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ABSTRACT 

The advent of the Android Operating System has recorded a remarkable ground-breaking 

opportunities in the Technological world. However, this great breakthrough also has a very dark 

side – an uncontrollable rapid continuous releases of malware in the wild, targeted at the platform 

and all its information and human assets.  The misuse-based approaches adopted by many detection 

systems do no longer have the rigidity and the tenacity to accommodate the rapid successive 

releases of malware that come in great volume in order to keep up with active defenses against 

unknown and novel attacks.  Systems that are capable of offering anomaly protection are thus in 

dire need. This study developed a normality model that is based on One-Class K-Nearest Neighbour 

(OC-kNN) Machine Learning approach for anomaly detection of Android Malware. The OC-kNN was 

trained, using WEKA 3.8.2 Machine Learning Suite, through a semi-supervise procedure that 

contained mostly benign and a very few outliers Android application samples. The OC-kNN had 

88.57% true performance accuracy for normal instances while 71.9% was recorded as true 

performance accuracy for outliers (unknown) instances. The false alarm rates for both normal and 

outlier’s instances were recorded as 28.1% and 11.5%.  The study concluded that a One-Class 

Classification model is an effective approach to be used for the detection of unknown Android 

malware. 

 

Keywords: Android; Machine Learning, Malware, One-Class Classification, Anomaly Detection, Outlier Detection, 
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1. INTRODUCTION  

Machine learning approaches involving the 

conventional binary or multi-class classification 

algorithms are commonly known to classify an 

unknown object into one of several pre-defined 

categories or classes used in the training phase [1]. 

For times when the unknown object fails to match 

with any of those pre-defined categories, a problem 

arises which makes the system unable to correctly 

identify or classify these new and unknown 

instances, thus allowing them to slip away quietly 

without a definite tag. This problem is known as a 

zero-day attack (novel threat) which necessitates 

the need for an anomaly detection model that  can 

mostly be derived from a one-class classification 

technique (OCC) [2]. Other research themes used 

for OCC are Outlier Detection, Novelty Detection [3], 

[4], and Concept Learning [1, 5, 6] defined this 

novelty detection approach as concept learning 

techniques that proceed by recognizing only the 

positive instances of a concept rather than focusing 

on the difference that exist between the positive and 

negative instances thus making the technique to 

have very negligible need for the presence of any 

negative instances. 

Problems that involve outliers or novelty detection 

can be viewed as binary classification problems that 

allow behaviour to be classified as normal when it 

satisfies the rules of normalcy, but when the 

behaviour derails from those rules and becomes 

abnormal, it is then classified as suspicious. 

Anomalies are occurrences or events which do not 
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match, quantitatively, with the pattern of what is 

considered to be normal, according to a domain 

expert [7]. In Machine Learning or Data Science, 

they are referred to as data points that do not 

conform to an expected pattern of the items in the 

data set. In learning situations, anomaly detection 

has become the most beneficial given that it allows 

the machine to appropriately approximate the 

underlying distribution of the provided regular 

instances or normal behaviour, in order to produce 

a concise model of normality [8, 9].  

Finding and detecting these irregular patterns, also 

known as outliers, is known as Anomaly detection 

[10]. One-Class Classification (OCC), also called 

Single-Class Classification (SCC), is the simplest way 

of employing supervised classification methods for 

the purpose of anomaly detection. One-class 

algorithms are based on recognition given that their 

main purpose is to recognize data from a particular 

class while rejecting data from all other classes. 

However, the anomaly detection employs mostly a 

semi-supervised technique in which the training sets 

for the learning algorithm consist of only the normal 

data class without any anomalies. This is important 

because the classical method to anomaly detection 

is to work out a precise description of normal data, 

so any new instance or example that arrives is 

contrasted with the model of normality and then an 

anomaly score is worked out to describe the degree 

of deviation from the average data instance, an so if 

the deviation exceeds a predefined threshold, the 

instance is then considered an anomaly or an outlier 

[8]. When the model is built based on the class of 

normal data set (that is normal class model), any 

deviation from this model will be classified as 

anomalies. These techniques are known as one-class 

classification. This study focuses on the use of One-

Class k-Nearest Neighbours for the detection of 

novel Android malware. The process of semi-

supervised learning was adopted as WEKA 3.8.2 

machine learning suite was employed. 

 

2. LITERATURE REVIEW 

2.1 Mobile Operating Systems 

The advent of mobile devices have given a great 

technological boost to the way people do businesses 

and in the way they relate with fellow humans  and 

nature in general. However, these hand held 

devices’ interactions and relationships with their 

users is hugely affected by the nature, users’ 

friendliness, and security of the Operating Systems 

(OS) running in them. A mobile OS is a software or 

program that powers Smartphones and Tablets and 

creates an environment for other applications and 

programs to run on [11]. The functions and features 

that are found on a mobile device, such as thumb 

wheel, keyboards, email, and text messaging are all 

determined by the operating system. Different kinds 

of mobile OS exist which includes Apple iOS, Google 

Android, Nokia Symbian, Hewlett-Packard WebOS 

(formally Palm OS), BlackBerry RIM (Research in 

Motion), Microsoft Windows Phone (Microsoft 

Windows 8), Ubuntu and Firefox [12–14]. Table 1 

provides more distinctive properties and differences 

that exist between major Mobile OS and it also 

shows that the Android OS has the highest future 

prospects, in terms of market shares, as can also be 

observed in Figure 1. 

Majority of the existing mobile OS have direct 

connection to specific hardware, with little or no 

flexibility. However, users have the ability to 

jailbreak or root some devices in order to gain full 

control to install a different OS or unlock restricted 

applications. Due to the open-source nature and 

user friendliness of the Android OS, its popularity has 

risen far above all other mobile OS as observed in 

the continuous increase in the volume of Mobile OS 

Market shares. A lot of malware are therefore 

targeted at this platform given that it has drawn the 

highest attention in the world of mobile devices’ 

users. 

 

2.1.1 The Android Operating System 

The Android operating system (OS) is the most 

popular amongst all other mobile operating systems, 

as shown in Table 2 and Figure 1. It was built based 

on Linux 2.6 kernel and managed by the Open 

Handset alliance [15]. The open nature of Android 

OS has attracted the attention of immeasurable 

number of developers who are working on different 

kinds of projects, both legitimate and illegitimate, on 

the platform. The Linux kernel serves as a layer of 

abstraction between the hardware and the rest of 

the hardware stack and it also enables access to 

essential services such as security, memory 

management, process management, network stack, 

and driver model.  It also creates a support for the 

Dalvik virtual machine’s functionality. The Libraries, 

which is the next layer up after the kernel, is divided 

into Android Runtime and applications libraries. 
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Table 1: Mobile Operating Systems Comparison [12] 
 
Parameter 

MOBILE OPERATING SYSTEMS 

Android iOS System Blackberry Windows 
Phone 

WebOS Ubuntu Firefox 

OS Family Linux Darwin RTOS QNX Window CE-
7 Window 
NT-8 

Linux Linux Linux 

Vendor Open 
Handset 
Alliance, 
Google 

Apple, Inc Accenture 
on behalf of 
Nokia 
(historically 
Symbian 
Ltd. And 
Symbian 
Foundation) 

Blackberry 
Ltd. 

Microsoft Open 
WebOS 
community 
contributor
s, LG 
Electronics
, 
Previously 
HP 
(Hewlett-
Packard) & 
Palm 

Canonical 
Ltd. Ubuntu 
community 

Mozilla 
Foundation 

Environme
nt (IDE) 

Eclipse 
(Google) 

XCode 
(Apple), 
AppCode 

QT, 
Carbide.C+
+, 
Vistamax, 
Eclipse 

Eclipse, 
BlackBerry 
JDE 

Visual 
Studio 

Eclipse Ubuntu SDK WebIDE 

SDK 
Platform 

Linux, Mac 
OS X and 
Windows 

Mac OS X 
using iOS 
SDK 

Windows 
XP 
Professional 
SP2; Vista 
& 7 for 
some SDKs 

Linux, 
Windows, 
Mac OS X 

Windows OS X, 
Ubuntu, 
Windows 

Ubuntu 
Desktop 
using 
Ubuntu SDK 

All where 
Firefox is 
available 

License Free and 
opensource, 
but usually 
bundled 
with 
proprietary 
apps and 
drivers 

Proprietar
y EULA 
except for 
open 
source 
componen
ts 

Proprietary, 
previously 
licensed 
under EPL 

proprietary Proprietary Apache 
License 

Free and 
open-
source, 
mainly the 
GPL 

Free and 
open-
source, 
mainly the 
MPL; 
apache 

Written In C, C++, 
Java 

C, C++, 
Objective-
C, Swift 

C, C++, 
Java ME, 
Python, 
Ruby, Flash 
Lite 

C, C++, 
HTML5, 
Java script, 
CSS, Action 
Script, Java 

C#, 
VB.NET, 
F#, C++, 
Jscript 

JavaScript, 
CSS, 
HTML, C 
and C++ 

HTML5, 
QML, C, 
C++ 

HTML5, 
CSS, 
JavaScript, 
C++ 

Initial 
Release 

September 
23, 2008 

June 29, 
2007 

1997 January, 
1999 

October 21, 
2010 

June, 2009 October 20, 
2004 

April 23, 
2013 

Runs on Smartphone
s, Tablet, 
Computers, 
TVs, Cars 
and 
wearable 
devices 

iPhone, 
iPad, iPod 
Touch 

Smartphon
es 

Smartphon
es 

Personal 
Computers, 
Smartphone
s, Server 
Computers 
and 
Embedded 
Devices 

TVs and 
Smart 
Watches 

Personal 
Computers, 
Servers, 
Smartphone
s, Table 
computers 
(Ubuntu 
Touch), 
Smart TVs 
(Ubuntu 
TV) 

Smartphone
s, Tablet 
and 
Computers 

Application 
Store 

Google Play App Store Nokia Ovi 
Store 

BlackBerry 
World 

Windows 
Phone Store 

Palm App 
Catalog 

Ubuntu 
Store 

Firefox 
Marketplace
, Web URL 

GUI Android Cocoa 
Touch 

Avkon Cascades Visual 
Studio 

Graphical 
(Luna) 

Ubuntu SDK Firefox 
browser, 
Firebug 

Future 
Prospect 

Very High High Low Low Medium Low Low Low 

 

The Android runtime is made up of the Dalvik Virtual 

Machine (DVM) and the core libraries. The VM gives 

the Android device the ability to run instances of 

multiple applications as separate processes [16], 
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having unique UID/GID (User ID/Group ID) and data 

storage. This prevents each application from having 

rights to access data storage of another application 

except through a different procedure or an express 

permission by the user of the device [17]. 

Moreover, apps that have been signed with the same 

private key or share the same public certificate can 

share the same UID and process in Android. 

Although dalvik VM is very instrumental in aiding 

processes and applications isolations, it however 

does not play a role in Android security as it is not a 

security boundary. More so, the Dalvik VM is only 

found in older versions of Android but from version 

5.0, the DVM has been substituted with ART – 

Android Runtime [19]. Table 3 shows all the different 

versions of the Android OS since inception to 2018. 

 

2.2 K-Nearest Neighbour (k-NN) Algorithm 

KNN is known typically as lazy learner. It is so called, 

not because it’s obvious simplicity, but for the reason 

that it does not learn a discriminative function from 

the data provided for training but it rather 

memorizes the given dataset for training, thus KNN 

does not have any training time. What it does is to 

store the data meant for training and then wait until 

data for testing is provided and the classification is 

performed based on the most related data in the 

training data that was stored [23]. It doesn’t use the 

training data points to do any generalization (i.e., it 

keeps all the training data). The training phase for 

K-NN is extremely fast because it does not really 

have a training phase. For K-NN to make prediction, 

it searches for the nearest neighbours in the entire 

training dataset.  

Table 2: Worldwide Smartphone Shipment OS Market Share Forecast [18] 

Year 2017 2018 2019 2020 2021 2022 2023 

Android 85.1% 85.1% 86.7% 86.6% 86.9% 87.0% 87.1% 

iOS 14.7% 14.9% 13.3% 13.4% 13.1% 13.0% 12.9% 
Others 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

TOTAL 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Table 3: List of Android version releases [20] 

S/N VERSION VERSION NAME RELEASED DATE 

1. Android 1.5 Cupcake April 27, 2009 
2. Android 1.6 Donut September 15, 2009 

3. Android 2.0-2.1 Eclair October 26, 2009 

4. Android 2.2-2.2.3 Froyo May 20, 2010 
5. Android 2.3-2.3.7 Gingerbread December 6, 2010 

6. Android 3.0-3.2.6 Honeycomb February 22, 2011 
7. Android 4.0-4.0.4 Ice Cream Sandwich October 18, 2011 

8. Android 4.1-4.3.1 Jelly Bean July 9, 2012 
9. Android 4.4-4.4.4 KitKat October 31,2013 

10. Android 5.0-5.1.1 Lollipop November 12, 2014 

11. Android 6.0-6.0.1 Marshmallow October 5, 2015 
12. Android 7.0-7.1.2 Nougat August 22, 2016 

13. Android 8.0-8.1 Oreo August 21, 2017 
14. Android 9.0 Pie August 6, 2018 

 
Figure 1: Global sales of Smartphones by OS since 2009 – 2018, [21]
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In this work, K-NN was implemented in the WEKA 

environment using IBK classification filter on the 

given dataset. Unlike eager learners, the lazy learner 

takes less time in the training phase but more time 

in predicting. 

 

2.3 One-Class Classification (OCC) Approach 

The main difference that exist between OCC and 

binary/multi-class classification problems is the fact 

that in OCC, the negative class is either not present 

or not properly sampled while focus is placed mostly 

on the positive class (that is, the target class) or 

cases – resulting in definite determination of only 

one side of the classification boundary by using the 

positive data [1], [5]. This characteristic makes the 

OCC problem much harder than the problem of 

conventional two-class classification. What OCC 

does mostly is to define a classification boundary 

around the positive (or target) class in such a way 

that it can accept as many objects as possible from 

the positive class while the chances of accepting 

non-positive (or outlier) objects is highly minimized. 

Thus, all One-Class classifiers are trained on target 

dataset only and are tested on both target data and 

other non-target data that remains [22]. Pandey 

(2017) noted that binary or multi-class classifiers are 

mostly discriminatory in nature, given that they work 

by learning to discriminate between classes by using 

all data classes to produce a hyperplane and then 

use the hyperplane to label samples that are new, 

while on the other hand, the one-class classifiers 

work based on recognition given that their aim is to 

recognize data from a particular class, and then 

reject data from all other classes. 

 

2.3.1 OCC Algorithms Categorization 

A one-class classifier takes as input a labelled data 

se 𝐷 and outputs classifications {𝑂𝑢𝑡𝑙𝑖𝑒𝑟, 𝑖𝑛𝑙𝑖𝑒𝑟}. 

One-class classifiers normally fall into either of these 

categories: density estimation methods, boundary 

methods and reconstruction methods [3]. 

a. Density Estimation Methods: the main aim of 

this method is to estimate the complete distribution 

of the target data. A rejection threshold value is then 

fixed in order to screen out, as rejects, points that 

are located in the far tails of the distribution. The 

drawback of these methods is that a sufficiently 

large sample of inliers (positive instances) is 

required before a good estimation can be produced 

[25]. Example of density based methods includes 

Gaussian distribution, Parzen density estimation, 

and Gaussian mixture models. 

b. Boundary methods: in these methods, 

construction of a boundary, such as a sphere, 

around the target data is the main aim rather than 

estimating the distribution which requires very large 

number of samples [25]. Any points found falling 

outside the limits of the boundary are rejected. 

Given that the interest is on defining this boundary, 

obtaining large samples to completely represent the 

inliers class is not necessary. Example of the 

boundary methods includes k-nearest neighbours 

(kNN), support vector data description (SVDD) [26], 

and the Linear Programming Distance Data 

Description (LP) [27]. 

c. Reconstruction methods: these methods aim 

at developing a simplified representation of the data 

through clusters or principal components. The 

method is used to model the training data via the 

use of a generating process [25]. Examples of these 

methods include k-means, principal components 

analysis, self-organizing maps and auto-encoder 

networks [6]. 

When it comes to one-class classification 

performance evaluation, true negative and false 

positive, which are the traditional classifier 

evaluation metrics, cannot be computed due to the 

reason that only positive examples (class) exist [28]. 

The receiver operating characteristic (ROC) curve is 

one very useful performance assessment tool in 

classification and anomaly detection tasks [3]. 

 

2.3.2 One-Class K-Nearest Neighbours (OC-

KNN) 

The modification of the usual multi-class or binary 

Nearest Neighbour classifier enables the formulation 

of the One-Class k-Nearest Neighbours (OC-kNN) 

classifier which focuses on learning the target or 

positive (benign) class only [29]. The operation of 

the classifier involve storing all the training examples 

as its model, then for a given example 𝑧, the 

distance to its Nearest Neighbour 𝑦(𝑦 = 𝑁𝑁(𝑧)) is 

calculated as 𝑑(𝑧, 𝑦). The new sample belongs to the 

target class when: 

𝑑(𝑧, 𝑦)

𝑑(𝑦, 𝑁𝑁(𝑦))
< 𝛿                                                 (1) 

Where 𝑁𝑁(𝑦) is the Nearest Neighbour of 𝑦. In other 

words, it is the Nearest Neighbour of the Nearest 

Neighbour of 𝑧. The default value of 𝛿 is 1 but can 

be chosen to satisfy the needed requirement. The 
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average distance of the 𝑘 nearest neighbours is 

considered for the OC-KNN implementation. 

 

2.4 Related Work 

Bezerra, et al., (2019) proposed a host-based 

method for the detection of Botnets in Internet of 

Things (IoT) Devices using One-Class Classification 

(OCC) approach that was able to model only the 

legitimate behaviour of a device in order to detect 

any deviations. The proposed system is underpinned 

by a novel agent-manager architecture based on 

HTTPS, which is able to stop the IoT device from 

being overloaded by the training activities. The One-

Class algorithms evaluated are Elliptic Envelope, 

Isolation Forest, Local Outlier Factor, and One-Class 

Support Vector Machine (SVM). Yerima & Sezer, 

(2018) proposed a novel classifier fusion approach 

called DroidFusion that is based on a multilevel 

architecture which enables effective machine 

learning algorithm combination in order to produce 

an improved accuracy. DroidFusion works by 

training the base classifiers at a lower level in order 

to create a model and then a set of ranking-based 

algorithms are applied on their predictive accuracies 

at the higher level so as to generate schemes for 

combination in which one was chosen to build a final 

classification model. The authors utilized five base 

classifiers: J48, REPTree, Random Tree-100, 

Random Tree-9, and Voted Perceptron.  

Rashidi, Fung, & Bertino, (2018) worked on a 

framework for the detection of Android malicious 

application that was based on Support Vector 

Machine (SVM) and Active Learning technologies. In 

order to build an active learning model, the authors 

made use of expected error reduction query strategy 

so as to combine Android malware new informative 

instances and to retrain the model in order to be able 

to do adaptive online learning. To evaluate their 

model, the authors utilized the DREBIN benchmark 

malware dataset via a set of experiments and their 

findings revealed that their framework could detect 

new malware more accurately. Ucci, Aniello, & 

Baldoni, (2018) conducted a survey with focus on 

showing the application and the use of ML methods 

in the analysis of malware. The Authors observed 

that machine learning is one of the most common 

techniques adopted in literatures for the analysis of 

complex malware. Idrees, Rajarajan, Conti, Chen, & 

Rahulamathavan, (2017) proposed PIndroid, which 

was a novel Android malware apps detection 

framework that uses permissions and intents 

features for the training of models and further 

employed classifier fusion technique to combine the 

classifiers together for an improved performance. 

Dong,  

(2017) worked using permissions as his primary 

features to develop a novel detection system for 

Android malware.  

The Author combined machine learning algorithms 

such as Logistic Regression Model, Tree Model with 

Ensemble techniques, Neural Network and finally an 

ensemble model to find the patterns and more 

valuable information. Yerima, Sezer, & Muttik, 

(2016) proposed a composite classification model 

using a parallel combination of heterogeneous 

classifiers for Android malware detection which 

employed static features. The classifiers deployed 

are Decision Tree (Tree based), Naïve Baye 

(probabilistic), Simple Logistics (function-base), 

PART (Rule-based) and RIDOR (Rule-based). Four 

classifier combination approaches were compared 

together, that is Average of Probability, Maximum 

Probability, Product of Probability, and Majority Vote, 

using the classification algorithms. The composite 

model was aimed at enabling an enhancing early 

detection model for Android malware which has 

improved accuracy and that can provide a quicker 

white box analysis by means of more interpretable 

constituent classifiers. 

 

3. METHODOLOGY 

One-class k-Nearest Neighbours (OC-kNN), was 

used in developing the outlier detection model. 

Research has shown that OC-kNN and support 

vector machine (SVM) (and its derivatives like 

Support Vector Data Description (SVDD)), are the 

top-most choices for one-class classification 

problems [4], [25] but OC-kNN has practically 

proven best suitable for the data set used in this 

study, hence its selection. k-NN is a distance-based 

outlier detection technique and it works based on 

the assumption that normal data points have close 

neighbours in the “normal” training set, while novel 

(new) data points are located far from those points 

[37]. The Waikato Environment for Knowledge 

Analysis (WEKA) Machine learning analysis suites, 

version 3.8.3, was used for the learning process. The 

k-NN classifier (iBk) was selected under 

OneClassClassifier meta algorithm and the value of 

𝑘 was set to 3 neighbours while Linear Nearest 

Neighbours Search (LinearNNSearch) was selected 

as the Nearest Neighbor Search Algorithm, and 
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Euclidean Distance was selected and used as the 

Distance Function with a threshold of 𝜇 = 0.1. The 

target was set as benign (note that the spelling and 

alphabet characters have to be exactly the same 

with the one represented under the class label in the 

dataset). Figure 3 illustrates the algorithm for the 

one-class kNN classifier.  

 

3.1 The Detection Framework 

Figure 2 shows the proposed detection system which 

involve experimental dataset collection and feature 

extractions through Reverse Engineering (RE) 

procedures; Pre-processing of extracted features 

through data cleaning and features selection; 

Training dataset creation through unary features 

vectors matrix formulation and the Machine Learning 

experimental phase for unary algorithm training and 

classification with One-Class Classifier, that is the 

One-Class kNN. The end result is the creation of the 

Normality model which was able to classify 

subsequent future applications as either benign or 

malicious. 

 

3.2 Experiment: One-class Anomaly Detection 

Model 

One-class k-Nearest Neighbours (OC-kNN), as 

discussed in Section 2.3.1, was used to develop the 

outlier detection model. The value of 𝑘 was set to 3 

neighbours, Linear Nearest Neighbours Search 

(LinearNNSearch) was selected as the Nearest 

Neighbor Search Algorithm, and Euclidean Distance 

was selected and used as the Distance Function, and 

a threshold, 𝜇 = 0.1. Figure 3 illustrates the 

algorithm for the one-class kNN classifier and WEKA 

machine learning suite was used for feeding data to 

the algorithm and the model testing. The algorithm 

is the standard One-Class kNN algorithms used for 

the classification of Android Applications as either 

benign or suspicious (unknown). The inputs used for 

this algorithm, as shown in Figure 3, includes the 

pre-processed training dataset 𝐷𝑡𝑟 (that is the unary 

features matrix), testing dataset 𝐷𝑡𝑒, the number 

used for the nearest neighbours 𝐾 and the number 

𝑡ℎ used as the threshold measure for accepting 

outliers. 𝐼 is an instance in the testing set and it is 

represented by a feature vector 

(𝑓1(𝐼), 𝑓2(𝐼), … , 𝑓𝑚(𝐼)) where 𝑓𝑖(𝐼) is an instance 

value for a given feature and 𝑚 represents the 

number of discriminatory features. An Euclidean 

distance between an instance 𝐼 of testing data and 

all instances of training dataset was computed in 

steps 5 and 6. Steps 7 to 11 aims at finding 𝐾 

nearest neighbours of 𝑁1 in the training dataset 𝐷𝑡𝑟. 

The average of all 𝐾 distances was taken in step 12 

and was named as 𝐷2. The unary classification was 

performed in steps 14 to 17. A test instance 𝐼 is 

considered as belonging to the target class (Benign) 

if the result of the ratio of distances 𝐷1 and 𝐷2 is less 

than the threshold measure 𝑡ℎ otherwise it will be 

classified as an outlier (unknown). 

 

3.3 Performance Evaluation Criteria for OCC 

For every learning algorithm used for model 

creation, there are criteria used for evaluating the 

performance of the model created. Cross-validation 

technique is mostly used and a Confusion matrix, 

which is generated from the classifiers responses, 

provides the parameters for classifiers evaluation. 

Table 4 illustrates the confusion matrix for the 

derivation of the performance metrics for OCC. 

Unlike the case with multi-class classifiers where the 

complete probability density of both classes must be 

known in order for the true error rate to be 

estimated, OCC only makes available the probability 

density of the positive class. This implies that the 

only class that can be minimized are the number of 

the positive class instances that are not classified by 

the One-Class Classifier (that is the false negatives, 

𝐹−). When examples and sample distribution from 

the outlier class instances are not represented in the 

dataset, it becomes impossible to estimate the 

number of outlier that the one-class classifier will 

classify (that is the false positive, 𝐹+). Furthermore, 

it can be observed that since 𝑇+ + 𝐹− = 1 and 𝐹+ +

𝑇− = 1, the main challenge in OCC is that only 𝑇+ 

and 𝐹− can be conveniently estimated but less or 

nothing is known about 𝐹+ and 𝑇−. 

This makes it thus important to have some limited 

amount of outliers class data in order to be able to 

estimate the performance and to generalize the 

classification accuracy of a one-class classifier [5]. In 

such scenario of imbalanced dataset, metrics most 

suitable for the evaluation of the classifiers 

performance are those that are class-independent 

which includes precision, recall, F-measure, 

sensitivity, specificity, geometric mean, ROC curve, 

AUC, and precision-recall curve [38]. The following 

performance metrics were used in evaluating the 

developed model; 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  = 𝑅𝑒𝑐𝑎𝑙𝑙

= 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦        (2)   
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Figure 2: One Class Classification (OCC) Anomaly Detection Framework 

 
Figure 3: One-Class k-Nearest Neighbours Algorithm 

 
Table 4: One-Class Classification Confusion Matrix [2] 

 Predicted class 

Target Class Outlier Class 

Actual class Target Class True Positive, 𝑇+ False Negative, 𝐹+ 

Outlier Class False Positive, 𝐹− True Negative, 𝑇− 

 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

= 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦      (3) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
           (4) 
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𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =
𝐹𝑁

𝐹𝑁 + 𝑇𝑁
         (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                  (6) 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                 (7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
               (8) 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (𝐸𝑅𝑅) = 1 − 𝐴𝐶𝐶                                    (9) 

 

4. RESULTS ANALYSIS AND DISCUSSION 

The Confusion Matrix, also known as the 

contingency table, showed that the model accurately 

recognized 401 instances as benign but erroneously 

recognized 41 instances as benign. This implied that 

a total of 442 instances where recognized as benign. 

On the other hand, the model accurately predicted 

105 instances as outliers and 52 instances were 

erroneously predicted as outliers, resulting to a total 

of 157 instances being predicted as outliers by the 

normality models. Based on the confusion matrix 

results, Table 5 shows that 

the One-Class k-Nearest Neighbours (OC-kNN) 

normality model has a high true positive recognition 

rate for benign instances as 0.885 (i.e., 88.5%), 

false positive recognition rate of 2.81%, an F-

Measure of 0.896 (89.6%) and ROC Area of 0.815 

(81.5%). For its predictive capacity on available 

outliers (i.e., instances that are unknown or outside 

the target class) found in the sample, the model has 

a true positive detection rate of 0.719 (i.e., 71.9%), 

a false positive rate of 1.14%, F-Measure of 70.5% 

and ROC Area of 85.5%.   

The cumulative result of the confusion matrix shows 

that a total of 84.4741% instances were correctly 

classified while 15.5259%  were incorrectly 

classified. The model took 0.84 seconds to build. The 

normality model has a detection accuracy of 88.5% 

for normal instances. 

 

4.1 Comparison of OCC Model with Existing 

Models 

To be able to point out the importance of the results 

in this study, Table 6 provides a performance 

comparison with other existing published works on 

Android malware detection via Machine Learning 

techniques. Yerima et al., (2016) made use of Naive 

Bayes, Decision Tree, Simple Logistic, Ridor and 

PART to form an ensemble model for Android 

Malware detection while Feng, et al., (2018) focused 

on Majority Vote.  

These models were built mostly based on supervised 

binary learning. This implies that they are mostly 

only able to detect known Android malware. The 

One-Class normality models built in this work has a 

competitive advantage given that it was developed 

using normal or benign features, so it has a very 

strong capacity to detect anything, outliers, that is 

outside normal. The comparison table shows that 

the system in this work has 88.5% ability to detect 

new and unknown malware samples compared to 

the 96.4% and 97.2% of the other models that were 

mainly built based on known benign and malware 

samples. 

Table 5: Prediction Accuracy Results for OC-kNN 

EVALUATION METRICS  

Class TP Rate FP Rate Precision F-Measure ROC Area 

0.885 0.281 0.907 0.896 0.815 Benign 
0.719 0.115 0.669 0.693 0.896 Outlier 

0.845 0.240 0.849 0.847 0.834 Weighted Avg. 

 

Table 6: Performance Evaluation of OCC Model with Existing Models. 
Reference ML Algorithms Method TP 

Rate 

FP 

Rate 

Accuracy Error 

Rate 

[36] Naive Bayes, Decision Tree 

(J48), Simple Logistic, Ridor, 

PART 

Ensemble 

Learning 

0.964 0.040 0.962 0.038 

[39] SVM, Naive Bayes, kNN, 

Decision Tree, Boosted Tree, 
Extra Trees, Random Forest, 

Xgboost, Stacking 

Majority 

Vote 

0.972 0.023 0.975 0.026 

OCC Normality 
Model 

OCC-kNN One Class 
Classification 

0.885 0.281 0.736 0.264 
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5. CONCLUSION 

Android malware are continually increasing in 

sophistications and variance, posing a great challenge 

to existing detection methods. This study took a deep 

delve into One-Class Classification techniques for 

anomaly detection of Android malware, as a 

countermeasure to the emerging unknown malware 

variances. The One-Class k-Nearest Neighbours that 

was adopted and trained using unary features from 

specifically benign Applications, proved to be effective 

techniques against novel malware. The result showed 

to be very effective as it recorded accuracy in 

detection rate of 88.5% for outliers, an Error rate of 

2.4% and a false alarm rate of 1.14%. The false alarm 

was quite very low and insignificant, implying a great 

strength in the detection accuracy of the normality 

model. Thus, the studies conclude by recommending 

the One-Class Classification model for an effective 

detection of unknown Android malware. Future work 

will be focused on increasing the feature sets to 

include APIs for the benign applications in order to 

have a wider features sample. 
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