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Abstract
Discrete Event Simulation (DES) tool is commonly used for the design, analysis, and evaluation of manufacturing
systems. Human centred assembly systems offer better system flexibility and responsiveness due to inherent hu-
man intelligence and problem-solving abilities; human can deal with product variations and production volumes;
and can always adapt themselves to multiple tasks after learning process. Nevertheless, human performance can
be unpredictable, and may alter over time due to varying psychological and physiological states, these are often
overlooked by researchers when designing, implementing, or evaluating a manufacturing system. In this paper
a user-friendly integrated DES method was proposed to enable manufacturing system designers to investigate
overall performance of human centred system considering effects of selected human factors. the method can per-
mit manufacturing system designers to evaluate overall manufacturing system performance with considerations
of parameters of human factors at early design stage. A case study was carried out using integrated approach;
simulation results demonstrate the applicability of this approach.

Keywords: human performance, human centred assembly system, simulation, human factors, aging,
experience

1. INTRODUCTION
For a human-centred assembly line, assembly

tasks are often grouped and distributed to indi-
vidual workers and each worker is expected to
complete assigned assembly tasks within a spec-
ified cycle time. These intends to minimise in-
progress idle time due to unbalanced line; max-
imise the utilization of workers and increases pro-
ductivity. Whenmodelling human centred assem-
bly systems in DES we assume assembly line of
workers with same performance capacity [1]. In
reality, completion time of assembly tasks by hu-
man workers largely depends on variation of indi-
vidual workers who may work at varying speeds,
different levels of skill, and may subject to com-
plexity of the task as well as other factors such
as working conditions or environment in light,
noise, temperature and so on [2, 3]. Other fac-
tors such as: musculoskeletal injuries due to pro-
longed use of hands-on manual tasks, long-time
pressure, repetitive wrist motion and awkward
hand posture associated with the prevalence mus-
culoskeletal disorders may have considerable ef-
fects on workers’ health conditions, which may
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also affect worker performance [4]. Also, working
under conditions of stress and fatigue and hos-
tile physical working environment can also con-
tribute inefficiency in assembly operations result-
ing to low quality outputs [2, 5].
Biomechanical models can be applied to under-

stand adverse human effects on the performance
of a system [6]. However, a straightforward an-
swer in terms of an overall impact on a human
centred system performance measured by such as
product cycle time, throughput, utilization of in-
dividual human workers and so on cannot be pro-
vided by these models.
Human variability can be attributable to sev-

eral factors including skills, physical capacity, and
it affects the way tasks are executed [7]. Through
a literature study, human factors related to age
and experience were identified as themajor source
of task time variability of human workers [8, 9].
In a typical DES model, assembly time cycle
time a form of statistical gamma distribution is
mostly used as an appropriate pattern for mod-
elling manual tasks [10, 11]. As discussed previ-
ously, the current DES tools in the market cannot
be used for examining effects of human factors on
human performance for a manufacturing system
design and evaluation. This is because an opera-
tor in a DES model is treated as a machine pro-
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cessing product within a specified cycle time [10–
14].
There are some studies in a view of socio-

technical or psychological sciences to evaluate
the effects of human factors or human perfor-
mance relating to the design of manufacturing
systems. Nevertheless, these studies are basically
described in a form of general language that man-
ufacturing engineers often find difficult to under-
stand [15]. Bainess [12] first drew attention of
missing human factors in discrete event simula-
tion modelling, their study examines the influ-
ence of human factors on the reliability of DES
results, other studies also reported in literatures
[1, 10, 16, 17]. Boenzi et al. [18] reported the hu-
man ageing phenomenon as critical element lack-
ing n modelling simulation and analysis of man-
ufacturing systems. Towards solving this prob-
lemPerez et al. [10] incorporatesmuscular fatigue
and recovery pattern model in evaluating human
workload at initial design stage of manufacturing
system. Digiesi et al. [19] observe the significance
of changing worker behavior on flow line perfor-
mance using DES. Impact of human behavior on
task time variation was also investigated by Ma-
son et al. [20]. Wang et al. [1] used DES to model
human learning pattern during assembly opera-
tion.
This study proposes an approach to improving

the capabilities of Discrete Event Simulation, ef-
fective and user-friendly platform is created that
can be integrated with DES to consider inherent
human performance variations due ageing and
experience. The framework can offer understand-
ing into the trend of worker performance due to
effects of aging and experience.

2. HUMANFACTORSFORHUMANCENTRED
ASSEMBLY SYSTEMS
Lassila et al. [21] emphasised the significance

of individual human worker on the performance
of manufacturing cell regardless of its automa-
tion level. It was reported that approximately one
third of German companies invested in highly ad-
vanced automaton have recognized that these so-
lutions were not flexible enough and have reduced
their level of automation; 38% of these companies
have reduced automation by taking advantage of
amore efficient qualifiedworkforce [15, 22]. More-
over, Mercedes-Benz is relying more on human
workers for assembly and, Honda car maker uses
robots in final assembly where workers are still
employed to install motors, wheels, and trim com-
ponents [23]. Assembly operations involve a pro-
cess of such as gripping, picking, inserting, posi-
tioning, fastening, and checking parts, which is
usually being carried out in a pre-defined assem-
bly sequence along a production line. Assembly
operations accounts for about 50% of total pro-
duction time and 20% of total unit production
cost [24]. For manual assembly, assembly oper-
ations are primarily performed by human work-
ers with inherent dexterity, skills, and sense of
judgment [25]. As an example, a walking worker
assembly line where workers are cross trained

to execute assigned assembly work by walking
down the line to assemble a product from start
to end. When assembly operator reaches down-
stream of the assembly line, he/she withdraws
and travel back to the front end of the line to
start with a new task. Previous studies showed
that walking walker assembly lines outperform
conventional fixed worker assembly lines as it of-
fers more flexibility, efficiency, and responsive-
ness: the number of walking workers on the line
can be adjustable in response to varying demands,
also higher utilization of individual workers can
be achieved even with a decrease in the overall
production output. Working worker assembly line
system is self-balancing, and therefore costs asso-
ciated with storage buffers can be reduced or elim-
inated [1, 26]. Among the limitations of walking
worker assembly lines is it needs multifunctional,
dynamic, and cross-trained workers to perform
all the required tasks efficiently, and the cross-
training level of workers may be at the expense
of cost. Most importantly, the overall system per-
formance may alter due to varying performance
of individual workers who have such as different
ages and experience.

3. MATERIALS AND METHODS
There are some studies on aging workforce in

relation to manufacturing or production research
[27]. Evidence showed that individual perfor-
mance of workers declines from certain age due to
natural decline of their physiological functions in
such as visual ability, musculoskeletal force, flex-
ibility/motion capability, memory/concentration,
and thermoregulation [5, 22, 25, 28–30]. The in-
fluence of these factors on human performance
can be unpredictable and it may alter due to indi-
viduals psychological and physiological: individu-
als cultural, social and health conditions [11, 12].
Table 1 summarizes the findings in decline of hu-
man functional ability over the increase of age
through a literature review.

4. NOTATIONS
The following notations are used:

Tn Time to produce nth unit.
T IE

n : Time to produce nth unit by inexperienced
worker.
TE

n : Time to produce nth unit by experienced
worker.
Fdl : Decline rate of human performance after 38
years old.
4IE

tl : Loss of time to produce nth unit by inexperi-
enced worker after 38 years old.
4E

tl : Loss of time to produce nth unit by experi-
enced worker after 38 years old.
τIE: Average assembly time to produce nth unit by
inexperienced worker after 38 years old.
τE : Average assembly time to produce nth unit by
experienced worker after 38 years old.
IE: Inexperienced assembly operator.
HEO: Highly experienced.
EO: Experience
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Table 1: Decline of human functional abilities vs aging.

Ability Functions Performance variations Authors

Endurance Aerobic capacity

Peak at the age of 40 and decline by 1% per year after. [28]
Peak at the age of 30 [31, 32]
and decline by 0.5–1.5% per year
Decline by 1–1.5% [33]
per year after the age of 40
Decline by 1% [34]
per year after the age 30
Decrease by 1% [35]
per year after the age of 35

Psychomotor Spatial ability

Peak at the age of 30 [36]
and decline at 1% per year after.
Peak at the age of 40 and decline [37]
between 0.8 and 1.0% per year after.
Peak at the age of 30, decline [38, 39]
by 0.5% per year up to the age
of 40 and then decline by
1% every year up to the age of 65
Peak at the age of 45 and [40]
decline by 1–1.5% per year after.
Peak at the age of 40 and [41]
decline by 0.8–1% per year after.

Awkward posture Flexibility Peak at the age of 35 and decrease [42]
at about 1.0% per year from 35 to 54

Overall performance Physiological function Peak at [40, 43, 44]
the age of 35–40 and decline
by 1% per year after.

IEO: Inexperienced.
Q: Incompressible factor (constant), taken ap-
proximately as 0.25.
N: nth unit.
G: Number of times similar operation is per-
formed by an assembly operator.
D: Maximum number of assembly units.
k1: Existing age in years.
Frm Remaining human capacity in percentage af-
ter 38 years old.
k2: 38 years old full human capacity.
Lr: Human capacity loss rate (in percentage) per
year.
LEr: lost rate of human functional capacity (%) at
any given period after the age of 38 years old.
Tmax: Assigned time to assemble first unit.
pn: Factor of significance.
R: Learning index.
From Table 1, scholars have divergent views on

the stage at which human functional capacity is
full, literature suggests that it ranges from 30 to
40 years. Taking average of these values, it is as-
sumed as 38 years for this study; from Table 1
Robertson and Tracy [28] concluded that the abil-
ity of humans to do sustained heavy work reaches
their peak at the age of 40 years old and decline
by 1% per year afterward. Ellis et al. [36] suggests
that human ability to remember and make judge-
ments approaches its peak at age of 30 and subse-
quently decline by 1% every year. Asogwa [43], Il-
marinen [44], and Savinainen [32] suggested that
overall human performance in terms of their phys-
iological abilities peak at age of between 30 and
45 and decline by 1% thereafter. Thus, the age
of 37.5 years is considered as an average for their

studies. Table 2 shows human abilities (such as
aerobic, spatial, flexibility and physiological abil-
ities) against varying age extracted from Table 1.
From the study shown in Table ??, a regres-

sion analysis obtained by plotting age and capac-
ity decline using Minitab software analysis tool,
the rate of ability/capacity decline shows a strong
positive correlation with age. Thus, the regres-
sion equation is given as:

Lr = 0.57+0.012k1 (1)
The lost rate of human functional capacity (%) at
any given period after the age of 38 years old can
be evaluated as:

LEr = (0.57+0.012k1)(k1 −k2) (2)

The human functional capacity decline rate (%)
after 38 years old is denoted as:

Fdl = [100− (0.57+0.012k1)(k1 −k2)]
[100− (0.57+0.012k1)(k1 −k2)]
[100−LEr] (3)

Table 3 shows human capacity rate (%) over age
using Eqs. (1) and (3) respectively.
In this case study, experience is defined as

knowledge or skills gained through involvement of
a specific assembly task. In a human centred as-
sembly line, for instance, experience can be quan-
tified as a learning curve that refers to trend in
the reduction of assembly time over an increase
of assigned assembly tasks [45]. Thus, it is ex-
pressed in Eq. (4) with the parameter Q (0 ≤ Q ≤
1), where if Q = zero it indicates a task that is
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Table 2: Human abilities vs ages based on literature.

Ability/capacity Peak (years) Rate of Ability/capacity decline Study
Psychomotor 45 1.25 [40]
Endurance 40 1.0 [28, 37]
Psychomotor 40 0.9 [41]
Overall performance 37.5 1.0 [32, 43, 44]
Awkward posture 35 1.0 [42]
Endurance 30 1.0 [31, 32, 34]

Table 3: Human functional capacity (%) vs age.

Age Loss rate of human Human functional capacity Remaining human Functional capacity
capacity (%) Lr decline rate (%) LEr (%) after the age of 38 (Fdl)

38 0 0 100
40 1.05 2.10 97.9
45 1.11 7.65 92.35
50 1.17 13.50 86.50
55 1.23 19.65 80.35
60 1.29 26.10 73.90
65 1.35 32.85 67.15
70 1.41 39.90 60.10
75 1.47 47.25 52.75
80 1.53 54.90 45.10

manually performed; and if Q = one it indicates a
task that is predominantly executed by machines.
Hence, time to produce unit is given by:

Tn =
[(

Q+ (1−Q)NR
)]

Tmax (4)

The difference between experienced and highly ex-
perienced is measured by times same operations
is performed by an assembly worker. Therefore,
average time to produce nth unit by a highly expe-
rienced worker at full capacity is given in Eq. (5)
as:

TE
n =

[(
Q+ (1−Q)GR

)]
Tmax (5)

where G refers to times the same operations is
performed by an assembly worker. Thus, aver-
age time to produce nth unit by an inexperienced
worker at full capacity is given as:

T IE
n =

[(
Q+ (1−Q)NR

)]
Tmax (6)

where N is nth unit.
Since experience is determined in this study as
the time an operation is repeatedly performed rel-
evant task by assembly, therefore Eq. (7) repre-
sents loss of assembly time by experienced worker
due to aging:

4E
tl = Fdl ×TE

n (7)
Thus,

τE
tl = [(Lr((k1 +k2)+LEr)×0.01]

×
[(

Q+ (1−Q)GR
)]

Tmax (8)

By considering Eq. (5), average assembly time to
produce an assembly unit by highly experience

and experienced worker after full performance ca-
pacity (age of 38 years old) is expressed as:

τE
n =4E

tl +TE
n (9)

τE
n = [(Lr((k1 +k2)+LEr)×0.01]

×
[(

Q+ (1−Q)GR
)
Tmax

]
+ [Q+ (1−Q)Tmax] (10)

Loss of assembly time to produce nth unit by in-
experience worker after full performance capacity
(age of 38 years old) is given in as:

4E
tl = Fdl ×T IE

n (11)

τIE
n = [(Lr((k1 +k2)+LEr)×0.01]

×
[(

Q+ (1−Q)NR
)
Tmax

]
(12)

By considering Eq. (6), average assembly time by
an inexperienced worker due to aging is taken as:

τIE
n = [(Lr((k1 +k2)+LEr)×0.01]

×
[(

Q+ (1−Q)NR
)
Tmax

]
+ [Q+ (1−Q)Tmax] (13)

4.1. Integrating Aging and Job Experience
into a DES Model

Figure 1 shows AutoHmot graphical user inter-
face developed in the Java-based JBuilder tool.
Figure 2 shows data obtained from AutoHmot, it
indicates assembly time of a worker (at full capac-
ity of 38 years old) declines over the increasing

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 3, May 2021.



Incorporation of Human Factors into a DES Model ... 441

Figure 1: AutoHmot user interface and solutions.

Figure 2: Assembly time vs assembly units completed by a worker at full capacity of 38 years old.
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number of assembled units during learning pro-
cess [9]
Figure 3 illustrates the mechanism of the in-

tegrated DES model interfaced with AutoHmot.
Once relevant data are collected and entered Au-
toHmot by user AutoHmot compute the assembly
time. One of the benefits of AuttoHmot is that
it requires minimum input from user. The data
required from AutoHmot include existing age of
an assembly worker; experience level or number
of tasks performed by an assembly worker; cycle
time assigned to assemble a unit; and total num-
ber of assembly units that need to be completed
during process.
4.2. Desirability Function Analysis (DFA)
Optimization of product and/or processes is of-

ten a common practice in the manufacturing in-
dustry: characteristics of interest; products or
processes are evaluated by a number of perfor-
mance measures or responses against their rel-
ative importance or value. Desirability criterion
is among multi-objective-optimization technique
that transforms responses into individual desir-
ability functions, a value bounded between 0 and
1, an increase from 0 makes the corresponding re-
sponse value more desirable, it is further aggre-
gated into either a geometric or arithmetic mean.
The rationale behind desirability functions is that
the composite or overall desirability function ob-
tained from an experiment is not desirable if one
of the quantities measured is out of the desired
boundary [46]. The sensitivity of the DFA tech-
nique has been demonstrated by Costa, Lourenço,
and Pereira [46]; Costa and Lourenço [47]; Al-
zuheri [48], and Jr. and Simpson [49]. Different
types of desirability function are suggested in lit-
erature [46, 47], Desirability function combined
corresponding response values into weighted ge-
ometric mean represented by D f as follows:

D f =
[

n∏
n=1

drn

i

] 1∑
pn

(14)

where: pn is a factor of significance, which is as-
signed subjectively indicating the importance of
each performance measure; di (i = 1, . . .n) is the
individual desirability corresponding to each per-
formance measure; rn: weight on the ith response.

Themethodology by Derringer and Suich (1980)
provides individual desirability function based on
three response types:

• Nominal-The-Best (NTB)
Representing a situation where the estimated re-
sponse is planned to carry out a particular target
value T. The individual desirability function for
this response type is described as:

d(x)=


(

ŷ−L
T−L

)Pn
, L ≤ ŷ≤ T(

ŷ−U
T−L

)t
, L ≤ ŷ≤ T

0 → Otherwise
(15)

• Larger-The-Best (LTB):
A situation where the value of the estimated re-
sponse is intended to be larger than a lower limit.
For this category of response, the individual de-
sirability function is defined as:

d(x)=


0(

ŷ−L
T−L

)Pn
, L ≤ ŷ≤ T

1
(16)

• Smaller-The-Best (STB):
The value of the estimated response is expected
to be smaller than an upper limit. For this re-
sponse type, the individual desirability function
is defined as:

d(x)=


1(

ŷ−U
T−U

)Pn
, L ≤ ŷ≤ T

0
(17)

where the L represents a lower tolerance limit of
y, the U represents an upper tolerance limit of y,
and pn represents weight.
Desirability criteria involve three steps:
I. Calculating the individual desirability index

for the corresponding responses using three
forms of the desirability functions according
to the response characteristics in Eqs. (15) to
(16). The desirability value that equals to 0
represents the worst-case situation.

II. Computing composite desirability D f : The
individual desirability index of all the re-
sponses can be combined to form a sin-
gle value called composite desirability by
Eq. (14).

III. Determining the preferred assembly design
alternatives: The higher the composite desir-
ability value implies a better design alterna-
tive. Therefore, based on the composite de-
sirability D f , the effects of worker age and
experience for each design alternative is es-
timated and the best-preferred solution is se-
lected.

The two performance measures used in this study
are throughput and total assembly time. These
performance measures are evaluated based on de-
sirability criteria involving three steps as follows:
Step 1:
Total assembly time retains the minimization ob-
jective, while throughput aims to the maximiza-
tion objective. Therefore, according to Eqs. (16)
and (17), the individual desirability function for
throughput and total assembly time respectively,
are given as follows:

d(α)=


0(
α−U
T−U

)Pn , L ≤α≤ T
1

(18)
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Figure 3: Integrating AutoHmot with a DES (ED) model.

Figure 4: Trend of the composite desirability of workers based on the overall assembly line conditions.
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For throughput α

d(α)=


1(
δ−U
T−U

)Pn
, L ≤ δ≤ T

0
(19)

For the total assembly time.

To wider the capability of searching for worst
solutions, this study follows the work of Al-zuheri
[48] and Jr. and Simpson [49] by introducing the
penalty function into the Derringer’s desirabil-
ity model: penalty function is a smaller constant
added to a data, which is a common procedure
used in statistics, although it introduces small er-
ror to results [49], however the introduced error
may not have significant impact on the overall so-
lution [48]. In this study a constant ε as penalty
function with a value of 0.001 is used to prevent
the individual desirability value equalling to zero.
Hence, Eqs. (18) and (19) is given by:

d(α)=


0(
α−U
T−U

)Pn +ε, L ≤α≤ T
1

(20)

d(δ)=


0(
δ−U
T−U

)Pn +ε, L ≤ δ≤ T
1

(21)

where ε = 0.001 Using Eqs. (20) and (21) individ-
ual desirability di and composite desirability val-
ues D f for each design alternative is calculated
respectively. The composite desirability:

D f =
[

n∏
n=1

drn

i

] 1∑
pn

(22)

D f = [di(α)×di(δ)]
1∑
pn (23)

where U and L denote upper and lower limits
of the two performance measures. While pn de-
notes weight signifying importance for each re-
sponse, which is assigned subjectively to each
performance measure. In this case study, equal
weight is assigned to all responses. Each de-
sign alternative consists of six workers having two
performance measures responses, the two perfor-
mance measures are assumed equal importance.
In this case, the number of performancemeasures
multiply by six workers gives the value pn as 12.

A hypothetical assembly line producing single
products’ family was developed using Enterprise
Dynamics (ED) simulation package. The assem-
bly line consists of six stations manned by six
workers. The assembly line operates four hours
30 minutes per day with fifteen minutes break in-
between shift with monthly demand requirement
of 6000 units. Assuming 25 operating days per
month, a daily demand of 240 units and 240 min-
utes (excluding 30 minutes for break) of produc-
tion time gives 1 minutes of cycle time. Each as-
sembly workstation is manned by an assembly op-
erator with the assumed same age and experience

level. Human performance in manufacturing sys-
tem is measure in terms of the rate at which a
task is completed, number of times a task is com-
pleted or the reliability with which a task is com-
pleted [50]. In this study experience of a worker
is described as the cumulative number of similar
tasks previously performed by theworker, and it is
categorised into three levels: inexperienced oper-
ator (IEO); experience operator (EO): who has pro-
duced more than 20 units; and highly experience
operator (HEO): who has produced more than 40
units. Worker’s age is assumed to start from the
age of 20 years old. A cycle time of 1 minute is
assigned for the first assembly unit to be assem-
bled, experience level of workers is also entered
into the developed tool (AutoHmot). Data from
AutoHmot are linked to simulation tool through
excel spreadsheet. Two performance measures:
throughput and total assembly time for each as-
sembly worker is observed. Although each work-
station is configured to consists of workers with
same age group and experience level. The objec-
tive of the experiment is determining how age-
ing and experience may affects the overall perfor-
mance of the assembly line. It aims to maximise
throughput and minimise assembly time, which
is determined by using multi-objective optimiza-
tion technique; the desirability function analysis
(DFA). DFA involves a transformation of response
variables, in this case throughput and total as-
sembly time, into a single value called composite
desirability. Figure 4 depicts the trend by com-
puting the composite desirability of each perfor-
mance measure on different assembly line config-
urations.

5. RESULTS AND DISCUSSION

Composite desirability which measures the de-
cline of performance indicators (throughput and
total assembly times) was used to evaluate worker
efficiency: time to accomplish an assigned task
and quantity of units produced. 24 assembly line
configurations were studied and the significance
of each of the configuration based on the compos-
ite desirability is observed. The trend of the com-
posite desirability is showed in Fig. 4. Assem-
bly line condition 1 consist of six highly experi-
ence workers of age group 38-year, condition 2 en-
tails six workstation with experienced workers of
age group 38-years, while condition 3 comprise
six inexperienced workers of same age group (38-
years). This scenario is observed up to age group
of 80 years. The results suggest that highly expe-
rienced workers at younger age are likely to be ef-
ficient in contrast to older unskilled workers. Fig-
ure 5 reveals further the trend in the decline of
the performance indicators measured using com-
posite desirability at various levels of experience
over the increase of age after 38 years old at which
the human functional capacity reaches the maxi-
mum rate.
The trends of the percentage decline of the com-

posite desirability for individual worker repre-
senting various aging groups is showed in Fig. 6.
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Figure 5: Trend of the composite desirability vs age.

Figure 6(a) shows the trend of the performance in-
dicators measured using composite desirability at
inexperienced level, it reveals decline of 0.14% de-
cline for aging group 38–45 years old, 0.18% for
aging group 45–50 years old, and 0.19% for ag-
ing group 50–55 years old, respectively. It then
declines to 0.13% for aging group 55–60 years old,
then increase to 0.29% at aging group 65–70 years
old. It shows least decline of composite desirabil-
ity at aging group 50–55 years old. These results
indicate due to effects of aging the performance
of inexperience worker may continue to decline
from the age of 38 years old until they reach 55
years old. After this age accumulation of experi-
encemay tend to offset the decline until they reach
65 years old.
Through literature study human traits or at-

tributes have significant impacts on manufactur-
ing performance particularly human centred as-
sembly systems where humans play a critical
role. However, the influence of these factors is
often under/overestimated or simply unnoticed in
manufacturing systems design, evaluation, and
analysis. Established DES tools disregard hu-
man strength and limitations. There have be-
ing poverty in research work towards the effort
of considering human elements in DES environ-
ment tools. Although there were some inves-
tigations into human factors relating to human
performance, there were few studies by examin-
ing the significance of critical human factors on
discrete event simulation outcomes for human-

centred assembly systems evaluations. In this
study, the effects of experience and ageing on
worker performance were examined by incorpo-
rating their parameters into a DES tool, which
was used for modelling a linear human centred
assembly line operated by workers under varying
ages and experience as specified in a case study.
With this method, the performance of each worker
at the different ages is quantified.

6. CONCLUSION
To accurately evaluate human performance in

DES tool environment factors that can be detri-
mental or beneficial to human performance needs
to be considered. An effective and user-friendly
platform is developed using the Java language
to interact with parameters of physical elements
(built in the DES tool) of a human centred assem-
bly system, together with logical interrelationship
for operational activities, this can enable incorpo-
rating key human factors into a DES (ED) model.
Thus, this method can permit manufacturing sys-
tem designers to evaluate the overall performance
of a manufacturing system with considerations
of parameters of human factors at early design
stage. A case study was carried out using inte-
grated approach; simulation results demonstrate
the applicability of this method in assessing the
influence of human factors on the overall system
performance. Although two critical factors of ag-
ing and experience are considered in this study,
the capability of discrete event simulation tool
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(a) Inexperienced workers.

(b) Experienced workers.

(c) Highly experienced

Figure 6: (a) Inexperienced, (b) experienced and (c) highly workers.

Nigerian Journal of Technology (NIJOTECH) Vol. 40, No. 3, May 2021.



Incorporation of Human Factors into a DES Model ... 447

can be enhanced further by integrating other ele-
ments such as psychological and psychosocial fac-
tors.
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