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Abstract  
This paper developed polynomial comparison functions for the free vibration analysis of clamped thin rectangular plates using the Ritz 

Direct Variational Method. The polynomials were derived systematically from a predefined formula, which could generate any number 

of trial functions for any set of plate’s classical boundary conditions. The method was implemented by means of a Mathematica computer 

programme developed by the authors. The frequency parameters so obtained agreed excellently with those available in the literature. 

The numerical values of the frequency parameters increased with the aspect ratio irrespective of the mode considered. In addition, the 

study showed that the more the number of polynomial coordinate functions in the shape function, the better the accuracy of the results. 

The convergence study corroborated the fact that a one-term approximation yields sufficient accuracy. The convergence was best for 

square plates, even though acceptable percentages of convergence were obtained for the other side ratios. 
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1.0 INTRODUCTION 

Plates can be defined as flat structural elements 

limited by two parallel faces and edges, the distance 

between the two faces being the plates’ thickness [1]. 

Ordinarily, plates are classified into three types [2]: 

i. thin plates under small deflection, 

ii. thin plates under large deflection, and  

iii. thick plates. 

A plate is said to be thin when the ratio of its lateral 

dimensions to its thickness is within the range of 10 to 100. 

A thin plate under small deflection, also known as stiff 

plate, is characterized by a deflection, W, always small 

compared to the thickness h (W/h ≤ 0.2). The phrase thin 

plate under large deflection or simply flexible plate refers to 

a thin plate that undergoes deflections not small when 

compared to the thickness (W/h ≥ 0.3). The third category 

i.e. thick plate is associated with a plate whose thickness is 

considerable in comparison to the lateral dimensions. The 

ratio of the latter to the thickness is less than 10. This study 

deals with thin rectangular plates (of the first category) 

fulfilling Kirchhoff hypotheses [1]:  
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(i) The plate is made of elastic, homogenous and isotropic 

materials. By isotropic materials, we understand those 

materials whose properties do not vary with direction. 

(ii) The plate is initially flat. 

(iii) The deflection of the middle plane is small compared 

to the thickness of the plate. 

(iv) Straight lines, initially normal to the middle plane 

before bending, remain straight and normal to the 

middle surface during deformation, and the length of 

such elements is not altered. 

(v) The stress normal to the middle plane is small 

compared to the other stress components. 

(vi) Since the displacements of the plate are small, it is 

assumed that the middle surface remains unstrained 

after bending. 

 

Thin plates, because of their intrinsic characteristic 

of combining light weight and form efficiency with load-

carrying capacity, economy, and technological 

effectiveness, are widely used in all branches of engineering 

i.e. aerospace, marine, mechanical, biomedical and civil 

engineering [3]. Applications of thin plates are architectural 

structures, bridges, hydraulic structures, pavements, 

containers, missiles, ships, instruments, machine parts etc. 

Almost all these structural systems may be subjected to one 

form or the other of dynamic loading during their lifetime. 
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Thus, the importance of studying the vibration of these 

systems made of plates of various shapes and boundary 

conditions cannot be overemphasized. The knowledge of 

the dynamic behavior of thin rectangular plates which are 

key components of numerous structures (bridges, 

technological equipment, mobile or stationary machines 

etc.) shall help to avoid the occurrence of failure of such 

structures due to resonance phenomenon. 

Furthermore, exact analytical solutions for the 

dynamic analysis of rectangular plates exist only for few 

boundary conditions. These include all combinations in 

which two opposite edges are simply supported, and those 

with one edge free to slide while the rotation is restrained 

and, on the opposite side, simply supported or sliding [4]. 

For all other combinations, only approximate results are 

available. The approximate approaches encompass the 

discrete methods and the close form solutions. The latter, 

which include the Ritz direct variational method (RDVM), 

are preferable to the discrete solutions because of their 

amenability to parametric studies and the ready insight they 

engender into the physical aspects of a given problem. In 

this work, the RDVM is used to carry out the free vibration 

analysis of clamped Kirchhoff plates of various aspect 

ratios. 

 

The merits of the Ritz method, on one hand, can be 

enumerated as follows [1, 5, 6, 7]: 

(i) The method requires the trial functions φi(x,y), to 

satisfy only the kinetic boundary conditions, yet 

guarantees model convergence. 

(ii) The method can be applied successfully to 

rectangular plates of constant and variable thickness. 

(iii) The method provides more accurate results for global 

parameters, once either enough degrees of freedom 

are introduced or the discontinuity strength is 

sufficiently weak. 

(iv) The method is known to produce rapid and 

inexpensive estimates of natural frequencies of 

practical plates. 

(v) The Ritz method is a direct method of solving 

variational problems; that is not employing classical 

Euler-Lagrange differential equation to first generate 

equations of motion, which must then be solved. 

 

The disadvantages of the Ritz method, on the other 

hand, are summarized below: 

(i) The method is applicable only to simple configuration 

of plates (rectangular, circular, etc) because of the 

complexity of selecting the trial functions for domain 

of complex geometry. 

(ii) There is no systematic way of construction of the trial 

functions. 

The Ritz method was used by Leissa et al [8], 

Huang et al [9], Irvine [10, 11], Khorshidi [12], and Gorman 

[13] to study the vibration of plates of various nature. 

Uymaz and Aydogdu [14] used the Ritz method to carry out 

three-dimensional analyses of functionally graded plates 

and achieved results with accuracy comparable to that of 

present methods.  

The accuracy and the convergence of the RDVM 

are strongly tied to the choice of the trial function. The 

selection of suitable trial functions for the Ritz method, in 

most cases, is based on the analyst’s intuition, but in any 

case, the approach requires that the candidate trial functions 

should be, at least, of the class of admissible functions, that 

is they must satisfy the geometric (or essential, or kinetic) 

boundary conditions. If comparison functions (i.e. the ones 

satisfying all the boundary conditions) are used, more 

accurate eigenvalues are expected. However, the 

requirement that all boundary conditions or merely the 

geometric boundary conditions be satisfied is too broad to 

serve as a guideline. The choice is more important than it 

may seem, because there may exist several sets of functions 

that could serve, and the rate of convergence tends to vary 

from set to set. Indeed, whereas all sets of comparison 

functions or admissible functions will lead to convergence, 

the convergence rate can be unacceptably slow, particularly 

for admissible functions [15]. The problem is even more 

complicated because it is virtually impossible to predict the 

rate of convergence for a given set of functions. 

Nevertheless, some criteria can be stated. Most researchers 

[16, 17, 18, 19, 20] state that the trial functions, apart from 

being of the class of admissible or comparison functions, 

must (i) be linearly independent and (ii) be complete in the 

energy norm for accurate and convergent eigenvalues to be 

obtained. Li [21] added that, mathematically, the 

completeness of the admissible function ensures that the 

resulting Ritz solution will be always convergent. Although 

non-orthogonal trial functions have been used by many 

researchers in vibration analysis of plates, it was shown that 

orthogonal trial functions offer improved convergence [18, 

20]. It is worth noting that the trial functions can be 

polynomial, transcendental or combination of polynomial 

and trigonometric functions. 

When polynomials are used in the Ritz method, the 

non-uniform convergence with respect to derivatives is 

avoided [17]. Polynomial series also allow straightforward 

algebraic manipulation. They have been extensively used in 

Ritz method [20]. Simple polynomials proved to be 

excellent for predicting the lower modes of vibration of 

beams and plates [16]. Laura [22] pointed out that the main 

advantage of polynomial coordinate functions is the fact 

that a one-term approximation yields sufficient accuracy 

from an engineering perspective when determining the 
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fundamental frequency in a number of cases of practical 

importance as follows: when there is any combination of 

simply supported and clamped edges, when the edges are 

elastically restrained against translation and rotation, when 

the plate thickness is a function of the spatial variables, 

when in-plane stresses are present, when the vibrations are 

forced.  

In the present work, polynomial comparison 

functions shall be constructed not in an absolutely intuitive 

way, bearing in mind their number in the series and their 

degree. This, in conjunction with the use of symbolic 

computing offered by Mathematica software, will probably 

reduce the level of round-off errors inherent to polynomial 

trial functions. 

 

2.0 MATERIALS AND METHODS 

2.1 Construction of the Polynomial Trial Functions 

In generating the trial functions, we shall consider 

the x-direction and apply the boundary conditions at the two 

ends. Functions of x, Fn(x), containing the parameter a will 

thus be obtained, where a is the dimension of the plate in x-

direction. The similar trial functions, Gn(y), in y-direction 

are found by simply replacing x by y and a by b, where b is 

the dimension of the plate in y-direction. Depending on the 

plate’s boundary conditions, the shape functions will be in 

the form: 

 

𝑊(𝑥, 𝑦) = ∑∑𝐶𝑖𝑘𝐹𝑖(𝑥)𝐺𝑘(𝑦)                                    (1)

𝑛

𝑘

𝑚

𝑖

 

 

 

Let the polynomial trial function in x-direction be sought in 

the form: 

 

𝐹𝑛 = 𝑎1
(𝑛)

𝑥𝑛−1 + 𝑎2
(𝑛)

𝑥𝑛 + 𝑎3
(𝑛)

𝑥𝑛+1 + 𝑎4
(𝑛)

𝑥𝑛+2         (2) 

 

 

where n is a non-nil integer number; the coefficients   𝑎𝑘
(𝑛)

 

(k = 1, 2, 3, 4) are obtained by imposing the boundary 

conditions (geometrical and statical) to the trial functions. 

For clamped ends, the boundary conditions are given as:  

 

Fj(0) = Fj
’(0) = Fj(a) = Fj

’(a) = 0 

 

Imposing the boundary conditions on Fj(x), j = 1, 2, 

3, 4, 5, 6, 7, yields the first six non-nil comparison functions 

as follows: 

 

𝐹1(𝑥) = 𝑥2 −
2

𝑎
𝑥3 +

1

𝑎2
𝑥4                                              (3) 

𝐹2(𝑥) = 𝑎𝑥2 + 𝑥3 −
5

𝑎
𝑥4 +  

3

𝑎2
𝑥5                               (4) 

𝐹3(𝑥) = 𝑎𝑥3 + 𝑥4 −
5

𝑎
𝑥5 +  

3

𝑎2
𝑥6                                 (5) 

 

𝐹4(𝑥) = 𝑎𝑥4 + 𝑥5 −
5

𝑎
𝑥6 +  

3

𝑎2
𝑥7                                (6) 

 

𝐹5(𝑥) = 𝑎𝑥5 + 𝑥6 −
5

𝑎
𝑥7 +  

3

𝑎2
𝑥8                                (7) 

 

𝐹6(𝑥) = 𝑎𝑥6 + 𝑥7 −
5

𝑎
𝑥8 +  

3

𝑎2
𝑥9                               (8) 

 

In a similar manner, we obtain, in y-direction the following 

comparison functions: 

 

𝐺1(𝑦) = 𝑦2 −
2

𝑏
𝑦3 +

1

𝑏2
𝑦4                                              (9) 

 

𝐺2(𝑦) = 𝑏𝑦2 + 𝑦3 −
5

𝑏
𝑦4 +  

3

𝑏2
𝑦5                                (10) 

 

𝐺3(𝑦) = 𝑏𝑦3 + 𝑦4 −
5

𝑏
𝑦5 +  

3

𝑏2
𝑦6                                (11) 

 

𝐺4(𝑦) = 𝑏𝑦4 + 𝑦5 −
5

𝑏
𝑦6 +  

3

𝑏2
𝑦7                                (12) 

 

𝐺5(𝑦) = 𝑏𝑦5 + 𝑦6 −
5

𝑏
𝑦7 +  

3

𝑏2
𝑦8                              (13) 

 

𝐺6(𝑦) = 𝑏𝑦6 + 𝑦7 −
5

𝑏
𝑦8 +  

3

𝑏2
𝑦9                              (14) 

 

Considering Eq. (3) through Eq. (14), and letting 
𝑥

𝑎
= 𝜉 and  

𝑦

𝑏
= 𝜂 (see Fig. 1), the following dimensionless polynomial 

trial functions are found as: 

- In x-direction 

 

F1(ξ) =  ξ2 − 2ξ3 + ξ4                                                        (15) 

 

F2(ξ) =  ξ2 + ξ3 − 5ξ4 + 3ξ5                                            (16) 

 

F3(ξ) =  ξ3 + ξ4 − 5ξ5 + 3ξ6                                            (17) 

 

F4(ξ) =  ξ4 + ξ5 − 5ξ6 + 3ξ7                                            (18) 

 

F5(ξ) =  ξ5 + ξ6 − 5ξ7 + 3ξ8                                          (19) 

 

F6(ξ) =  ξ6 + ξ7 − 5ξ8 + 3ξ9                                          (20) 
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- In y-direction: 

G1(η) =  η2 − 2η3 + η4                                                    (21) 

 

 

𝐺2(η) =  η2 + η3 − 5η4 + 3η5                                        (22) 

 

𝐺3(η) =  η3 + η4 − 5η5 + 3η6                                       (23) 

 

𝐺4(η) =  η4 + η5 − 5η6                                                    (24) 

 

𝐺5(η) =  η5 + η6 − 5η7 + 3η8                                        (25) 

 

𝐺6(η) =  η6 + η7 − 5η8 + 3η9                                         (26) 

 

 
Figure 1: Plate Cartesian Coordinate System  

 

2.2 Ritz Direct Variational Method 

Consider a thin rectangular isotropic plate of 

dimensions a and b lying in the (x, y) plane (Fig. 3.1). The 

thickness of the plate is taken to be h. Neglecting the effect 

of transverse shear force and adopting the following non-

dimensional coordinates, 

𝜉 = 𝑥/𝑎 and 𝜂 = 𝑦/𝑏 , the maximum strain energy can be 

written as: 

 

𝑈𝑚𝑎𝑥 =
1

2

𝐷𝑏

𝑎3
∫∫[𝑊𝜉𝜉

2 + 𝛼4𝑊𝜂𝜂
2 + 2𝜇𝛼2𝑊𝜉𝜉𝑊𝜂𝜂 + 2(1

1

0

1

0

− 𝜇)𝛼2𝑊𝜉𝜂
2 ]𝑑𝜉𝑑𝜂                                    (7) 

 

where α is the side ratio a/b and the subscripts ξ and  η refer 

to differentiation with respect to the subscript and the 

number of times the subscript appears denotes the order of 

differentiation. 

The maximum kinetic energy will be: 

 

𝑇𝑚𝑎𝑥 =
1

2
𝜔2𝜌ℎ𝑎𝑏 ∫∫𝑊2(𝜉, 𝜂)𝑑𝜉𝑑𝜂

1

0

1

0

                          (28) 

If the freely vibrating plate has classical boundary 

conditions, then the energy functional of the system is 

expressed as follows (as the potential of external forces 

vanishes): 

 

Π = 𝑈𝑚𝑎𝑥 − 𝑇𝑚𝑎𝑥                                                              (29) 

 

The Ritz approximation requires the assumption of a shape 

function that can be in the format: 

 

𝑊(𝜉, 𝜂) = ∑∑𝐶𝑖𝑘𝐹𝑖(𝜉)𝐺𝑘(𝜂)

𝑛

𝑘

𝑚

𝑖

                                   (30) 

 

where Cik are unknown coefficients and, 𝐹𝑖(𝜉) and 𝐺𝑘(𝜂) 

are trial functions that should be at least of the class of 

admissible functions. In fact, the systematic construction of 

these trial functions handled in Section 2.1 constitutes the 

backbone of this research work. For instance, the first six 

trial functions (of the class of comparison functions) for a 

clamped plate were constructed and presented in Eq. (15) 

through Eq. (26). It is worth noting that trial functions for 

any set of plate’s classical boundary conditions could 

systematically be built by imposing the right edge 

conditions to Eq. (1) and letting 
𝑥

𝑎
= 𝜉 and  

𝑦

𝑏
= 𝜂 . 

Substituting Eq. (30) into Eq. (27) and Eq. (28), and 

considering Eq. (29), a system of algebraic equations in the 

unknown coefficients Cik can be obtained by minimising the 

energy functional Π, as follows: 

 
𝜕Π

𝜕𝐶𝑖𝑘
= 0                                                                              (31) 

 

This will result in an eigenvalue equation whose solution 

will yield the frequency parameters of the system. 

 

2.3 The Procedure 

The shape function given in Eq. (30) is considered 

here. For convenience, it can be put in the form: 

 

𝑊(𝜉, 𝜂) = ∑𝐶𝑗𝑤𝑗(𝜉, 𝜂)

𝑝

𝑗

                                                (32) 

 

where p = m x n; 

C1 = C11, C2 = C12, C3 = C13, …, Cn = C1n, Cn+1 = C21, …, 

C2xn = C2n, C2xn+1 = C31, …, Cp = Cmn; 

 

w1(ξ, η) = F1(ξ)G1(η),w2(ξ, η) =
F1(ξ)G2(η),w3(ξ, η) = F1(ξ)G3(η),… ,wn(ξ, η) =
F1(ξ)Gn(η),wn+1(ξ, η) = F2(ξ)G1(η),… ,w2xn(ξ, η) =
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F2(ξ)Gn(η),w2xn+1(ξ, η) = F3(ξ)G1(η),… ,wp(ξ, η) =

Fm(ξ)Gn(η). 

 

In matrix form, Eq. (32) can be put as: 

 

𝑊(𝜉, 𝜂) = 𝑀 𝐶𝑇                                                                (33) 

  

where: 

𝑀 = [𝑤1    𝑤2    …    𝑤𝑝] and 𝐶 = [𝑐1    𝑐2    …    𝑐𝑝];  

 

the superscript T refers to matrix transpose. 

 

Recalling Eq. (29) and considering Eq. (27) and Eq. (28), 

the plate’s maximum total potential energy will be given by: 

𝑈𝑚𝑎𝑥 =
1

2

𝐷𝑏

𝑎3
∫∫[𝑊𝜉𝜉

2 + 𝛼4𝑊𝜂𝜂
2 + 2𝜇𝛼2𝑊𝜉𝜉𝑊𝜂𝜂 + 2(1

1

0

1

0

− 𝜇)𝛼2𝑊𝜉𝜂
2 ]𝑑𝜉𝑑𝜂

−
1

2
𝜔2𝜌ℎ𝑎𝑏 ∫∫𝑊2(𝜉, 𝜂)𝑑𝜉𝑑𝜂

1

0

1

0

       (4) 

 

Substitution of Eq. (33) into Equation (34) gives: 

 

Π

=
1

2

𝐷𝑏

𝑎3
∫∫[(𝑀𝜉𝜉𝐶

𝑇)
𝑇
𝑀𝜉𝜉𝐶

𝑇 + 𝛼4(𝑀𝜂𝜂𝐶
𝑇)

𝑇
𝑀𝜂𝜂𝐶

𝑇

1

0

1

0

+ 2𝜇𝛼2(𝑀𝜂𝜂𝐶
𝑇)

𝑇
𝑀𝜉𝜉𝐶

𝑇 + 2(1

− 𝜇)𝛼2(𝑀𝜉𝜂𝐶
𝑇)

𝑇
𝑀𝜉𝜂𝐶

𝑇]𝑑𝜉𝑑𝜂

−
1

2
𝜔2𝜌ℎ𝑎𝑏∫∫(𝑀𝐶𝑇)𝑇𝑀𝐶𝑇𝑑𝜉𝑑𝜂

1

0

1

0

                       (35) 

 

The subscripts 𝜉 and  𝜂 refer to differentiation with respect 

to the subscript and the number of times the subscript 

appears denotes the order of differentiation; the superscript 

T refers to matrix transpose.  

Equation (35) can further be written as: 

 

Π =
1

2

𝐷𝑏

𝑎3
𝐶[𝐴1 + 𝛼4𝐴2 + 2𝜇𝛼2𝐴3 + 2(1 − 𝜇)𝛼2𝐴4

− 𝜆2𝐵]𝐶𝑇                                               (36) 

 

where: 

 

𝐴1 = ∫ ∫ 𝑀𝜉𝜉
𝑇 𝑀𝜉𝜉𝑑𝜉𝑑𝜂

1

0

1

0
; 𝐴2 = ∫ ∫ 𝑀𝜂𝜂

𝑇 𝑀𝜂𝜂𝑑𝜉𝑑𝜂
1

0

1

0
; 𝐴3 =

∫ ∫ 𝑀𝜂𝜂
𝑇 𝑀𝜉𝜉𝑑𝜉𝑑𝜂

1

0

1

0
; 

 𝐴4 = ∫ ∫ 𝑀𝜉𝜂
𝑇 𝑀𝜉𝜂𝑑𝜉𝑑𝜂

1

0

1

0
; 𝐵 = ∫ ∫ 𝑀𝑇𝑀𝑑𝜉𝑑𝜂

1

0

1

0
 and 𝜆2 =

𝜌ℎ𝜔2𝑎4

𝐷
 

 

 

Taking the extremum of the energy functional as required 

by the Ritz method, we have: 
∂Π

𝜕𝐶
= 0 

It follows that: 

 

𝐻𝐶𝑇 = 0                                                                               (37) 

 

where: 𝐻 = [𝐴1 + 𝛼4𝐴2 + 2𝜇𝛼2𝐴3 + 2(1 − 𝜇)𝛼2𝐴4 −
𝜆2𝐵]   
 

A1, A2, A3, A4 and B are evaluated as follows: 

 

 

𝐴1 = ∫∫𝑀𝜉𝜉
𝑇 𝑀𝜉𝜉𝑑𝜉𝑑𝜂

1

0

1

0

= ∫∫

[
 
 
 
 
 
𝑤1𝜉𝜉𝑤1𝜉𝜉     𝑤1𝜉𝜉𝑤2𝜉𝜉    …    𝑤1𝜉𝜉𝑤𝑝𝜉𝜉

𝑤2𝜉𝜉𝑤1𝜉𝜉     𝑤2𝜉𝜉𝑤2𝜉𝜉    …    𝑤2𝜉𝜉𝑤𝑝𝜉𝜉

.                   .              …              .

.                   .              …              .

.                   .              …              .
𝑤𝑝𝜉𝜉𝑤1𝜉𝜉     𝑤𝑝𝜉𝜉𝑤2𝜉𝜉    …    𝑤𝑝𝜉𝜉𝑤𝑝𝜉𝜉]

 
 
 
 
 

1

0

1

0

         (38) 

 

 

𝐴2 = ∫∫𝑀𝜂𝜂
𝑇 𝑀𝜂𝜂𝑑𝜉𝑑𝜂

1

0

1

0

=  ∫∫

[
 
 
 
 
 
𝑤1𝜂𝜂𝑤1𝜂𝜂    𝑤1𝜂𝜂𝑤2𝜂𝜂    …    𝑤1𝜂𝜂𝑤𝑝𝜂𝜂

𝑤2𝜂𝜂𝑤1𝜂𝜂    𝑤2𝜂𝜂𝑤2𝜂𝜂    …    𝑤2𝜂𝜂𝑤𝑝𝜂𝜂

.                   .              …              .

.                   .              …              .

.                   .              …              .
𝑤𝑝𝜂𝜂𝑤1𝜂𝜂    𝑤𝑝𝜂𝜂𝑤2𝜂𝜂    …    𝑤𝑝𝜂𝜂𝑤𝑝𝜂𝜂]

 
 
 
 
 

1

0

1

0

    (39) 

 

 

 

𝐴3 = ∫∫𝑀𝜂𝜂
𝑇 𝑀𝜉𝜉𝑑𝜉𝑑𝜂

1

0

1

0

= ∫∫

[
 
 
 
 
 
𝑤1𝜂𝜂𝑤1𝜉𝜉    𝑤1𝜂𝜂𝑤2𝜉𝜉    …    𝑤1𝜂𝜂𝑤𝑝𝜉𝜉

𝑤2𝜂𝜂𝑤1𝜉𝜉     𝑤2𝜂𝜂𝑤2𝜉𝜉    …    𝑤2𝜂𝜂𝑤𝑝𝜉𝜉

.                   .              …              .

.                   .              …              .

.                   .              …              .
𝑤𝑝𝜂𝜂𝑤1𝜉𝜉     𝑤𝑝𝜂𝜂𝑤2𝜉𝜉    …    𝑤𝑝𝜂𝜂𝑤𝑝𝜉𝜉]

 
 
 
 
 

1

0

1

0

     (40)  
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𝐴4 = ∫∫𝑀𝜉𝜂
𝑇 𝑀𝜉𝜂𝑑𝜉𝑑𝜂

1

0

1

0

= ∫∫

[
 
 
 
 
 
𝑤1𝜉𝜂𝑤1𝜉𝜂    𝑤1𝜉𝜂𝑤2𝜉𝜂    …    𝑤1𝜉𝜂𝑤𝑝𝜉𝜂

𝑤2𝜉𝜂𝑤1𝜉𝜂    𝑤2𝜉𝜂𝑤2𝜉𝜂    …    𝑤2𝜉𝜂𝑤𝑝𝜉𝜂

.                   .              …              .

.                   .              …              .

.                   .              …              .
𝑤𝑝𝜉𝜂𝑤1𝜉𝜂    𝑤𝑝𝜉𝜂𝑤2𝜉𝜂    …    𝑤𝑝𝜉𝜂𝑤𝑝𝜉𝜂]

 
 
 
 
 

1

0

1

0

       (41)  

 

𝐵 = ∫∫𝑀𝑇𝑀𝑑𝜉𝑑𝜂

1

0

1

0

= ∫∫

[
 
 
 
 
 
𝑤1𝑤1    𝑤1𝑤2    …    𝑤1𝑤𝑝

𝑤2𝑤1    𝑤2𝑤2    …    𝑤2𝑤𝑝

.             .        …        .

.             .        …        .

.             .        …        .
𝑤𝑝𝑤1    𝑤𝑝𝑤2    …    𝑤𝑝𝑤𝑝]

 
 
 
 
 

1

0

1

0

                        (42) 

 

Equation (37) leads to an eigenvalue problem. For 

non-trivial solution, the determinant of the matrix H must 

equal zero. A polynomial equation in λ2 of degree p will 

thus be obtained. Solving the polynomial equation will give 

p values of λ2 from which the p first values of the natural 

frequency can be calculated. λ is called frequency 

parameter. 

. 

3.0 RESULTS AND DISCUSSION 

3.1 The Trial Functions 

Polynomial comparison functions (six in number in 

both x and y directions) for the free flexural vibration 

analysis of clamped rectangular thin plates by the RDVM 

were constructed in a systematic way. Indeed, the general 

expression for the trial functions as shown in Eq. 2 can be 

used to generate any number of comparison functions for all 

classical boundary conditions, with an increasing degree of 

polynomial. Having obtained the trial functions, the 

procedure shown in section 2.3 was implemented by means 

of a Mathematica (computer) programme developed by the 

authors. The programme was run for m = n = 1; 2; 3; 4; 5; 

6, for various aspect ratios, where m and n are the numbers 

of trial functions in x and y directions respectively in the 

shape function. Thus, when m = n = 1, the programme yields 

the approximation of fundamental frequency parameter. 

Similarly, when m = n = 2; 3; 4; 5; 6, it yields 

approximations of the first 4, 9, 16, 25, 36 frequency 

parameters respectively. An improvement on the accuracy 

at the lower end of the eigenvalue spectrum is witnessed as 

the number of terms in the shape function increases. This 

brings up an interesting characteristic of the Ritz method: 

only a few number of the Ritz eigenvalues at the lower end 

of the spectrum tend to be accurate, while the newly added 

ones at the higher end are being grossly in error [15]. For 

this reason, only the first six frequency parameters were 

retained and shown in Table 1. They were purposefully 

compared with results available in the literature [4, 18, 21, 

23, 24, 25, 26, 27, 28]. μ was kept equal to 0.3 and the aspect 

ratios used were 0.4, 0.5, 2/3, 1, 1.5, 2 and 2.5. 

 

 

3.2 Frequency Parameters of Thin Clamped Isotropic 

Rectangular Plates of Various Aspect Ratios  

Table 1 captured the first six frequency parameters 

as the aspect ratio of the clamped rectangular plate is varied. 

The computed first six frequency parameters for a square 

clamped plate (aspect ratio equals 1) were 35.986, 73.395, 

73.395, 108.22, 131.779 and 132.41 respectively, which 

were in excellent agreement with those obtained by Li [21] 

and Monterrubio and Ilanko [18]. Indeed, the percentage 

differences varied from - 0.01% to 0.147%. For the aspect 

ratio of 1.5, it was recorded 60.762, 93.8348, 148,783, 

149.849, 179.567 and 227.904 as the 6 successive frequency 

parameters which deviated little from the results obtained 

by Li [21] and Bhat [26]: percentage differences ranging 

from – 0.052% to 0.48%. When the side ratio was made 

equal to 2, the 6 consecutive frequency parameters 

calculated were 98.3127, 127.307, 179.233, 254.28, 

255.939 and 284.315 which were excellently in order with 

the results given by Li [21] and Chakraverty [27] as shown 

by the percentage differences varying from – 0.032% to 

0.38%. As for the case of 2.5 aspect ratio, the computed 

values of the first six frequency parameters of 147.777, 

173.798, 221.5, 292,533, 394.279 and 421.207 agreed 

excellently with those obtained by Li [21] and Leissa [28] 

with percentage differences lying between –0.03% and 

0.28%. Using 2/3 as aspect ratio, 27.0053, 41.7043, 

66.1256, 66.5997, 79.8072 and 101.29 were computed as 

the 6 consecutive frequency parameters and proved to be in 

order with those calculated by Leissa [4] and Das et al [25]: 

the percentage differences ranged between – 0.61% and 

1.61%. 

The values of 24.5782, 31.8267, 44.8082, 63.5696, 

63.9848, and 71.0787 were obtained as first six frequency 

parameters for 0.5 aspect ratio. These were close to those 

found by Leissa [4] and Das et al [25] as the percentage 

differences lied between -0.007% and 1.99%. For 0.4 side 

ratio, the values of 23.6442, 27.8077, 35.44, 46.805, 

63.0847 and 67.3931 were recorded as first six frequency 

parameters and did not differ much with those given by 

Gorman [23] and Njoku [24]. 

The polynomial comparison functions gave therefore 

accurate frequency parameters irrespective of the aspect 

ratio considered. Moreover, they yielded more accurate 
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results than some of those available in the literature. Indeed, 

the negative percentage differences in Table 1 testify that, 

bearing in mind that the Ritz method always yields upper 

bound solutions. It is also worth noting that the frequency 

parameters increase with the aspect ratio irrespective of the 

mode considered. 

 

Table 1: Comparison of Frequency Parameters for CCCC Rectangular Isotropic Plates of Various Aspect Ratios with 

Results from Literature. 

Aspect 

Ratio 
 

𝜆 = 𝜔𝑎2√𝜌ℎ/𝐷 for the Flexural Vibration Modes 

1 2 3 4 5 6 

0.4 

Present 

Study 

23.6442 

(0.53)* 

(-0.36)** 

27.8077 

(-0.001)* 

35.44 

(0.101)* 

46.805 

(0.27)* 

63.0847 

(0.007)* 

67.3931 

(-0.010)* 

[23] 23.52 27.808 35.404 46.680 63.08 67.4 

[24] 23.72976 - - - - - 

0.5 

Present 

Study 

24.5782 

(1.99)* 

(-0.007)** 

31.8267 

(1.34)* 

(0.052)** 

44.8082 

(1.02)* 

63.5696 

(0.87)* 

63.9848 

(0.086)* 

71.0787 

(0.25)* 

[4] 24. 09 31.40 44.35 63. 00 63. 93 70. 90 

[25] 24.58 31.81 - - - - 

2/3 

Present 

Study 

27.0053 

(0.02)* 

(0.02)** 

41.7043 

(-0.04)* 

(0.03)** 

66.1256 

(-0.61)* 

 

66.5997 

(1.65)* 

 

79.8072 

(-0.004)* 

 

101.29 

(0.47)* 

 

[4] 27. 01 41. 72 66. 53 65. 5 79.81 100.81 

[25] 27.00 41.69 - - - - 

1 

Present 

Study 

35.9855 

(-0.01)* 

(-0.001)** 

73.3947 

(-0.007)* 

(-0.003)** 

73.3948 

(-0.007)* 

(-0.003)** 

108.22 

(0.02)* 

(-0.005)** 

131.779 

(0.136)* 

(0.141)** 

132.41 

(0.16)* 

(0.147)** 

[21] 35.99 73.40 73.40 108.2 131.6 132.2 

[18] 35.986 73.397 73.397 108.225 131.592 132.215 

1.5 

Present 

Study 

60.762 

(0.003)* 

(-0.016)** 

93.8348 

(-0.006)* 

(-0.03)** 

148.783 

(-0.011)* 

(-0.025)** 

149.849 

(0.099)* 

(0.07)** 

179.567 

(-0.018)* 

(-0.052)** 

227.904 

(0.48)* 

(0.43)** 

[21] 60.76 93.84 148.8 149.7 179.6 226.8 

[26] 60.772 93.860 148.82 149.74 179.66 226.92 

2 

Present 

Study 

98.3127 

(0.003)* 

(-0.004)** 

127.307 

(0.005)* 

(-0.002)** 

179.233 

(0.074)* 

(-0.02)** 

254.28 

(0.38)* 

(-0.04)** 

255.939 

(0.015)* 

(-0.032)** 

284.315 

(0.005)* 

 

[21] 98.31 127.3 179.1 253.3 255.9 284.3 

[27] 98.317 127.31 179.27 254.39 256.02 - 

2.5 

Present 

Study 

147.777 

(-0.016)* 

(-0.016)** 

173.798 

(-0.001)* 

(-0.03)** 

221.5 

(0.045)* 

(-0.018)** 

292.533 

(0.28)* 

(0.22)** 

394.279 

(-0.005)* 

(-0.02)** 

421.207 

[21] 147.8 173.8 221.4 291.7 394.3 - 

[28] 147.80 173·85 221.54 291.89 394.37 - 
* Percentage difference with respect to first reference 
** Percentage difference with respect to second reference 

 

3.3 Convergence of the Fundamental Frequency 

Parameters   

A parameter of paramount importance in the 

dynamic analysis of structures is the fundamental natural 

frequency, which is the lowest natural frequency of the 

structural system considered. It can be obtained from the 

fundamental frequency parameter, which is the lowest 

frequency parameter of the structural system considered. 

Table 2 shows how the fundamental frequency parameters 

converge as the numbers of comparison functions in x and 

y directions in the shape function are varied from 1 to 6. It 

was observed from the table that the accuracy of the 
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fundamental frequency parameters increased as the number 

of terms in the shape function is increased for all the aspect 

ratios considered. This observation is valid for the other 

modes. In fact, a close look at the columns of the table 

revealed that the values of the fundamental frequency 

parameters were converging irrespective of the side ratios.  

Globally, the percentages of convergence were  

sufficiently low, corroborating that, when polynomial  

coordinate functions are used in the Ritz Direct Variational  

Method, a one-term approximation yields sufficient 

accuracy from an engineering perspective [22]. The lowest 

convergence percentage (0.04%) was recorded for the 

square plate (aspect ratio = 1). The percentage increased (up 

to 0.36% for the side ratios of 0.4 and 2.5) as the aspect ratio 

moved away from 1 towards the upper or lower end. It can 

therefore be concluded that the fundamental frequency is 

more accurately calculated for the square plate, the accuracy 

deteriorating as the aspect ratio increases or decreases from 

1. 

 

Table 2: Convergence of the Fundamental Frequency Parameters of Clamped Plates of Various Aspect Ratios 

m = n 
Fundamental Frequency Parameters 𝜆𝑓 = 𝜔𝑎2√𝜌ℎ/𝐷 for the Aspect Ratios 

0.4 0.5 2/3 1 1.5 2 2.5 

1 23.7273 24.6475 27.0473 36. 60.8564 98.5901 148.295 

2 23.7273 24.6475 27.0473 36. 60.8564 98.5901 148.295 

3 23.6471 24.5811 27.0086 35.99 60.7695 98.3243 147.795 

4 23.6471 24.5811 27.0086 35.99 60.7695 98.3243 147.795 

5 23.6442 24.5782 27.0053 35.9855 60.762 98.3127 147.777 

6 23.6442 24.5782 27.0053 35.9855 60.762 98.3127 147.777 

Percentage of 

Convergence* 0.35% 0.28% 0.16% 0.04% 0.16% 0.28% 0.35% 

*The percentage of convergence is equal to:  

 
(𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝑚 = 𝑛 = 1) − (𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝑚 = 𝑛 = 6)

𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 𝑚 = 𝑛 = 1
 

 

4.0 CONCLUSION 

In this study, it has been constructed, in a 

systematic way, comparison functions for the free vibration 

analysis of clamped thin rectangular plates using the Ritz 

Direct Variational Method. A procedure was developed for 

the computation of the frequency parameters of thin 

rectangular plates. It went through the formulation of the 

shape functions which were assumed to be made up from 

the constructed comparison functions, and the 

determination of the plate’s maximum total potential energy 

whose minimisation lead to an eigenvalue problem. The 

consideration of the non-trivial solution for the eigenvalue 

problem yielded the successive frequency parameters of the 

plate. The procedure was implemented by means of a 

Mathematica computer programme by considering 

successively shape functions made up from 1, 2, 3, 4, 5 and 

6 comparison functions in both the x and y directions of the 

plate. The plate’s side ratios of 0.4, 0.5, 2/3, 1, 1.5, 2 and 

2.5 were taken into account in the implementation of the 

programme. The first six frequency parameters were 

tabulated and compared to those available in the literature. 

The results were found to be very accurate and, at times, 

even more accurate than some of those found by past 

researchers.  

It was observed that the numerical values of the 

frequency parameters increased with the aspect ratio 

irrespective of the mode considered. In addition, the study 

showed that the more the number of polynomial coordinates 

functions in the shape function, the better the accuracy of 

the results. The convergence study of the fundamental 

frequency parameters corroborated the fact that a one-term 

approximation yields sufficient accuracy from an 

engineering perspective, when polynomial coordinate 

functions are used. The convergence was best for (clamped) 

square plates, even though acceptable percentages of 

convergence were obtained for the other side ratios 

considered.  
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