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Abstract

This work presents the effect of orientation angles and boundary conditions on the pure bending coefficient of thin rectangular
laminated composite plates using Euler-Bernoulli equilibrium equation. The total potential energy function was applied assuming that
the thin rectangular laminated composite plate was subjected to only pure bending effect, through this means, the Euler-Bernoulli
governing equation of equilibrium was obtained. The governing Equation obtained was minimized to obtain Equation for obtaining
the pure bending coefficient of thin rectangular laminated composite plate. Different orientation angles of laminas and boundary
conditions were considered to know their effect on pure bending coefficient. Some of the plate boundary condition considered were
SSSS, CCCC SSCC and SCSC. The orientation angles considered were 0°0°, 0°90°, 0°0°0°, 0°90°0°, 0°0°0°0°, and 0°90°90°0°. The
aspect ratio considered ranges from 1-2 for elastic modular ratio E1/E2 = 25; G12/E2 = 0.5; V12 = 0.25. For any laminated
composite plate considered, the orthotropic plate has the same pure bending coefficients but the value increases with increase in the
aspect ratio. When other orientations were considered, the change in orientation angles produces change in the pure bending
coefficient which increases with increase in aspect ratio. The maximum pure bending coefficient was obtained when SSSS thin
rectangular laminated composite Plate was considered for two laminas with orientation 0°90° as 0.0174 while the minimum pure

bending coefficient was obtained when CCCC thin laminate composite plate was considered for orthotropic plate as 0.00153.

Keywords: Pure Bending, Orientation angle, Boundary condition, Laminated thin plate

1.0 INTRODUCTION

Pure Bending failure is a prominent failure mode
experienced when thin laminated composite plates are in
use for engineering works which need to be examined
critically. Other forms of failure modes include buckling
failure and free vibration [1].

The goal of this paper is to present the effect of
orientation angles and different boundary conditions on the
pure bending coefficient of thin rectangular laminated
composite plate. It will also present a particular equation
for obtaining the pure bending analysis of thin rectangular
laminated composite plate when free vibration and
bucking are zeros.

There are different methods of analyzing pure
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bending of thin laminated composite plate but most of the
methods are based on assumed displacement function
[1=7]. Some also assume displacement function as well as
finite element method of analysis which is a notable
approximate analytic method [4]. It is widely agreed that
assumed displacement function will always give assumed
result except where the displacement function assumed is
the exact displacement.

Based on the known fact that most pure bending
analysis on thin laminated composite plate are done using
assumed displacement function, the present research aim at
using the Euler-Bernoulli equilibrium equation which has
been accepted as the deflected shape of beam strip to
analyze thin laminated composite plate.

The method applied is based on Classical plate
theories which is widely acceptable for thin rectangular
laminated plate analysis. Classical plate theories (CPT) are
based on Kirchhoff's hypothesis which assumes that
normal to the mid — surface of the plate before deformation
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remain straight and normal to the mid — surface after
deformation. [3].

2.0 DISPLACEMENT FIELD AND
KINEMATICS OF A LAMINA OF THIN
LAMINATED PLATE
The governing assumptions in this study is based

on the work of Ibeaugblem [3], the plane stress assumption

used for thin plate analysis (normal stress along z-axis, X-z

plane and y-z plane shear stresses are zeros) another

assumption is normal strain along z axis is so small that
neglecting it shall not affect the gross response of the
plate. Itemizing the assumptions gives.

i 0,, =0
i Ty, =0
iii Ty, =0
v &, =0

Two in-plane displacements and one out-of-plane
displacement (u, v and w respectively) constitute the
displacement field. From the fourth assumption it is taken
that the out-of-plane displacement (deflection) is constant
along z-axis, which means it is not a function of z.
However, the two in-plane displacements (u and v) are
functions of all coordinates (x, y and z) from assumption ii
and iii, it is taken that corresponding x-z and y-z planes'
shear strains are zeros. Thus, the in-plane displacements
are given as:

dw
u= —ZE + Ug (1)
dw
vV = —Zd—y + Vo (2)

The in-plane displacements of the middle surface
(uo and vg) are not constants [8]. Using equations 1 and 2
and the no-constant values of up and vo, in-plane strains
are defined as:

du P du, d?w

5xx=a_ xx T xxza_ de 3)
dv , dvy, d*w
Gy Ty T vy + W=y T Zdy? (4)
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e e - d*w N du, d*w N dv,
Vey = Exy T Eyx T dedy dy dedy dx
That is:
. du, dvo d?w
Yy = })?Cy * }}xy B (dy dx) 2z dxdy ®)

2.1 Constitutive relations for a lamina of thin
laminated plate
The Hook's law equation for one lamina in

laminated plate is given as:

0-11 ell 812 0 811
O22| =Eg|erz e 0 ||€22 (6)
T12 0 0 V12
Where:
_ E1/Eg _ t21-E11/Eg _ M2 Ez2/Eg
€11 =7 ;€12 = = ;
1= Moy by 1= teybyx 1= Ueyllyx
e = E32/Ey A @
27 1- HxyHyx P E,

E, is the reference Elastic modulus.it can be E; or
E5. Ej; is the modulii of elasticity and p;; is
and Poisson’s ratios in the i and j directions of an
anisotropic lamina.

Using the transformation matrix [T], Equation 6 is
transformed from (1-2 local) coordinate system to (x-y
global) coordinate system as [10].

[T]‘T}

Oxx Exx
Uyy] =Ey {[T]_l
Here the transformation matrix, [T] is defined as:

gyy] (7)

Vxy

e11 ez O
e12 €3 0
0 0 e;33

Txy2

m?  n? 2mn
[T]=| n? m? —2mn (8)
-mn mn (m?-—n?
Where: m = Cos6 and n = Sinf
Substituting Equation 8 into Equation 7 gives Equation 9
a1 Q12 Qg3
Jyy =Eq a21 Az  Qzz gyy (€))

31 Q32 Aazzl[Vxy
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Where:
a,; = me;; + 2m?n?(e;, + 2e33) + ntey,
a1z = er,(n* + m*) + m?n?(ey; + ey, — 4es3)
ay3 = m®n(ey; — egp — 2e33) + mn®(e; — ey, + 2e33)

Qyp = n4€11 + 2m2n2(612 + 2633) + m4622

Qaz3 = m713(911 — ey — 2e33)
+ m3n(—ey, + €15 + 2e33)

_ 2.2 4, 4
azz = mn“(ey;; — 2e1; + €y — 2e33) + ezz(m* + n*)
az; = ay3 and az; = dy3

az1 = Aayq2,

Substituting Equations 3, 4 and 5 into Equation 9
gives Equation 10:

O-xx
[o] = [UW = Eo|a;;][él (10a)
Txy
Where:
a;; Q12 Q4i3
[aij] = [a21 az2 a23] (10b)
asz1 a3z dazz
du, d?w
c dx de2
” Sxx dvy, d*w (11
gl =|cyy| = - —Z 55
Vay dy — dy?
(du0 +dv0) ) dw
I\ dy dx dedy_

2.2 Total potential energy functional for a laminated
thin rectangular plate

The total potential energy functional for a
laminated thin rectangular plate is given as:
_Uf gl dx.dy. dz—ﬂqw dx dy (12)

Substituting Equations 10a and 11 into Equation
12 gives Equation 13:

_ % f f f [ [ay;][e] dxdydz — f f qw dxdy
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(13)

Carrying out the multiplication and closed domain
integration of Equation 13 with respect to z gives Equation

14:
E0t3 ﬁ‘ <A11 duo Ay, dugy dv,
t? dx dy
Az duo Azz dug dvg
2 [dy] t2 dy dx
As; 1dvg z Ay, [dyg z
=l + G )
<@ duy d*w N (B2 + 2B33) dug d*w
t dx dx? t dy dxdy
(B1y + 2B33) dvy d*w
+ t dedy
By, dvg d*w
)
Azdugduy Ajzdugdvy  Bizdug d*w
(t—zaw T dx dx 0t dx dxdy
By dvy d?w d*w d?w
T dx da? DKW)
+ <D [dz—wr +2(Dyy + 2D )[dz—wr
11| 752 12 33) | Txdy
d2w]?
+ D5, [d—yz] >
Az duydvy  Ayzdvgdvy  Bysdvy d?w
(t_ZEE t2 dy dx ~ t dy dxdy
By3 dugy d?w
St dy dy?
d*w d*w
+ 2D,5 d—yzm>} dx .dy- ff qwdx dy (14)
Where:
R m=n
Aij = % and A_U =t aij(Sm - Sm—l) (15)
m=1
B;; = % and B_” = % z aij(srzn - 51%1—1) (16)
m=1
D, e
Dij=—3 ! and D,,.= 3 z a;j(sy — Sm-1) (17)
m=1

"m" stands for the number of a lamina in the
laminated plate, n is the total number of laminas "s" is the
non dimensional coordinate along z-axis defined as s = z/t.
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Let the summation of the following three constants For easy understanding of the meanings for m, n
be unity (one). That is: and z is illustrated with a four-lamina laminated plate
shown on Figure 1

n1+n2 +n3 = 1 (18)
ZOZtSOZt/Z

Laminal:m=1; z,_1 =2y Zm =71

Substituting Equation 18 into Equation 14 to

multiply the load, g (that is: g = nig+ n.g + nsq) Z,=ts, =t/4 ]
rearranging the resulting quation gives Equation 19: Lamina2:m = 2; zym_y =2y, Zm = 2
Zy = t Sy, = 0 .
Lamina3:m =3; Zm_1 =2y, Zm = Z3
(19) Z3 =ts; —t/4
Laminad-m =4; z,_1 =23, Zym = Z4

H=H1+H2+n3

Z4_=t54_t/2

Where:
E0t3 ff <A11 duo +2A12 duy dv, Figure 1: A laminated plate that is made of four laminas
t? dx dy 2.3 General and direct Variation of Total potential
A33 duo Azz dug dvg energy functional for a laminated thin
2 E] t_zwa regtqngu_lar plate _ _
Minimizing Equations 20a, 20b and 20c with
A33 dvo AZZ dvo .
] + == [ ] respect to w, Up and vo and making some rearrangements
dx dy shall give the respective Equations 21 to 23:
Byiduy d*w N (By, + 2B33) dugy d*w
t dx " dx? t dy dxdy on, 0 1 B 93u, B 428 d3u,
(312+ZB33)% d2w w —ff i\ P + (B2 + 33)—8366312
t dx dxdy d3v, d3v,
B,, dvy d*w + (Byz + 2333) X20y + B2 33
t dy dy? o*w o*w
d2w 12 Dy == Epr +2(Dyz + 2D33) 9x20y7
+| Dy, [d 2] + 2(D1, + 2D33) dxdy] 5 94w i
+ 226 2 xay
+D22[ ] ) -Nny ff qw dxdy (20a) ﬂqu dy (21a)
E t3
ZEO -ff A13 duo duo A13 duO% aHz uO avo
2 dx dy T dx dx w 0= _Uaxz Bis gy ~Bis gy
BIS duo d w Bl3 dvo dZW a w
t dx dxdy t dx dx? +4Dy3 6x6y> dxdy
d?w n,
+ 2D o d dx.dy -n, ff qw dxdy (20b) +Wﬂqu dy (21b)
e
2Eot3 ([ [Azsdugdvy Ay dvg dv, oll, vy dug
260 [ A diodvy Ay dvod o o= [[ (s 2, 2
t? dy dy t? dy dx ow ox dy
By3dvy d?w B,z dugd*w 9%w
t dydxdy t dy dy? + 4D,s 0xdy dxdy
d’w d?w N3
+2Dy3 d_yzm dx.dy -nj -U qw dx dy (20¢) +E0t3 qdx dy (21¢)
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oM, 1 d? dw
g = 0= || (galtwo -y

|0~ B dw]
dxdy 12V0 12 dy
|4z~ B dw]
dxdy 33V0 33 dy
d?u,
+d—yZ[A33u0
dw
— B33 I dxdy (22a)
o1,
duy
ﬂ & A13 _Bigdw
dxdy Ho t dx
d?
+dx2[t2 Yo dy] doxdy
=0 (22b)
6H3 2 A23 Bz3duw
- = 22
o ﬂdy - ] dxdy =0 (22¢)
v, _U dx2 O_TE] dxdy =0 (23b)
oIl ﬂ d? A23 B3 dw
(’)vo dy 2 Yo t dx
2 L2, -2
dxdy[t2 Vo dy doxdy
=0 (23¢)

For Equations 22a, 22b, 22c, 23a, 23b and 23c to be
true, the following shall hold (where ¢ and d are yet to be
determined constants):

tBl-j ow taw 24
to = AU 0x =¢ 0x ( a)

tBU- ow ow 24b
Uy = Ay dy = dy ( )

Substituting Equations 24a and 24b into Equation
21a and making some rearrangements and observing that
an integral can only be zero if its integrands gives
Equation 25:
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_U ([Dn — ¢By4] (’;47‘1/

+ 2[D1; — ¢By; — dBy; + 2D35 — 26333
4 o*w
- 2dB33] a Zayz [DZZ dBZZ] ay4
+n1N d*w dxd
E 3 dx? xay
=0 (25)

Dividing Equation 25 by [Dz - dBx] gives
equation 26:

ﬁ‘ N o*w +6W nyN, dwdd
h dox* f2 0x2dy? = dy*  E,t3 dx? xey
=0 (26)
Where:
_ [D11 — ¢By4]
h=t —ag.1
[D22 — dBy,]
f = 2[Dy; — ¢Byy — dBy3 + 2D33 — 2¢B33 — 2dBgs]
=

[D22 — dBy,]

The exact solutions to Equation (26) (in terms of
non-dimensional coordinates) for pure bending analysis,
buckling analysis and free vibration analysis were obtained
to be (see [Ibearugbulem (2020)] for details):

a,
W—ﬁl(a0+a1x+§x2+3' +4' )(b0+b1y
b, 2 bs 3 4.4

+§ +§y +4!y> (27(1)

From Equations 27a, it was gathered that:
w = B1h (27b)

Substituting Equation (27d) into Equations (24a)
and (24b) gives:

dh dh
uO =C.t.ﬂ1a=ﬁza (280,)
dh dh
vo =d.t. By o= Jy =Pz 3y (28b)
Bz =c.t. ﬁl and B3 = d t. Bl (28C)
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Substituting Equations (27b), (28a) and (28b) into
Equations (20a), (20b) and (20c) and writing the outcomes
in terms of non dimensional coordinates gives:

E0t3ab
- 2a4. ff 1132 aRZ

[21412[3253 + 2A33B2 B3 + Azsfa’
9°h B3 (0%h
+A33332] <_6R6_Q> +A22%<6_Q2> )
92h\> 2
-2 <B115152 <m> + (B12 + 2B33) ,3162 (6R6Q>
BiB L Bp
+ (Biz + 2B3;3) 123 <6R6Q> + By, ;43 <6Q ) )
, (0%h)’ B2 %h
+{ D115 <m> +2(D45 + 2D33) (6ROQ>

B,% (8%h
(o)

dRAQ -"lezb f f B,k dR dQ (29)

2E0t3ab B,29%h 32h
T 24t ff “a 0R?°0RIQ
o BB O Ph L i 0% 0%
13 dR? 9RAQ 13 dR2ORAQ
_B13ﬁlﬂ3.62h 9%h ﬂ1262 h 0%h iR dQ
a "dR2IRIQ a dR?ARIQ

b
_nzaz ﬂ qBihdR dQ (29b)
2Eot3ab B,Bs 0*h 092%h
T 2at ﬂ 3 a3 ARAQ 9Q>
Bs® 92h  0%h 5 BiBs 9%h 32h
2303 9RAQ 9Q% 23 a3 ARAQ 9Q>2
BB, 0*h 32h B2 0%h 9%h
a3 0RIQ 9Q a® JRAQ 4Q
n3a ﬂ qB.hdR dQ (29¢)

Minimizing Equations (29a), (29b) and (29c) with
respect to 31 and rearrange gives respectively:

Nigerian Journal of Technology (NIJOTECH)

dll; ﬁz
—=0=—(B112ky + (By2 + 2333)
dp, 5 ﬁ
+ (Biz +2B33) > Ky + Byy — ky>
D,
+8, (an + 2 (D12 2Dy + —2 ky)
na*
— m([kq (3061)
dIl, B B
3 =0 (4013—1— 3B13—
B3 n2a4
Bk ~pgdks  (30D)
dll; B1 B2
d_ﬁlz 0= <4D23$—B 3$
_3p.F 2) Ky~ g, 30
23 xyy ~ E t3 CI ( C)

Minimizing Equations (29a), (29b) and (29c) with
respect to 32 gives:

dI1,
dp,

ab 1

= [(Anﬁzk + — [A1283 + A33B; + A33f3]ky )

B

— B11P1kyx — (Byz + 2333) : > kxy
=0 (31a)
dll, ab B B3 B1
d_ﬁz = F [2A13 ;kxxy + Aq3 ;kxxy —3B;3 ;kxxy]
=0 (31b)
dIl; ab B3 B1
d_ﬁz =U= F [A23 gkxyy — By gkxyyl (31¢c)

Minimizing Equations 29a, 29b and 29c with
respect to B3 gives:

dn, ab; B
d_,b’: =4 [ ; — ky + [A1zﬁz + As3B, + Az3fslky
ﬁ B
— By, al — (B2 t 2333) : > kxy
—0 (32a)
dIl, ab B B1
d_/33 =0= a* [A13 ;kxxy — B3 ;-kxxy] (32b)
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dr;
dps

Bs
kyyy + 2A23

= a2
~ 3By 3 & ~k

kxyy

XVY]

92h\’
Where: k, =ﬂ- <m> dR .dQ:

o = [ (%)2 4R .40+ k,
() e
o = || S5t 2040

. f 0*h 0%h
*yy = |] 9RAQ 902

Nzﬂ(%)z dR .dQ : k,lzﬂhz dR .dQ

Adding the Equations 30a, 30b and 30c together
and rearranging the outcome gives:

dR.dQ : kg _ffh dR .dQ

dn _dn,  dil, | dily _
dg; dpy  dfr  dp;

That is:
dIl 2 Dy,
dﬁ =B (Dllk + — (D12 + 2D33)ky, + ky
1
D13 D3
F4 L+ 4?km)

kxy
— B2 | Bi1kx + (B2 + 2333)?

(33a)

Substituting Equation (18) into equation (33a) and
rearranging the outcome gives equation (33):

Nigerian Journal of Technology (NIJOTECH)

a* D,,
ks = B (Duaks+ 3 D+ 2Dy + 2k,
D5 D4

F AL+ 4?1@5”)
kxy
—B2 | Biiky + (Biz + 2333)?
k
+3By3—2 4 B,y x§y>
k k k
—Ps ((312 + 2B33) % + By, a_i + B3 —2
k
4 3B,; ;yy> (33)

Adding the Equations (31a), (31b) and (31c)
together and rearranging the outcome gives:

k k
B (Allkx + Asz % + 2443 )Zy)

Adding the Equations (32a), (32b) and (32c) together and
rearranging the outcome gives:

k k k k
B2 <A12 % + Az3 % + Az =+ Ags ;330/)
k k k
+ B3 (Azz + A33 xy + 24,3 ;yy>
k xy
=B Bzz + (Byz + 2333)

k k
+ Bi3——2 + 3B, ;yy>

(34b)

Solving Equations (34a) and (34b) simultaneously gives:

(d12-dz3 — dy3.d33)
B =Tohy = p (35a)
T (di - dindz)
(d12' d13 - d11d23)
By =Tspy = B (35b)
T (dhy? — dyadyy)

Where:
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k k
d11 = Allkx + A33 % + 2A13 ﬂ (36(1)

kxxy

k k k
diz = Agz % + Az % + A3 + Ay ;};y (36b)

k k k
dy, = Ay 2t Agz—2 4242 (36¢)
a a
kxy xxy
di3 = Biiky + (B + 2333)? + 3B;3
k
+ By —2 (36d)
a
d23 k k
= Bzz + (Byz + 2B33) + B3 Q;Cy
k
+ 3By —2 (36e)

a3

Substituting Equations (35a) and (35b) into
Equation 33b and rearranging gives:

4

qa D5,
mk (Dllk +— (Dlz + 2D33)kxy + ky
D13 Dys
F ey + 42, )
(312 + 2B33)
-T, <B11kx + Tkxy
4B;3 B3
+ kxxy ?kxw
(By2 + 2B33) By,
— T <—a2 ley + 2 Ky
B3 4B,3
+ Tkxxy + ? kxyy (37)
Rearranging equations (37) gives:
E,t3 kq
By = 38
qa* "t kpy + kpy + ke (38)
Where:
D,,
le (Dllk +— (D12 + 2D33)kxy + ky
D Dys
+4— . kxxy +4— kxyy) (40¢)
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(By2 + 2B33) 4B;3
kr, = =T, (Bllkx + Tkxy + _kxxy
B3
+ ?kxw> (40d)
(B12 + 2B33) By, B3
kT3 =-T; <T kxy Fky + 7kxxy
4B,
+ ?kxyy (406)

3.0 NUMERICAL EXAMPLES

A thin rectangular laminated composite plate with
orientation angles 0°0°, 0°90°, 0°0°0°, 0°90°0°, 0°0°0°C°,
and 0°90°90°0°, and with the following boundary
conditions SSSS (simply supported in all the four edges),
CCCC (Clamped in all the four edges), SSCC (simply
supported in the two adjacent edges while the other two
edges are clamped) and SCSC (simply supported in the
two opposite edges while the other two are clamped)
having aspect ratio ranging from 1-2. The plates have the
following material properties E1/E2 = 25; G12/E2 = 0.5;
V12 = 0.25. It is required to determine the deflection of the
plate under uniformly distributed load. The reference
elastic modulus, Eo is taken to be E». Hence,

E,t3 kq

Eyt3
qa*’ b= qa4 b= kri+ kry + kr3

(39a)

If the aspect ratio is a/b and the parameters are in
terms of long length "b" then:

qxbz laxa ] [b/a]z

The exact deflection function for pure bending
analyses of SSSS, CCCC, CCSS and CSCS plates after
satisfying the boundary condition using Equations 27a in
polynomial form are respectively:

w=A(R-2R*+R")(Q -2Q3+ Q"

W = B;(R* - 2R® + R*)(Q* — 2Q* + Q%)

W = B;(1.5R? — 2.5R® + R*)(1.5Q% — 2.5Q3 + Q%)

W = B;(R* - 2R* + R*)(Q — 2Q° + Q%)

The stiffness coefficients obtained using the
polynomial deflection functions are shown on Table 1:
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Table 1: Stiffness coefficients (k-values) for Different composite plates

ke kxy ky Kxxy Kxyy kq
SSSS 0.2362 0.2359 0.0239 0 0 0.04
CCcCC 0.0136 0.00735 0.00127 0 0 0.00111
CCSS 0.0136 0.00735 0.01357 0 0 0.00563
CSCS 0.0394 0.00923 0.00762 0 0 0.00667

4.0 RESULTS AND DISCUSSIONS

The results for pure bending analysis are presented
on Table 2 to Table 5. For any thin laminated composite
plate considered, the orthotropic plate has the same pure
bending coefficient, but the values increase with increase
in the aspect ratio. When other orientations were
considered, the change in orientation angles produces
changes in the pure bending coefficient which increases
with increase in aspect ratio

The maximum pure bending coefficient was
obtained when SSSS thin laminated composite Plate was
considered for two laminated composite plate with

orientation 0°90° as 0.0174 while the minimum pure
bending coefficient was obtained when CCCC thin
laminated composite plate was considered for orthotropic
plate as 0.00153 for square plate.

The present work was compared with the work of
Bhaskar & Kaushik (2004a and 2004b); The percentage
differences recorded on Table 6 did not surprise us
because the work presented by Bhaskar & Kaushik were
based on Naiver and superimposition method which is
based on assumed displacement function while the
presented work was based on Euler-Bernoulli equilibrium
equation.

Table 2: Effect of Orientation Angle on The Maximum Bending Coefficient for SSSS Plates

E1/E2 = 25; G12/E2 = 0.5; V12 = 0.25

Orientations Orthotropic 0%90° 0°90°0° 0°90°90°0°
H 4 4 4 4
Aspect ratio W = % W - % W = % W - %
1 0.00695 0.0171 0.0070 0.00695
11 0.00714 0.0204 0.0072 0.00739
1.2 0.00727 0.0234 0.0074 0.00771
1.3 0.00738 0.0260 0.0075 0.00796
14 0.00746 0.0282 0.0077 0.00814
15 0.00753 0.0301 0.0077 0.00828
1.6 0.00758 0.0317 0.0078 0.00839
1.7 0.00762 0.0330 0.0079 0.00848
18 0.00765 0.0341 0.0079 0.00855
1.9 0.00768 0.0350 0.0079 0.00861
2.0 0.00771 0.0358 0.0080 0.00865

Nigerian Journal of Technology (NIJOTECH)

Vol. 40, No. 6, November 2021.



1008 U. C Anya, S. U Okoroafor, et al.

Table 3: Effect of Orientation Angle on The Maximum Bending Coefficient for CCCC Plate

E1/E2 =25; G12/E2 =0.5; V12 =0.25

Orientations Orthotropic 0%90° 0°90°0° 0°90°90°0°

Aspect ratio qa* qa* qa* qa*
Winax = m Winax = E0t3 Winax = E0t3 Winax = W

1 0.001532 0.00361 0.00153 0.00153

11 0.001557 0.0043 0.00157 0.00162

1.2 0.001575 0.00489 0.00160 0.00168

1.3 0.001587 0.00539 0.00162 0.00172

14 0.001596 0.00579 0.00164 0.00175

15 0.001603 0.00612 0.00165 0.00177

1.6 0.001609 0.00638 0.00166 0.00179

1.7 0.001613 0.00659 0.00166 0.00180

18 0.001616 0.00676 0.00166 0.00181

1.9 0.001618 0.00689 0.00167 0.00182

2.0 0.001621 0.007004 0.001676 0.00182

Table 4. Effect of Orientation Angle on The Maximum Bending Coefficient for CCSS Plates

E1/E2 = 25; G12/E2 =0.5; V12 =0.25

Orientations Orthotropic 0°90° 0°90°0° 0°90°90°0°

Aspect ratio qa* qa* qa* qa*
Winax = W Winax = W max = W max = W

1 0.002834 0.006519 0.002834 0.002834

11 0.002893 0.007761 0.002923 0.002999

1.2 0.002934 0.008853 0.002986 0.003117

1.3 0.002965 0.009779 0.003032 0.003203

14 0.002987 0.010547 0.003065 0.003267

15 0.003005 0.011177 0.003090 0.003314

1.6 0.003019 0.011690 0.003110 0.003350

1.7 0.003030 0.012108 0.003125 0.003378

18 0.003039 0.012449 0.003138 0.003400

19 0.003046 0.012729 0.003147 0.003418

2.0 0.003052 0.012959 0.003156 0.003432

Table 5: Effect of Orientation Angle on The Maximum Bending Coefficient for CSCS and SCSC Plates

E1/E2 = 25; G12/E2 = 0.5; V12 = 0.25.

Orientations Orthotropic 0°90° 0°90°0° 0°90°90°0°

Aspect ratio qa* qa* qa* qa*
Winax = W Winax = m Winax = W Winax = W

1 0.001536 0.00573 0.00158 0.00169

11 0.001545 0.00611 0.00159 0.00172

1.2 0.001553 0.00638 0.00160 0.00174

1.3 0.001558 0.00658 0.00161 0.00175

14 0.001562 0.00673 0.00162 0.00176

15 0.001565 0.00684 0.00162 0.00177

1.6 0.001567 0.00693 0.00162 0.00177

1.7 0.001569 0.00700 0.00162 0.00178

18 0.001571 0.00706 0.00163 0.00178

1.9 0.001572 0.00710 0.00162 0.00178

2.0 0.001574 0.00714 0.00163 0.00178
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Table 6: Compering the present work with the work of Bhaskar & Kaushik (2004a and 2004b)

E1/E2 = 25; G12/E2 = 0.5; V12 = 0.25

Bhaskar & Kaushik (2004a and 2004b) work % Diff. for % Diff.
Orthotropic for 0°90°0°
Orientations Orthotropic 0°90°0°
Plate type Aspect ratio qa* qa*
Winax = m max = W
SSSS 1 0.006497 0.006660 4.17 6.51
CCCC 1 0.001308 0.001371 10.392 14.62
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