(x) is the 

objective function. Equation 1(b) represents the set of 

inequality constraints and 1(c) the set of equality 

constraints. 

In a structural optimisation problem, the design 

variables could be the width or breadth of a reinforced 

concrete beam or the quantity of cement in a concrete 

mix and the objective function could be the weight of 

the reinforced concrete beam. In the theory of 

deterministic optimisation, the design variables are 

given exact values and the objective function and 

constraints are also assumed to be deterministic [6]. 

Based on the nature of design variables in 

engineering, structural optimisation problems are 

divided into sizing, shape and topology optimisation. 

Sizing optimisation involves the checking of structural 

dimensions that give desired performances at low 

cost; shape optimisation involves the checking of the 

design parameters that give the best geometrical 

properties defining basic structural shapes while 

topology and layout optimisation is the identification 

and location of vacuums or voids in continuous 

structures or the determination of the number of joints 

or connections in discrete structural systems [7]. 

 

There are several approaches utilised in the 

development of solutions to structural engineering 

problems. The finite element method is utilised when 

the structural system for analysis is too large to be 

handled by simple analytical methods. They are mostly 

used in the solution of continuums and involve 

developing solvable analytical solutions for discrete 

elements of the continuum [8]. The representation of 

structural engineering problems by simplified 

mathematical equations is as old as the origin of 

engineering itself. The characterisation of real 

structural systems by simple algebraic equations is 

known as mathematical modelling. The solution of 

these mathematical expressions gives the solution to 

various structural properties. The equations are solved 

by analytical and numerical methods [9]. The 

analytical solution methods are applied to systems 

which can be solved by simplified differential 

equations and they usually give accurate and exact 

solutions while Numerical methods are approximate 

methods. The Finite element method is a numerical 

solution method that is applied to large engineering 

systems (continuums) which cannot be solved 

accurately as a whole and therefore requires the 

continuum to be broken into small and discrete 

meshes. Each mesh contains a group of elements 

known as finite elements. The solution is then sorted 

at the nodes of the meshes where the elements meet, 

after which the nodal solutions are interpolated to give 

a global solution for the structural system [10].  

There are different kinds of finite elements including 

the bar element, triangular, quadrilateral element, 

beam element, truss element, shell and plate 

elements. The best finite element type that gives the 

desired solution to the structural problem is usually 

adopted for mesh refinement analysis. This is also 

done to find out the mesh density that best 

approximates a structural solution. There are two 

types of mesh refinement known as h and p mesh 

refinement. The fundamental principle of finite 

element analysis is known as the interpolation theory. 

It is the principle used in combining the nodal vectors 

gotten from the discretised system into global vectors 

[11]. For a linear bar element (Figure 1), the 

polynomial function describing the interpolation 

scheme is as follows. 

 
Figure 1: The linear bar element 

 

 Ø = 𝑎1 + 𝑎2𝑠                (2) 

 

Where 𝑎1 and 𝑎2 are the nodal vectors and Ø is the 

global vector. 

The shape functions for a finite element describes how 

the global unknown vectors are interpolated from the 

known nodal vectors. The shape functions for the bar 

element are as follows. 

 

 (𝑁1,   𝑁2) = (
1−𝑠

𝐿
,

𝑠

𝐿
)                        (3)  

 

Where N1 is the shape function corresponding to node 

i and N2 is the shape function corresponding to node 
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j; s is the horizontal distance from node i and L is the 

length of the bar element. 

The algebraic equations emanating from the 

mathematical modelling of continuums are best solved 

by computer software applications as trying to solve 

them manually is very hectic and practically impossible 

[12]. The structural system to be analysed should be 

modelled and simulated with care since any modelling 

errors in the analysis may result in a wrong output 

from the software. Abaqus is one of the most useful 

software used in finite element analysis.  It has a 

library of finite elements which are used in various 

types of structural analysis. Some types of elements, 

when used in a specific analysis, give a better 

approximation to the real solution than others. For 

example, it has been proven that the quadratic shell 

elements give a better approximation to the exact end 

displacement and stress in a twisted cantilever beam 

under the action of an in-plane and out-plane end 

loading than the triangular shell elements [13]. Some 

of the shell elements used in Abaqus and their 

description are as shown in Table 1 [14]. 

 

2. DEVELOPMENT OF THE DEFLECTION 

EQUATIONS 

For a uniformly tapered cantilever beam with a 

rectangular cross-sectional area as shown in Figure 2, 

the displacement as a function of distance, x from the 

fixed end of the cantilever beam subjected to a point 

load at the tip of the free end was found.  

The cantilever beam has a tapered width w(x) and 

tapered height h(x). The development of the 

deflection equations for this structural system was 

done in stages. First, the height of the cantilever beam 

was kept constant and the width tapered and the 

formula for the end displacement developed, after 

which the width of the cantilever beam was kept 

constant and the height tapered and the end 

displacement formula found. The following sections 

present the derivation of the end displacement for the 

various configurations of the cantilever beam. 

 

Table 1: Some commonly used shell elements 

S3 

A three-node triangular general purpose 

shell, finite membrane strains. This is a 

linear element 

STRI 

3 

A six-node triangular thin shell, using five 

degrees of freedom per node. This is a 

quadratic element 

STRI 

65 

A six-node triangular thin shell, using five 

degrees of freedom per node. This is a 

quadratic element 

S4R 

A four-node doubly curved thin or thick 

shell element with reduced integration 

and hourglass control. It has finite 

membrane strains. 

S4R 5 

A four-node doubly curved thin shell, 

reduced integration, hourglass control, 

using five degrees of freedom per node. 

This is also a linear quadrilateral element 

with small membrane strains 

S8R 

An eight-node doubly curved thick shell 

with reduced integration. It is quadratic 

element with six degrees of freedom per 

node 

S8R5 

An eight-node doubly curved thin shell, 

reduced integration, using five degrees of 

freedom per node. 

Source [14] 

 

 
Figure 2: A tapered cantilever beam under an end 

point load 
3. CANTILEVER BEAM WITH A TAPERED WIDTH 

AND CONSTANT HEIGHT 

First, the tapered width of a constant height cantilever 

beam was taken as a function of only the width at the 

fixed end, w1 of the cantilever without including the 

width at the free end, w2 as follows. 

 

 𝑤(𝑥) = 𝑊(1 −
𝑥

𝑎𝐿
) (4) 

 

 Where  
1

a
 = percentage taper of the beam; 𝑤(𝑥) is 

the width at a distance 𝑥 from the fixed end and W is 

the width at the fixed end of the cantilever beam. 

 

By the principle of virtual work the strain energy, U in 

the beam is as follows [15]; 

 

 𝑈 = 𝑊𝑏𝑒𝑛𝑑 − 𝐹 ∙ 𝑦(𝐿𝑐)          (5) 
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Where,  𝑊𝑏𝑒𝑛𝑑 = 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦; 𝐹 is the point load 

at the free end and 𝑦(𝐿𝑐) is the deflection at the free 

end of the cantilever beam 

 𝑊𝑏𝑒𝑛𝑑 =
1

2
𝐸 ∫ 𝐼𝑧(𝑥) [

𝑑2𝑦

𝑑𝑥2]
2

𝐿𝑐

0
𝑑𝑥        (6) 

Where E is the elastic modulus of the beam and 𝐼𝑧(𝑥) 

is the moment of inertia at a distance 𝑥 from the fixed 

end of the cantilever beam 

The assumed deflection curve of the beam and is 

approximated as follows; 

 

𝑦(𝑥) = 𝐶2𝑥2 + 𝐶3𝑥3             (7) 

 

The moment of inertia of the beam of rectangular 

cross-sectional area is as follows; 

 

 𝐼𝑧(𝑥) =
𝑤(𝑥)𝐻3

12
              (8) 

 

Therefore, the strain energy in the beam becomes; 

 

𝑈 =
𝐸

2
∫

𝑤(𝑥)𝐻3

12

𝐿

0
[

𝑑2𝑦

𝑑𝑥2]
2

𝑑𝑥 − 𝐹(𝐶2L2 + 𝐶3L3)    (9) 

 

𝑈 =
𝐸𝑊𝐻3

24
∫ (1 −

𝑥

𝑎𝐿
)

𝐿𝑐

0
[

𝑑2𝑦

𝑑𝑥2]
2

𝑑𝑥 − 𝐹(𝐶2L2 + 𝐶3L3) (10) 

 

𝑈 =
𝐸𝑊𝐻3

24
∫ (1 −

𝑥

𝑎𝐿
)

𝐿𝑐

0
[2𝐶2 + 6𝐶3𝑥]2𝑑𝑥 −  𝐹(𝐶2L2 +

𝐶3L3)                  (11) 

 

By integrating equation (11) by parts, it follows that; 

 

𝑈 =
𝐸𝑊𝐻3

24
[−8𝑎𝐶2

3 −
16𝐶2

4

24𝐶3𝐿
+ (𝑎 − 1)(2𝐶2 + 6𝐶3𝐿)3 +

(2𝐶2+6𝐶3L)4

24𝐶3𝐿
] −  𝐹(𝐶2L2 + 𝐶3L3)         (12) 

 

By expanding the polynomials in Equation (12) and 

simplifying 

 

𝑈 = 𝐸𝑊𝐻3 [(
4𝑎−3

8𝑎
) . 𝐶3

2L3 + (
3𝑎−2

6𝑎
) 𝐶2𝐶3𝐿𝑐

2 +

(
2𝑎−1

12𝑎
) 𝐶2

2𝐿] − 𝐹(𝐶2L2 + 𝐶3L3)         (13) 

 

In order to find the values of C2 and C3 that bring the 

strain energy in equation (13) to zero, the partial 

derivatives of U with respect to C2 and C3 will be set to 

zero 

 
𝜕𝑈

𝜕𝐶2
= [𝐸𝑊𝐻3 (

3𝑎−2

6𝑎
) 𝐶3 − 𝐹] L2 + 𝐸𝑊𝐻3 (

2𝑎−1

6𝑎
) 𝐶2L = 0

                   (14) 

 

𝜕𝑈

𝜕𝐶3
= [𝐸𝑊𝐻3 (

4𝑎 − 3

4𝑎
) 𝐶3 − 𝐹] L3 + 𝐸𝑊𝐻3 (

3𝑎 − 2

6𝑎
) 𝐶2L2 = 0   (15) 

 

Solving Equations (14) and (15) simultaneously by 

substitution method; 

 

 𝐶2 = (
72𝑎3−96𝑎2+30𝑎

12𝑎3−18𝑎2+8𝑎−1
)

𝐹𝐿

𝐸𝑊𝐻3         (16) 

 

 𝐶3 =
12𝑎(1−𝑎)

(6𝑎2−6𝑎+1)
∙

𝐹

𝐸𝑊𝐻3           (17) 

 

Substituting the values of C2 and C3 back into Equation 

(7); we have: 

 

 𝑦(𝑥) =
𝐹𝐿𝑥2

𝐸𝑊𝐻3 [(
72𝑎3−96𝑎2+30𝑎

12𝑎3−18𝑎2+8𝑎−1
) +

12𝑎(1−𝑎)𝑥

(6𝑎2−6𝑎+1)𝐿
]  (18) 

 

For tip deflection of the cantilever beam, 𝑥 = 𝐿, 

substituting into Equation (18), we have; 

 

 𝑦(𝐿) = (
𝟐𝟖𝟖𝒂𝟓−𝟔𝟒𝟖𝒂𝟒+𝟓𝟏𝟔𝒂𝟑−𝟏𝟔𝟖𝒂𝟐+𝟏𝟖𝒂

𝟕𝟐𝒂𝟓−𝟏𝟖𝟎𝒂𝟒+𝟏𝟔𝟖𝒂𝟑−𝟕𝟐𝒂𝟐+𝟏𝟒𝒂−𝟏
)

𝑭L3

𝑬𝑾𝑯𝟑   (19) 

 

The tapered width of the cantilever beam was then 

taken as a function of both the width at the fixed end, 

𝑊1 and the width at the free end, 𝑊2 of the beam as 

follows; 

 

 𝑤(𝑥) = 𝑊1 (1 −
𝑥

𝐿
) + 𝑊2 (

𝑥

𝐿
)        (20) 

 

By using the principle of virtual work in order to find 

the strain energy in the beam, it follows that; 

𝑈 =
𝐸𝐻3

24
∫ [𝑊1 (1 −

𝑥

𝐿
) + 𝑊2 (

𝑥

𝐿
)]

𝐿

0
[

𝑑2𝑦

𝑑𝑥2]
2

𝑑𝑥 − 𝐹(𝐶2L2 +

𝐶3L3)                  (21) 

 

𝑈 =
𝐸𝐻3

24
∫ [𝑊1 (1 −

𝑥

𝐿
) + 𝑊2 (

𝑥

𝐿
)]

𝐿

0
[2𝐶2 + 6𝐶3𝑥]2𝑑𝑥 −

𝐹(𝐶2L2 + 𝐶3L3)               (22) 

 

By integrating Equation (22) by parts, it follows that 

 

𝑈 =
𝐸𝐻3

24
[𝐶3

2𝐿3(9𝑊2 + 3𝑊1) + 𝐶2𝐶3𝐿2(8𝑊2 + 4𝑊1) +

𝐶2
2𝐿(2𝑊1 + 2𝑊2)] − 𝐹(𝐶2L2 + 𝐶3L3)      (23) 

 

In order to find the values of C2 and C3 that bring the 

strain energy in Equation (23) to zero, the partial 

derivatives of U with respect to C2 and C3 were set to 

zero and simplified to give Equations (24) and (25) 

respectively; 
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𝐸𝐻3

24
[4𝐶2𝐿(𝑊1 + 𝑊2) + 4𝐶3𝐿2(𝑊1 + 2𝑊2)] − 𝐹𝐿2 = 0 

                   (24) 
𝐸𝐻3

24
[4𝐶2𝐿2(𝑊1 + 2𝑊2) + 6𝐶3𝐿3(𝑊1 + 3𝑊2)] − 𝐹𝐿3 = 0

                   (25) 

 

Solving equations (24) and (25) simultaneously by 

substitution method yields; 

 

𝐶2 =
6𝐹𝐿

𝐸𝐻3 (
𝑊1

2+5𝑊2
2+6𝑊1𝑊2

𝑊1
3+𝑊2

3+5𝑊1𝑊2
2+5𝑊1

2𝑊2
)        (26) 

 

 𝐶3 =
−12𝑊2

(4𝑊1𝑊2+𝑊1
2+𝑊2

2)
∙

𝐹

𝐸𝐻3          (27) 

The Equation of the deflection curve of the cantilever 

beam becomes; 

 

 𝑦(𝑥) =
6𝐹𝐿

𝐸𝐻3 [(
𝑊1

2+5𝑊2
2+6𝑊1𝑊2

𝑊1
3+𝑊2

3+5𝑊1𝑊2
2+5𝑊1

2𝑊2
) 𝑥2 −

2𝑊2

(4𝑊1𝑊2+𝑊1
2+𝑊2

2)
∙

𝑥3

𝐿
]             (28) 

 

For tip deflection of the cantilever beam, 𝑥 = 𝐿 , 

substituting this value into Equation (28), we have; 

 

 𝑦(𝐿) =
6𝐹𝐿

𝐸𝐻3 [(
𝑊1

2+5𝑊2
2+6𝑊1𝑊2

𝑊1
3+𝑊2

3+5𝑊1𝑊2
2+5𝑊1

2𝑊2
) 𝐿2 −

2𝑊2

(4𝑊1𝑊2+𝑊1
2+𝑊2

2)
∙ 𝐿2]             (29) 

 

 𝒚(𝐿) =
𝟔𝑭𝑳𝟑

𝑬𝑯𝟑 [(
𝑾𝟏

𝟐+𝟓𝑾𝟐
𝟐+𝟔𝑾𝟏𝑾𝟐

𝑾𝟏
𝟑+𝑾𝟐

𝟑+𝟓𝑾𝟏𝑾𝟐
𝟐+𝟓𝑾𝟏

𝟐𝑾𝟐
) −

𝟐𝑾𝟐

(𝟒𝑾𝟏𝑾𝟐+𝑾𝟏
𝟐+𝑾𝟐

𝟐)
]              (30) 

 

4. CANTILEVER BEAM WITH A TAPERED 

HEIGHT AND CONSTANT WIDTH 

The width of the cantilever beam was then kept 

constant and the height tapered. First, the tapered 

height was taken as a function of only the height at 

the fixed end, H of the cantilever beam without 

including the height at the free end as shown in 

Equation (31). 

 

 ℎ(𝑥) = 𝐻(1 −
𝑥

𝑏𝐿
)             (31) 

Where  
1

b
 = percentage taper of the cantilever height, 

 

Again, by applying the principle of virtual work, it 

follows that: 

 

 Wbend =
1

2
E ∫ Iz(x) [

d2y

dx2]
2

L

0
dx (32) 

 

The moment of inertia of the beam with tapered 

height and constant width is as follows; 

 

 𝐼𝑧(𝑥) =
𝑊[ℎ(𝑥)]3

12
             (33) 

Where  ℎ(𝑥) is the height at a distance 𝑥 from the fixed 

end of the cantilever beam 

 

Therefore, the strain energy becomes; 

 

𝑈 =
1

2
𝐸 ∫

𝑊[ℎ(𝑥)]3

12

𝐿

0
[

𝑑2𝑦

𝑑𝑥2]
2

𝑑𝑥 − 𝐹(𝐶2L2 + 𝐶3L3)   (34) 

 

𝑈 =
𝐸𝑊𝐻3

24
∫ (1 −

𝑥

𝑏𝐿𝑐
)

3𝐿

0
[

𝑑2𝑦

𝑑𝑥2]
2

𝑑𝑥 − 𝐹(𝐶2L2 + 𝐶3L3) (35) 

 

𝑈 =
𝐸𝑊𝐻3

24
∫ (1 −

𝑥

𝑏𝐿𝑐
)

3𝐿

0
[2𝐶2 + 6𝐶3𝑥]2𝑑𝑥 − 𝐹(𝐶2L2 +

𝐶3L3)                  (36) 

 

By using the integration by parts formula to solve 

Equation (36), we have: 

 

 ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢            (37) 

Where   𝑢 = (1 −
𝑥

𝑏𝐿𝑐
)

3

  and dv = [2𝐶2 + 6𝐶3𝑥]2dx 

 

𝑈 =
𝐸𝑊𝐻3

24
[4𝐶2

2𝐿 (1 −
3

2𝑏
+

1

𝑏2 −
1

4𝑏3) + 12𝐶2𝐶3𝐿2 (1 −

2

𝑏
+

3

2𝑏2 −
2

5𝑏3) + 12𝐶3
2𝐿3 (1 −

9

4𝑏
+

9

5𝑏2 −
1

2𝑏3)] −

𝐹(𝐶2L2 + 𝐶3L3)               (38) 

 In order to find the values of C2 and C3 that brings the 

strain energy in Equation (38) to zero, the partial 

derivatives of U with respect to C2 and C3 will be set to 

zero 

 
𝜕𝑈

𝜕𝐶2
=

𝐸𝑊𝐻3

24
[8𝐶2𝐿 (1 −

3

2𝑏
+

1

𝑏2 −
1

4𝑏3) + 12𝐶3𝐿2 (1 −
2

𝑏
+

3

2𝑏2 −
2

5𝑏3)] − 𝐹𝐿2 = 0           (39) 

 
𝜕𝑈

𝜕𝐶3
=

𝐸𝑊𝐻3

24
[12𝐶2𝐿2 (1 −

2

𝑏
+

3

2𝑏2 −
2

5𝑏3) + 24C3𝐿3 (1 −

9

4𝑏
+

9

5𝑏2 −
1

2𝑏3)] − 𝐹L3 = 0         (40) 

 

Solving Equations (39) and (40) simultaneously, we 

have; 

 

𝐶2 =
30𝐹𝐿

𝐸𝑊𝐻3 (
10𝑏6−25𝑏5+21𝑏4−6𝑏3

50𝑏6−150𝑏5+185𝑏4−120𝑏3+45𝑏2−10𝑏+1
)   (41) 

 

𝐶3 =
−𝐹

𝐸𝑊𝐻3 (
100𝑏6−300𝑏5+250𝑏4−70𝑏3

50𝑏6−150𝑏5+185𝑏4−120𝑏3+45𝑏2−10𝑏+1
)  (42) 
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Substituting the values of C2 and C3 back into the 

deflection curve equation (Equation 7) of the beam; 

 

𝑦(𝑥) =
30𝐹𝐿𝑥2

𝐸𝑊𝐻3 (
10𝑏6−25𝑏5+21𝑏4−6𝑏3

50𝑏6−150𝑏5+185𝑏4−120𝑏3+45𝑏2−10𝑏+1
) −

𝐹𝑥3

𝐸𝑊𝐻3 (
100𝑏6−300𝑏5+250𝑏4−70𝑏3

50𝑏6−150𝑏5+185𝑏4−120𝑏3+45𝑏2−10𝑏+1
)    (43) 

 

𝑦(𝑥) =
𝐹

𝐸𝑊𝐻3 [
30𝐿(10𝑏6−25𝑏5+21𝑏4−6𝑏3)𝑥2−(100𝑏6−300𝑏5+250𝑏4−70𝑏3)𝑥3

50𝑏6−150𝑏5+185𝑏4−120𝑏3+45𝑏2−10𝑏+1
]

                    (44) 

 

For tip deflection of the cantilever beam, x = L, 

substituting into Equation (44), we have; 

 

𝑦(𝐿) =
𝑭L3

𝑬𝑾𝑯𝟑 (
𝟐𝟎𝟎𝒃𝟔−𝟒𝟓𝟎𝒃𝟓+𝟑𝟖𝟎𝒃𝟒−𝟏𝟏𝟎𝒃𝟑

𝟓𝟎𝒃𝟔−𝟏𝟓𝟎𝒃𝟓+𝟏𝟖𝟓𝒃𝟒−𝟏𝟐𝟎𝒃𝟑+𝟒𝟓𝒃𝟐−𝟏𝟎𝒃+𝟏
) (45) 

 

The tapered height of the cantilever beam was then 

taken as a function of both the height at the fixed 

end, ℎ1  and the height at the free end, ℎ2 of the beam 

as follows; 

 

ℎ(𝑥) = ℎ1 (1 −
𝑥

𝐿
) + ℎ2 (

𝑥

𝐿
)          (46) 

 

By using the principle of virtual work in order to find 

the strain energy in the beam, it follows that; 

 

𝑈 =
𝐸𝑊

24
∫ [ℎ1 (1 −

𝑥

𝐿
) + ℎ2 (

𝑥

𝐿
)]

3𝐿

0
[

𝑑2𝑦

𝑑𝑥2]
2

𝑑𝑥 − 𝐹(𝐶2L2 +

𝐶3L3)                  (47) 

 

𝑈 =
𝐸𝑊

24
∫ [ℎ1 (1 −

𝑥

𝐿
) + ℎ2 (

𝑥

𝐿
)]

3𝐿

0
[2𝐶2 + 6𝐶3𝑥]2𝑑𝑥 −

𝐹(𝐶2L2 + 𝐶3L3)               (48) 

 

By integrating Equation (48) by parts, it follows that; 

 

𝑈 =
𝐸𝑊

24
[𝐶2

2𝐿(ℎ1
3 + ℎ2

3 + ℎ1ℎ2
2 + ℎ1

2ℎ2) +
6𝐶2𝐶3𝐿2

5
(ℎ1

3 +

4ℎ2
3 + 3ℎ1ℎ2

2 + 2ℎ1
2ℎ2) +

3

5
𝐶3

2𝐿3 (ℎ1
3 + 10ℎ2

3 + 6ℎ1ℎ2
2 +

3ℎ1
2ℎ2)] − 𝐹(𝐶2L2 + 𝐶3L3)          (49) 

 

In order to find the values of C2 and C3 that bring the 

strain energy in Equation (49) to zero, the partial 

derivatives of U with respect to C2 and C3 were set to 

zero and simplified to give Equations (50) and (51) 

respectively; 

 

𝐸𝑊

24
[2𝐶2𝐿(ℎ1

3 + ℎ2
3 + ℎ1ℎ2

2 + ℎ1
2ℎ2) +

6𝐶3𝐿2

5
(ℎ1

3 + 4ℎ2
3 +

3ℎ1ℎ2
2 + 2ℎ1

2ℎ2)] − 𝐹𝐿2 = 0         (50) 

 

𝐸𝑊

24
[

6𝐶2𝐿2

5
(ℎ1

3 + 4ℎ2
3 + 3ℎ1ℎ2

2 + 2ℎ1
2ℎ2) +

6

5
𝐶3𝐿3(ℎ1

3 +

10ℎ2
3 + 6ℎ1ℎ2

2 + 3ℎ1
2ℎ2)] − 𝐹𝐿3 = 0       (51) 

 

Solving Equations (50) and (51) simultaneously by 

substitution method yields; 

 

𝐶2 =
30𝐹𝐿

𝐸𝑊
(

6ℎ2
3+3ℎ1ℎ2

2+ℎ1
2ℎ2

ℎ1
6+ℎ2

6+4ℎ1
5ℎ2+10ℎ1

4ℎ2
2+20ℎ1

3ℎ2
3+10ℎ1

2ℎ2
4+4ℎ1ℎ2

5) (52) 

 

𝐶3 =
10𝐹

𝐸𝑊
(

2ℎ1
3−7ℎ2

3−4ℎ1ℎ2
2−ℎ1

2ℎ2

ℎ1
6+ℎ2

6+4ℎ1
5ℎ2+10ℎ1

4ℎ2
2+20ℎ1

3ℎ2
3+10ℎ1

2ℎ2
4+4ℎ1ℎ2

5) (53) 

 

The equation of the deflection curve of the cantilever 

beam becomes; 

 

𝑦(𝑥) =
10𝐹

𝐸𝑊
(

3𝐿(6ℎ2
3+3ℎ1ℎ2

2+ℎ1
2ℎ2)𝑥2+(2ℎ1

3−7ℎ2
3−4ℎ1ℎ2

2−ℎ1
2ℎ2)𝑥3

ℎ1
6+ℎ2

6+4ℎ1
5ℎ2+10ℎ1

4ℎ2
2+20ℎ1

3ℎ2
3+10ℎ1

2ℎ2
4+4ℎ1ℎ2

5 )

                    (54) 

 

For tip deflection of the cantilever beam, 𝑥 = 𝐿, 

substituting into Equation (54), we have: 

 

 𝒚(𝐿) =

𝟏𝟎𝑭𝑳𝟑

𝑬𝑾
(

𝟐𝒉𝟏
𝟑+𝟏𝟏𝒉𝟐

𝟑+𝟓𝒉𝟏𝒉𝟐
𝟐+𝟐𝒉𝟏

𝟐𝒉𝟐

𝒉𝟏
𝟔+𝒉𝟐

𝟔+𝟒𝒉𝟏
𝟓𝒉𝟐+𝟏𝟎𝒉𝟏

𝟒𝒉𝟐
𝟐+𝟐𝟎𝒉𝟏

𝟑𝒉𝟐
𝟑+𝟏𝟎𝒉𝟏

𝟐𝒉𝟐
𝟒+𝟒𝒉𝟏𝒉𝟐

𝟓) (55) 

 

5. DETERMINISTIC OPTIMISATION 

The deterministic optimisation of the cantilever beam 

with a tapered width and constant height was done. It 

was optimised for the geometrical properties that gave 

the minimum displacement at the tip with the height 

and length of the cantilever kept constant. The 

formulation is as follows; 

 

Find the values of 𝑊1 and 𝑊2which minimises the 

objective function shown below; 

 

Minimise deflection at the tip,  𝑦(L) =

6𝐹𝐿3

𝐸𝐻3 [(
𝑊1

2+5𝑊2
2+6𝑊1𝑊2

𝑊1
3+𝑊2

3+5𝑊1𝑊2
2+5𝑊1

2𝑊2
) −

2𝑊2

(4𝑊1𝑊2+𝑊1
2+𝑊2

2)
]  

Constant volume constraint:         
𝑊1+𝑊2

2
×  𝐻 × 𝐿  

The design variables for deflection minimisation of the 

cantilever beam design are shown in Table 2. The 

applied force at the tip of the tapered cantilever beam 

was taken as 4.75 KN while the elastic modulus of the 

material, E was taken as 205,000 KN/m2. The height 

and length of the cantilever beam were taken as 

0.45m and 2.5m respectively. The ModelCenter 

software was used for the deterministic optimisation 

as follows.  The formula for calculating the volume of 
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the beam was linked with the governing end deflection 

formula in an excel file. The excel file was then 

embedded in an optimisation loop. An alternative way 

of doing this is by creating a script file for the volume 

and linking it with the deflection formula in the excel 

file, and embedding both files in an optimisation loop. 

The constant volume constraint is applied by keeping 

the same value of volume in the upper bound as in the 

lower bound. This was done by keeping an upper 

bound limit of the volume in order not to over-

constrain the optimisation problem. The Darwin 

algorithm was used for the optimisation as the Dot 

Sequential Quadratic Programming algorithm was not 

appropriate. The OptLib gradient optimiser and the 

Design Explorer were also very suitable for the 

optimisation problem. It took too long for the 

optimisation problem to converge when the sequential 

quadratic programming algorithm was employed, 

therefore leading to an infeasible design. The OptLib 

gradient optimiser and Design Explorer were very 

suitable in as they gave more economical designs as 

compared to the Darwin algorithm. They are also less 

computationally expensive as compared to the Darwin 

algorithm. The dialogue box for the deterministic 

optimisation in ModelCenter is shown in Figure 2. 

 

6. RESULTS AND DISCUSSION 

The validation of the structural systems (e.g. 

cantilever beam) was done by the finite element 

method, with mesh densities, element types, and 

boundary conditions adding to the epistemic 

uncertainties. The choice of the element type, shape 

and geometry, boundary conditions and constraints 

played major roles in the performance of the model. 

The Abaqus finite element analysis software was used 

for this purpose. Figure 3 shows a model of the 

tapered width, constant height cantilever beam in 

Abaqus software. Different kinds of brick finite 

elements were used in the verification of the analytical 

solutions obtained. 

The validation of the analytical solution in Abaqus 

finite element software shows that the best finite 
elements for the analysis of the tapered width, 

constant height cantilever beam are the 20-nodes 

quadratic brick elements with reduced integration (see 
Figure 4). The triangular prism element type and the 

quadratic tetrahedron element were not suitable for 
this analysis as they did not give consistent 

displacement values at the nodes. It can be seen from 

the bar chart that the mesh with the 20-nodes brick 
elements gives end deflection values which are very 

close to 0.05055m. More specifically C3D20RH (A 20-
node quadratic brick, a hybrid element with linear 

pressure and reduced integration) gave an end 

displacement of 0.05035 m. 
Since this is the closest approximation to the actual 

end deflection of 0.05352 m, this element was 

therefore adopted for mesh refinement analysis.  This 

difference between the actual deflection value and the 

deflection value predicted by the C3D20RH constitutes 

an epistemic uncertainty. 

 
Table 2: Design values for the tapered cantilever 

beam with constant height 
Design 

Variable 

Start 

value  

Lower 

limit  

Upper 

limit  

W1 (m) 0.30 0.10 0.50 

W2 (m) 0.175 0.10 0.50 

 

 

 
Figure 2: The optimisation tool dialogue box 
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The deterministic optimisation of the tapered width, 

constant height cantilever beam for the minimum 

deflection at the tip produced a lower value of 0.05352 

m for the tip deflection than the initial design (0.05948 

m) as expected while the width at the fixed end of the 

cantilever increased from 0.30 m to 0.375 m and the 

width at the free end decreased from 0.175 m to the 

very minimum of its range, 0.1 m as shown in Figure 

5. This lower deflection value was obtained when 

these values of the fixed and free ends width were 

substituted into the governing deflection formula. This 

affirms that the values gotten are in order. 

The increase in the width at the fixed end, w1 of the 

cantilever beam and the decrease in the length at the 

free of the deflection optimisation also points to the 

fact that the end deflection is more sensitive to w1 

than w2. This was confirmed in a sensitive result of a 

design of experiment using the full factorial method as 

shown in Figure 6. It can be seen that w1 has a 

sensitivity summary of 0.845 while w2 has 0.336. 

The deterministic optimisation by the gradient 

optimiser, design explorer and Darwin algorithm all 

gave different forms of convergence history diagrams.  

Figure 7 and Figure 8 show the convergence history of 

the optimisation by using the design explorer 

algorithm and Darwin algorithm respectively. It can be 

clearly seen from the two convergence histories that 

since the design explorer is an optimiser that works 

based on gradient methods, it seeks for the optimum 

solution by creating series of sloping straight lines. 

The carpet plot showing the constant volume 

constraint and the valid design space is as shown in 

Figure 9. The blue line represents the volume 

constraint. The dashed side of the constraint line 

points to the invalid region of the design space. It can 

be seen that for a tapered beam of constant height 

and maximum volume, the minimum deflection will be 

when w2 is at its lower bound and w1 is as large as it 

can be subject to the volume constraint or its upper 

bound; or when w1 is at its upper bound and w2 is as 

large as it can be subject to the volume constraint or 

its upper bound. In this case, the width of the 

cantilever beam at the free end decreased to its lower 

limit, 0.1m and the width at the fixed end increased 

from 0.3 m to 0.375 m. This may be due to the high 

bending moments at the fixed end of a cantilever 

beam as a result of the applied point load at the free 

end. The increase in the width at the fixed end is for 

a higher section to resist the applied moments. 

The response surface plot for the deflection of the 

tapered width, constant height cantilever beam is as 

shown in Figure 10. The response surface seems to be 

or approximated to a second order model. A detailed 

look at the response surface also shows that the 

minimum displacement of 0.05352 m occurs at the 

point where w1 is equal to 0.375 m and w2 is equal to 

0.1 m. 

The scatter plot also reveals a strong correlation 

between the end displacement and the elastic 

modulus of the beam material. It can be seen in Figure 

11 that as the elastic modulus of the material increases 

the deflection decreases, which is an affirmation of the 

relationship between deflection and E as seen in 

Equation 30. The deflection of the beam is inversely 

proportional to the elastic modulus. Also, most of the 

Monte Carlo samples lie below the limit state (0.08635 

m). There are just about two cases where the limit 

state was exceeded for which the elastic modulus goes 

below 119,277 kN/m2. Therefore the value of the 

elastic modulus corresponding to the limit state is 

about 119,277 kN/m2, below which the structure is 

considered to have failed. This explains why after the 

probabilistic analysis to determine the limit state, a 

lower value of E is returned in the data explorer 

window.  A design of this structure at this limit state is 

actually very robust as only about two samples from 

the scatter plot violate this limit. 

 

 
Figure 3:  A model of the tapered width, constant 

height cantilever beam in Abaqus software 
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Figure 4: The best element type for the cantilever beams analysis 

 
Figure 5: The optimum values for the tapered width, constant height cantilever 

 
Figure 6: Sensitivity summary 

 
Figure 7: The convergence history by the design 

explorer algorithm 
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Figure 8: The convergence history by the Darwin algorithm 

 
Figure 9: The carpet plot showing the volume constraint and the valid design space 

 
Figure 10: The response surface for the deflection of the tapered width, constant height beam 



DERIVATION AND OPTIMIZATION OF DEFLECTION EQUATIONS FOR TAPERED CANTILEVER BEAMS USING THE FINITE ELEMENT METHOD,       M. M. Ufe, et al 

 

Nigerian Journal of Technology,  Vol. 39, No. 2, April 2020         361 

 

 
Figure 11: The correlation between the elastic modulus and the end displacement 

 

7. CONCLUSION  

This work set out to develop and validate deflection 

equations for tapered cantilever beam. Analytical 

solutions for the end deflection of various 

configurations of three-dimensional tapered cantilever 

beam were developed by using the shape functions of 

a bar finite element. The validation of these analytical 

solutions in Abaqus finite element software was done 

and the C3D20HR brick element was chosen as the 

best element. It predicted an end displacement to be 

0.05038 m for the tapered width, constant height 

cantilever beam. This was seen to be an epistemic 

uncertainty since the prediction was not exact as the 

real displacement. 

The design explorer algorithm was adopted for the 

deterministic optimisation of the structural systems. 

The Darwin algorithm and other evolutionary 

algorithms were highly computationally expensive, 

and therefore wasteful for these analyses.  The 

constant volume constraint limited the design space, 

and as such put a limit on the feasible optimum 

solution. 

Future works in this area can be focused on 

modification of the available optimisation algorithms 

to suitable robust algorithms for the multiple objective 

optimisations of specific structural systems with 

multiple constraints. The roles epistemic and other 

uncertainties play in the optimisation of structural 

systems can also be investigated. 
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