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Abstract  
In this paper, a polynomial and trigonometric shape function are developed for the three-dimensional (3-D) stability analysis of a 

thick rectangular plate. This study has evaluated the effect of aspect ratio of the critical buckling load of a plate that is clamped on the 

first edge, free at the third edge, with the second and fourth edges simply supported respectively (CSFS) using a variational method. 

An expression of potential energy of thick plate was formulated using 3-D elastic principles thereafter, a compatibility equation of 3-D 

plate was derived through energy equation transformation to get the relations between the rotations and deflection. The solution of 

compatibility equations yields the exact plates shape function which is derived in terms of trigonometric and polynomial displacement 

and rotations. Similarly, by minimizing the energy equation with respect to the deflection, the direct governing equation was 

formulated. The solution of governing equation yields the deflection coefficient of the plate. By minimizing the potential energy 

equation with respect to deflection coefficient after the action deflection and rotations equation were substituted into it, a more 

realistic formula for calculation of the critical buckling load is established. The proposed method unlike the refined plate theory 

(RPT), considered all the six stress elements in the analysis. The result showed that the critical buckling loads from the present study 

using polynomial are slightly higher than those obtained using trigonometric theories signifying the more exactness of the latter. The 

result of the present study using the established 3-D model for both functions is satisfactory and closer to exact solution compared to 

the two- dimensional (2-D) RPT. The overall average percentage differences between the two functions recorded are 6.4%. This 

shows that at about 94% both approaches are the same and can be applied with confidence in the stability analysis of any type of 

plate with the boundary condition. 

 

Keywords: Uniaxial buckling, CSFS rectangular plate, compressive load, variational method, stability analysis of thick plate, three-

dimensional (3-D) plate theory. 
 

 

1.0 INTRODUCTION 

A plate is a solid that consists of two parallel plane 

surfaces separated by a small dimension called thickness 

[1, 2]. Compared with the thickness, the planer surface 

dimensions are large. Based on shapes, plates can be 

rectangular, square, triangular circular, elliptical, circular 

with hole, or square with hole. They can also be isotropic, 

anisotropic, orthotropic, homogeneous, and heterogeneous, 

regarding the materials of construction. Based on weight, 

plates can be thin or thick [3, 4].  At the edges, plates have 

varying boundary conditions; for a rectangular plate, they 

are clamped support, simply supported and free edged. 

Plates are three dimensional structural elements  
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widely used in architectural structures and various 

engineering applications such as floor slabs, bridge decks, 

rigid pavements of highways and airport runways, ship 

decks, aircraft and spacecraft panels and retaining walls. 

Plates can exhibit flexural, dynamic, as well as buckling 

behaviors and the behavior of plates depends on the type 

and nature of load application [5, 6].  

In the design of engineering structures, stability is 

a factor of great importance that must be considered and it 

is especially true for structures with one or two dimensions 

that are small in relation to the other dimensions, such as 

plates. Instability of structures is commonly characterized 

with buckling [7]. A structure is said to buckle when it 

encounters large deformation and loses its ability to 

withstand the load at a critical load value. Buckling of 

plates can be analyzed using numeric, equilibrium or 

energy methods [8, 9]. With the increased use of thick 

plates in engineering projects, stability analysis of plate 

structures is required. Meanwhile, considering different 
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methods of analysis, unlike 2-D, more attention has not 

been channeled to typical 3-D plate analysis approach 

because of their rigorous mode of analysis as they 

considered all the stress element in the analysis. 

 

2.0 LITERATURE REVIEW 

The analysis of plates has attracted great research 

interest with many varying methods being developed and 

applied. Considering the insufficient ability of plates 

towards withstanding compressive forces in structures 

carrying in-plane compressive loads, the necessity of 

stability analysis is undeniable. 

For a rectangular thin plate with two simply 

supported edge, one clamped and free support edge 

(SSCF) and all edges simply supported plate (SSSS) 

subjected uniaxial uniform compressive loads, single finite 

Fourier sine integral transform method was used by Onyia 

et al. [10] to solve the problem of elastic stability. A thick 

plate as well as variational method was not considered by 

the authors. Also, the authors did not consider CSFS 

boundary condition. 

Onwuka et al. [11] used the Galerkin’s method to 

analyze buckling in an all-edge simply supported thin 

rectangular isotropic plates. Polynomial series was used to 

obtain the plate equation of deflection. Although the 

energy approach was used, the authors did not consider 

trigonometric functions for their buckling analysis, neither 

was a thick plate with CSFS boundary condition 

considered. 

Ibearugbulem et al. [12] carried out a study on the 

buckling analysis of axially compressed rectangular plate 

by using Taylor-Mclaurin’s series in its theoretical 

formulation, thereafter, Ritz approach was applied to 

determine the numerical field of unknown function of thin 

rectangular flat SSSS plate. They did not consider a thick 

plate for their buckling analysis and did not derive the 

expression from the governing equation rather, the shape 

function used was assumed, thereby making their result 

not a close-form solution and cannot be used to solve plate 

problems with CSFS boundary condition and that other 

heavy type of plates. 

Sayyad and Ghugal [13] studied the buckling load 

analysis in a thick isotropic plate which was subjected to 

biaxial and uniaxial in-plane forces, by applying shear 

exponential deformation theory. The simply supported 

thick isotropic square plates were considered in the 

detailed numerical studies. Although a thick plate, the 

authors did not consider a thick plate with CSFS boundary 

condition. Also, polynomial shape function was not 

regarded. Considering the ease in mathematical 

manipulation, applying the polynomial expression as the 

deflection function simplifies buckling analysis. 

Onyeka et al. [14] used the variation energy 

approach in a 3D buckling analysis of a one edge clamped 

and other edges simply supported (CSSS) rectangular 

isotropic plate under compressive uniaxial load. They 

developed a new trigonometric shear deformation plate 

theory that is capable of analyzing any category of the 

plate. Similarly, Onyeka et al. [15] applied the same 

approach in the buckling analysis of all-edge-clamped 

(CCCC) isotropic thick plate with a uniaxial compressive 

load. However, Onyeka et al. [14] did not apply 

polynomial displacement function. Both authors did not 

consider a buckling analysis of 3D rectangular plates with 

CSFS boundary condition. 

Applying a polynomial function on different thin 

rectangular isotropic free edge plates, inelastic buckling 

behavior was investigated by Eziefula [16]. Trigonometric 

shape function was not applied here. The stresses in the 

direction of thickness axis were not considered, therefore, 

can only predict buckling load of thin and moderately 

thick plates. 

In the rectangular flat plates, Ezeh et al. [17], used 

polynomial displacement functions for the buckling 

analysis of thick plate. They assumed a shape function 

which can only give an approximate solution, hence, 

cannot be reliable in the plate’s analysis as they might 

under-estimate the buckling load at an improved thickness 

of the plate. Moreso, Ezeh et al. [17] did not consider plate 

with CSFS support condition and the use of trigonometric 

shape function was not taken into account. 

There exists an aspect of distinctiveness of the 

present study over the previous works put together. This 

includes; the method and type of analysis, type of shape 

functions, and plates support boundary conditions [18, 19, 

20, 22]. Unlike the previous works that assumed the 

displacement function, the present work obtains the exact 

formulation from the compatibility equation to get a close 

form solution of the polynomial and trigonometric 

displacement functions. To bridge the gap in the reviewed 

literatures, the focus of this study is on the application of 

both polynomial and trigonometric shape function in 

analyzing the buckling behavior of a thick rectangular 

plate. This study will evaluate the effect of aspect ratio of 

the critical buckling load of a thick rectangular plate 

clamped on the first edge, free at the third edge, with the 

second and fourth edges simply supported respectively 

(CSFS) using a 3-D elastic plate theory. 

 

3.0 METHODOLOGY 

3.1 Potential Energy Equation Formulation 

The energy equation for an axially loaded 

rectangular thick plate is formulated by considering a thick 

plate assumption, with the x-z section and y-z section, 
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which are initially normal to the x-y plane before bending 

off the normal to the x-y plane after bending of the plate as 

shown in the section of plate presented in the Figure 1. 

 

 
Fig. 1: Rotation of x-z (or y-z) section after bending 

 

The non-dimensional total potential energy [] 
expression for an elastic three-dimensional plate theory of 

R and Q coordinates at the span-thickness aspect ratio (a/t) 

is in line with [14] and presented as: 

 

 = D∗
(1 − μ)𝑎𝑏

2a2(1 − 2μ)
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Given that 𝐷∗ is the Rigidity for 3-D thick plate, let 

 

𝐷∗ = 𝐷 
(1 − 𝜇)

(1 − 2𝜇)
 

 

Where 𝐷 is the Rigidity of the CPT or incomplete 3-D 

thick plate, let 

𝑁𝑥 ,, 𝑤, 𝜃𝑆𝑥 , and 𝜃𝑆𝑦  are the uniform applied uniaxial 

compression load of the plate, the poison ratio, deflection 

, shear deformation rotation along x axis and shear 

deformation rotation along y axis respectively. 

 

3.2 Compatibility Equation 

The true compatibility equations in x-z plane and 

y-z plane according to [15] is obtained by minimizing the 

energy equation with respect to rotation in x-z plane and 

rotation in y-z plane and equate its integrands to zero to 

get: 

 

(1 − μ)
𝜕2𝑠𝑥

𝜕𝑅2
 +

1
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Using the law of addition, Equations 2 and 3 will be 

simplified, then factorizing the outcome gives:  

 

𝜕𝑤

𝜕𝑅
[(1 − μ)

𝜕2

𝜕𝑅2
 +

1

𝛽2
.

𝜕2
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(1 − )

+
6(1 − 2)a2
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(1 +

1
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)] = 0            (4) 

 

 

1

𝛽
.
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𝜕𝑄
[

𝜕2

𝜕𝑅2
(1 − μ) +

(1 − μ)

𝛽2

𝜕2

𝜕𝑄2

+
6(1 − 2)a2

t2
. (1 +

1

𝑐
)] = 0          (5) 

 

After simplification using law of addition, one of the 

possible of Equation becomes: 

 

 

6(1 − 2)(1 + 𝑐)

t2
= −

c(1 − μ)

a2 (
𝜕2

𝜕𝑅2
+

1

𝛽2

𝜕2

𝜕𝑄2)    (6) 

 

 

3.3 General Governing Equation 

The minimization of energy equation with respect 

to deflection gives the general governing equation as 

presented in [21]: 
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D∗

2a2
∫∫[

6(1 − 2)(1 + c)

t2
(
𝜕2w

𝜕𝑅2
+

1

β2
.
𝜕2w

𝜕𝑄2)

1

0

1

0

+
(1 − μ)a2

𝑡4

𝜕2w

𝜕𝑆2
−

Nx

D∗
.
𝜕2w

𝜕𝑅2
] dR dQ

= 0                                                              (7) 

 

Substituting Equation 6 into Equation 7 and 

simplifying the outcome gives two governing differential 

equations of a 3-D rectangular plate subject to pure 

buckling as presented in Equation 8 and 9: 

 

𝜕4w1

𝜕𝑅4
+

2

β2
.

𝜕4w1

𝜕𝑅2𝜕𝑄2
+

1

β4
.
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𝜕𝑄4
−

Nx1a
4

gD∗
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𝜕𝑅2

= 0                                                                                             (8) 

 

(1 − μ)a4

𝑡4
.
𝜕2w𝑆

𝜕𝑆2
−

Nxsa
4

D∗
.
𝜕2w𝑆

𝜕𝑅2

= 0                                                                                              (9) 

 

Thus, the trigonometric and polynomial expression 

for deflection derived from Equation (8) according to 

Onyeka et al. [21] is presented in Equation (10) and (11) 

as: 

 

𝑤 = (𝑎0 +  𝑎1𝑅 + 𝑎2 cos𝑔1𝑅 + 𝑎3 sin𝑔1𝑅) × (𝑏0 +
  𝑏1𝑄 + 𝑏2 cos𝑔2𝑄 + 𝑏3 sin𝑔2𝑄)                         (10)  

 

w = ∆0 (𝑎0 +  𝑎1𝑅 + 𝑎2𝑅
2 + 𝑎3𝑅

3 + 𝑎4𝑅
4)
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2 + 𝑏3𝑄

3

+ 𝑏4𝑄
4)                                                     (11) 

 

Equation (10) and (11) can be re-written in line with the 

work of Onyeka et al. [20] as: 

 

𝑤 = 𝐴1ℎ                                                                                 (12) 

 

Where: 

 

𝐴1 = ∆0

[
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.

[
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                                                              (13) 

 

ℎ = (1  𝑅 cos 𝑔1𝑅 sin𝑔1𝑅)
× (1 𝑄 cos𝑔2𝑄 sin 𝑔2𝑄)                  (14) 

 

ℎ = [1  𝑅 𝑅2 𝑅3  𝑅4]. [1  𝑄 𝑄2 𝑄3 𝑄4]                            (15) 
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𝐴2

𝑎
.
𝜕ℎ

𝜕𝑅
                                                                         (16) 
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𝑎β
.
𝜕ℎ
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                                                                        (17) 

 

Given that: ℎ is the shape function of the plate, 𝐴1 

is the coefficient of deflection  𝐴2 and 𝐴3 are the 

coefficients of shear deformation in x axis and y axis 

respectively. 

 

3.4 Direct Governing Equation 

By substituting Equations (12), (16) and (17) into 

Equation (1), the Energy equation becomes:  

 

 =
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Differentiating Equation (18) with respect to shear 

deformation coefficient (𝐴2 and 𝐴3), and solve 

simultaneously gives: 

 

𝐴2 = (
𝑘12𝑘23 − 𝑘13𝑘22

𝑘12𝑘12 − 𝑘11𝑘22
) . 𝐴1                                           (19) 
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𝐴3 = (
𝑘12𝑘13 − 𝑘11𝑘23

𝑘12𝑘12 − 𝑘11𝑘22
) . 𝐴1                                        (20) 

 

Let: 
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Where: 
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Differentiating Equation (18) with respect to 

deflection coefficient (A1) and simplifying the outcome, an 

expression for the critical buckling load (Nxcr) is 

established as: 

 

Nxa
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+
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Similarly: 
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2a2
(
a

𝑡
)
2
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𝑘𝑅
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Where; 

 

𝐸 is the modulus of elasticity and β represents the ratio of 

length and breadth of the plate. 

 

3.5 Numerical Analysis 

A problem of a rectangular thick plate that is 

clamped at first edge, simply supported at second and 

fourth edge and free of support at the third edge (CSFS) 

under uniaxial compressive load is presented. The 

trigonometric and polynomial displacement function as 

presented in the Equation (10) and (11) was applied to 

determine the value of the critical buckling load in the 

plate at various aspect ratios. 

 

 
Figure 2: CSFS Rectangular Plate subjected to uniaxial 

compressive load 

 

The boundary conditions of the plate in figure 3 are as 

follows: 

 

At  

𝑅 =  𝑄 =  0; deflection (𝑤)  = 0                                (31) 
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At 

  𝑅 = 0, bending moment (
𝑑2𝑤

𝑑𝑅2) = 0;  𝑄 =

 0, slope (
𝑑𝑤

𝑑𝑄
) = 0                                                              (32) 

 

At  𝑅 =  1, deflection (𝑤) = 0;  𝑄 =

1, bending moment (
𝑑2𝑤

𝑑𝑄2) = 0                                         (33) 

 

At  𝑅 = 1, bending moment ( 
𝑑2𝑤

𝑑𝑅2) = 0;   Q =

 1, shear force (
𝑑3𝑤

𝑑𝑄3)  =  0                                                (34) 

 

At Q = 1, slope (
𝑑𝑤

𝑑𝑄
) =

2

3𝑏5
                                                                             (35) 

 

Substituting Equation (31) to (35) into the derivatives of w 

and solving gave the characteristic equation as: 

 

𝑆𝑖𝑛 𝑔1 = 0; 𝑏2𝐶𝑜𝑠 𝑔1 = 0                                                (36) 

The value of 𝑔1 that satisfies Equation (36) is: 

 

𝑔1 = 𝑚𝜋; 𝑔1 =
𝑛𝜋

2
 [𝑤ℎ𝑒𝑟𝑒 𝑚 = 1, 2, 3… ]                  (37) 

 

Substituting Equation (37) into the derivatives of w and 

satisfying the boundary conditions of Equation (31) to (35) 

gives the following constants: 

 

𝑎1 = 𝑎1 = 𝑎2 = 0; 𝑏1 = −𝑔1 𝑏3 = 0; 𝑏0 = −𝑏2        (38) 

 

Substituting the constants of Equation (36) and (38) into 

Equation (10) and simplify the outcome gives: 

 

𝑤  = 𝑎3 × 𝑏2(𝑆𝑖𝑛 𝜋𝑅). (𝐶𝑜𝑠
𝑛𝜋𝑄

2
− 1)                        (39) 

 

Let the amplitude, 

 

𝐴1 = 𝑎3 × 𝑏2                                                                         (40) 

 

And; 

 

ℎ = (𝑆𝑖𝑛 𝜋𝑅). (𝐶𝑜𝑠
𝜋𝑄

2
− 1)                                           (41) 

 

Thus, the trigonometric deflection functions after 

satisfying the boundary conditions is: 

 

𝑤 = 𝐴1(𝑆𝑖𝑛 𝜋𝑅). (𝐶𝑜𝑠
𝜋𝑄

2
− 1)                                  (42) 

 

 

Similarly, substituting Equations (31 to 34) into Equation 

(11) and solving gives the following constants: 

 

𝑎0 = 0; 𝑎1 = 0; 𝑎2 = 0; 𝑎3 = −2𝑎4 𝑎𝑛𝑑                 (43) 

 

𝑏0 = 0; 𝑏1 = 0; 𝑏2 = 2.8𝑏5;  𝑏3 = −5.2𝑏5; 𝑏4

= 3.8𝑏5                                                                                  (44) 

 

Substituting the constants of Equation (43) and (44) into 

Equation (11) gives; 

 

𝑤 = (𝑎4𝑅 − 2𝑎4𝑅
3 + 𝑎4𝑅

4)
× (2.8𝑏5𝑄

2 − 5.2𝑏5𝑄
3 + 3.8𝑏5𝑄

4

− 𝑏5𝑄
5)                                                   (45) 

 

 

Simplifying Equation (45) which satisfying the boundary 

conditions of Equation (31 to 34) gives: 

 

𝑤 = 𝑎4(𝑅 − 2𝑅3 + 𝑅4)
× 𝑏5(2.8𝑄2 − 5.2𝑄3 + 3.8𝑄4

− 𝑄5)                                                       (46) 

 

Let the amplitude,  

 

𝐴1 = 𝑎4 × 𝑏5                                                                        (47) 

 

And; 

 

ℎ = (𝑅 − 2𝑅3 + 𝑅4)
× (2.8𝑄2 − 5.2𝑄3 + 3.8𝑄4 − 𝑄5)    (48) 

 

Thus, the polynomial deflection functions after satisfying 

the boundary conditions is: 

 

𝑤 = (𝑅 − 2𝑅3 + 𝑅4)
× (2.8𝑄2 − 5.2𝑄3 + 3.8𝑄4

− 𝑄5). 𝐴1                                                (49) 

 

 

As such, a numerical values of the stiffness for a CSFS 

plate were obtained using Equation (24) to (28) by 

applying the two shape function (trigonometric and 

polynomial) as obtained in Equation (41) and Equation 

(48) and their results are presented in Table 1. 

 

 

Table 1: The polynomial and trigonometric stiffness 

coefficients of deflection function of the CSFS plate  
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Displacem

ent Shape 

Function 

𝒌𝑹𝑹 𝒌𝑹𝑸 𝒌𝑸𝑸 𝒌𝑹 𝒌𝑸 

Polynomial 0.3284

8 

0.091

90 

0.128

67 

0.033

24 

0.009

31 

Trigonomet

ry 

11.044

27 

6.088

07 

1.522

01 

1.119

02 

1.041

91 

 

4.0 RESULTS AND DISCUSSIONS 

In this section, a numerical value of the buckling 

load expression obtained in Equation (29) and (30) are 

presented. The non-dimensional value of the critical 

buckling load for an isotropic rectangular plate that is 

clamped at first edge, simply supported at the second and 

fourth edge and freely support at the third edge (CSFS) 

under uniaxial compressive load at varying aspect ratio is 

presented in Table 2, 3, 4 and 5. This result was obtained 

by expressing the shape function of the plate in the form of 

trigonometry and polynomial to obtain the critical 

buckling load of the plate. A numerical and graphical 

comparison was made between the two approaches 

(trigonometric and polynomial functions) to study a thick 

plate’s stability at varying thickness and aspect ratio (see 

table 6 and figure 3 to 11). 

The values obtained in Table 2, 3, 4 and 5, shows 

that as the values of critical buckling load increase, the 

span- thickness ratio increases. This reveals that as the in-

plane load on the plate increase and approaches the critical 

buckling, the failure in a plate structure is a bound to 

occur; this means that a decrease in the thickness of the 

plate, increases the chance of failure in a plate structure. 

Hence, failure tendency in the plate structure can be 

mitigated by increasing its thickness. 

It is also observed in the tables that as the length to 

breadth ratio of the plate increases, the value of critical 

buckling load decreases while as critical buckling load 

increases as the length to breadth ratio increases. This 

implies that an increase in plate width increases the chance 

of failure in a plate structure. It can be deduced that as the 

in-plane load which will cause the plate to fail by 

compression increases from zero to critical buckling load, 

the buckling of the plate exceeds specified elastic limit 

thereby causing failure in the plate structure. This meant 

that, the load that causes the plate to deform also causes 

the plate material to buckle simultaneously. 

The comparison shows that the present theory 

using trigonometric functions predicts a slightly higher 

value of the critical buckling load than polynomial 

function. This is quite expected because the trigonometric 

function gives higher value of stiffness coefficient than 

polynomial, and therefore is considered safer to use to 

achieve an exact three-dimensional plate analysis than 

polynomial displacement functions however, both provides 

accurate or reliable solution in the analysis of a rectangular 

plate. 
 

The percentage difference of critical buckling load 

between the present study using polynomial, and that of 

trigonometric function for an isotropic CSFS thick 

rectangular plate subjected to a uniaxial compression at a 

varying aspect ratio is presented in table 6 and figures 3 to 

11. It was discovered that the values of percentage error 

increase as the span to thickness ratio of the plate 

increases, the percentage differences between the two 

approaches reduce as the span to thickness ratio reduces. 

This means that as the plate gets thinner, the two methods 

differ more and becomes close as the plate gets thick. This 

shows the high level of convergence between the two 

approaches. It also implies a high level of accuracy and 

reliability in the thick plate analysis. Furthermore, the 

degree of the error in percentage increases as the length to 

breadth ratio decreases. This means that as the length of 

the plate widens, the two approaches (trigonometry and 

polynomial) become closer. 

The lowest average percentage difference is 

1.9144 which occurs at aspect ratio of five (5), and the 

highest average percentage difference is 13.3137 which 

occur at aspect ratio of one (1). This might indicate that in 

the CSFS plate the polynomial and trigonometric function 

converge less for the exact solution than other boundary 

condition (see [9] and [10]). Furthermore, the percentage 

difference decreases as the aspect ratio of the plate 

increases and decreases as the span-thickness ratio 

increases. This means that the thicker the plate the more 

the two approaches converge. It also indicates that this 

method is very reliable for rectangular plate analysis of 

any category (thin, moderately thick and thick plate). 

In summary, the overall average percentage 

differences between the two functions recorded is 6.4%. 

These differences being less than 7% are quite acceptable 

in statistical analysis, as it will not put the structure into 

danger [3]. This means that at about 94% confidence both 

approaches are the same and can be applied with assurance 

for analysis of plate of any thickness. Thus, the present 

model has some level safety and can be used with 

confidence for the stability analysis of the CSFS boundary 

condition. 
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Table 2: Non-dimensional critical buckling load  
Nxa2

𝐸𝑡3 
 on the CSFS rectangular plate using polynomial function 

Nxcr =
Nxa

2

𝜋2𝐷 
 

∝=
𝑎

𝑡
 𝛽 =  1.0 𝛽 =  1.5 𝛽 =  2.0 𝛽 = 2.5 𝛽 = 3.0 𝛽 =  3.5 𝛽 =  4.0 𝛽 = 4.5 𝛽 = 5.0 

4 1.7532 1.2606 1.1223 1.0653 1.0363 1.0195 1.0089 1.0017 0.9967 

5 1.8899 1.3356 1.1838 1.1218 1.0904 1.0722 1.0608 1.0531 1.0476 

10 2.1114 1.4508 1.2771 1.2072 1.1720 1.1517 1.1389 1.1303 1.1243 

15 2.1586 1.4743 1.2961 1.2244 1.1884 1.1677 1.1547 1.1459 1.1397 

20 2.1757 1.4828 1.3028 1.2306 1.1943 1.1734 1.1603 1.1514 1.1452 

30 2.1880 1.4888 1.3077 1.2350 1.1985 1.1775 1.1643 1.1554 1.1492 

40 2.1924 1.4910 1.3094 1.2366 1.2000 1.1790 1.1657 1.1568 1.1506 

50 2.1944 1.4920 1.3102 1.2373 1.2007 1.1797 1.1664 1.1575 1.1512 

60 2.1955 1.4925 1.3106 1.2377 1.2011 1.1800 1.1668 1.1578 1.1516 

70 2.1962 1.4928 1.3109 1.2379 1.2013 1.1802 1.1670 1.1581 1.1518 

80 2.1966 1.4931 1.3111 1.2381 1.2015 1.1804 1.1671 1.1582 1.1519 

90 2.1969 1.4932 1.3112 1.2382 1.2016 1.1805 1.1672 1.1583 1.152 

100 2.1971 1.4933 1.3113 1.2383 1.2016 1.1805 1.1673 1.1584 1.1521 

1000 2.1980 1.4937 1.3116 1.2386 1.2019 1.1808 1.1676 1.1587 1.1524 

1500 2.1980 1.4937 1.3116 1.2386 1.2019 1.1808 1.1676 1.1587 1.1524 

 

 

 

 

Table 3: Non-dimensional Critical Buckling Load  
Nxa2

𝐸𝑡3 
 on the CSFS Rectangular Plate Using Polynomial Function  

Nxcr =
Nxa

2

𝐸𝑡3 
 

∝=
𝑎

𝑡
 𝛽 =  1.0 𝛽 =  1.5 𝛽 =  2.0 𝛽 = 2.5 𝛽 = 3.0 𝛽 =  3.5 𝛽 =  4.0 𝛽 = 4.5 𝛽 = 5.0 

4 1.5381 1.106 0.9846 0.9346 0.9091 0.8944 0.8851 0.8788 0.8744 

5 1.6580 1.1717 1.0386 0.9842 0.9566 0.9407 0.9306 0.9239 0.9191 

10 1.8523 1.2727 1.1204 1.0591 1.0282 1.0104 0.9992 0.9916 0.9863 

15 1.8937 1.2934 1.1370 1.0742 1.0426 1.0244 1.0130 1.0053 0.9999 

20 1.9087 1.3008 1.1430 1.0796 1.0478 1.0294 1.0179 1.0102 1.0047 

30 1.9195 1.3062 1.1472 1.0835 1.0515 1.0330 1.0215 1.0137 1.0082 

 40 1.9234 1.3080 1.1487 1.0849 1.0528 1.0343 1.0227 1.0149 1.0094 

50 1.9251 1.3089 1.1494 1.0855 1.0534 1.0349 1.0233 1.0155 1.0100 

60 1.9261 1.3094 1.1498 1.0858 1.0537 1.0352 1.0236 1.0158 1.0103 

70 1.9267 1.3097 1.1500 1.0860 1.0539 1.0354 1.0238 1.0160 1.0105 

80 1.9271 1.3099 1.1502 1.0862 1.054 1.0355 1.0239 1.0161 1.0106 

90 1.9273 1.3100 1.1503 1.0863 1.0541 1.0356 1.0240 1.0162 1.0107 

100 1.9275 1.3101 1.1504 1.0863 1.0542 1.0357 1.0241 1.0162 1.0107 

1000 1.9283 1.3105 1.1507 1.0866 1.0545 1.0360 1.0243 1.0165 1.0110 

1500 1.9283 1.3105 1.1507 1.0866 1.0545 1.0360 1.0243 1.0165 1.0110 
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Table 4: Non-dimensional critical buckling load  
Nxa2

π2D
 on the CSFS rectangular plate using trigonometric function 

Nxcr =
Nxa

2

𝜋2𝐷 
 

∝=
𝑎

𝑡
 𝛽 =  1.0 𝛽 =  1.5 𝛽 =  2.0 𝛽 = 2.5 𝛽 = 3.0 𝛽 =  3.5 𝛽 =  4.0 𝛽 = 4.5 𝛽 = 5.0 

4 2.1003 1.4521 1.2387 1.1423 1.0906 1.0596 1.0396 1.0259 1.0161 

5 2.2340 1.5345 1.3057 1.2027 1.1474 1.1144 1.0931 1.0785 1.0681 

10 2.4419 1.6602 1.4073 1.2939 1.2332 1.1970 1.1736 1.1576 1.1462 

15 2.4849 1.6858 1.4279 1.3123 1.2505 1.2136 1.1898 1.1736 1.1620 

20 2.5003 1.6950 1.4352 1.3189 1.2567 1.2196 1.1956 1.1792 1.1676 

30 2.5114 1.7016 1.4405 1.3236 1.2611 1.2238 1.1998 1.1833 1.1716 

40 2.5153 1.7039 1.4424 1.3253 1.2627 1.2253 1.2012 1.1848 1.1730 

50 2.5171 1.7049 1.4432 1.3260 1.2634 1.2260 1.2019 1.1854 1.1737 

60 2.5181 1.7055 1.4437 1.3265 1.2638 1.2264 1.2023 1.1858 1.1740 

70 2.5187 1.7059 1.4440 1.3267 1.2641 1.2266 1.2025 1.1860 1.1743 

80 2.5191 1.7061 1.4442 1.3269 1.2642 1.2268 1.2027 1.1862 1.1744 

90 2.5193 1.7063 1.4443 1.3270 1.2643 1.2269 1.2028 1.1863 1.1745 

100 2.5195 1.7064 1.4444 1.3271 1.2644 1.2270 1.2028 1.1863 1.1746 

1000 2.5203 1.7069 1.4448 1.3274 1.2647 1.2273 1.2031 1.1866 1.1749 

1500 2.5203 1.7069 1.4448 1.3274 1.2647 1.2273 1.2031 1.1866 1.1749 

 

 

 

Table 5: Non-dimensional critical buckling load  
Nxa2

𝐸𝑡3 
 on the CSFS rectangular plate using trigonometric function 

Nxcr =
Nxa

2

𝐸𝑡3 
 

∝=
𝑎

𝑡
 𝛽 =  1.0 𝛽 =  1.5 𝛽 =  2.0 𝛽 = 2.5 𝛽 = 3.0 𝛽 =  3.5 𝛽 =  4.0 𝛽 = 4.5 𝛽 = 5.0 

4 1.5381 1.1060 0.9846 0.9346 0.9091 0.8944 0.8851 0.8788 0.8744 

5 1.6580 1.1717 1.0386 0.9842 0.9566 0.9407 0.9306 0.9239 0.9191 

10 1.8523 1.2727 1.1204 1.0591 1.0282 1.0104 0.9992 0.9916 0.9863 

15 1.8937 1.2934 1.1370 1.0742 1.0426 1.0244 1.0130 1.0053 0.9999 

20 1.9087 1.3008 1.1430 1.0796 1.0478 1.0294 1.0179 1.0102 1.0047 

30 1.9195 1.3062 1.1472 1.0835 1.0515 1.0330 1.0215 1.0137 1.0082 

 40 1.9234 1.3080 1.1487 1.0849 1.0528 1.0343 1.0227 1.0149 1.0094 

50 1.9251 1.3089 1.1494 1.0855 1.0534 1.0349 1.0233 1.0155 1.0100 

60 1.9261 1.3094 1.1498 1.0858 1.0537 1.0352 1.0236 1.0158 1.0103 

70 1.9267 1.3097 1.1500 1.0860 1.0539 1.0354 1.0238 1.0160 1.0105 

80 1.9271 1.3099 1.1502 1.0862 1.0540 1.0355 1.0239 1.0161 1.0106 

90 1.9273 1.3100 1.1503 1.0863 1.0541 1.0356 1.0240 1.0162 1.0107 

100 1.9275 1.3101 1.1504 1.0863 1.0542 1.0357 1.0241 1.0162 1.0107 

1000 1.9283 1.3105 1.1507 1.0866 1.0545 1.0360 1.0243 1.0165 1.0110 

1500 1.9283 1.3105 1.1507 1.0866 1.0545 1.0360 1.0243 1.0165 1.0110 
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Table 6: Percentage difference of Buckling Load on the CSFS Rectangular Plate between Polynomial and trigonometry 

Approach 

Average Percentage Difference % 

∝=
𝑎

𝑡
 𝛽 =  1.0 𝛽 =  1.5 𝛽 =  2.0 𝛽 = 2.5 𝛽 = 3.0 𝛽 =  3.5 𝛽 =  4.0 𝛽 = 4.5 𝛽 = 5.0 

4 16.5250 13.186 9.3950 6.7425 4.9792 3.7870 2.95589 2.3583 1.91645 

5 15.4049 12.961 9.3347 6.7238 4.9731 3.7848 2.95475 2.3573 1.91513 

10 13.5367 12.615 9.2475 6.6992 4.9664 3.7834 2.95466 2.3570 1.91419 

15 13.1304 12.544 9.2304 6.6946 4.9654 3.7835 2.95485 2.3571 1.91414 

20 12.9830 12.519 9.2243 6.6931 4.9651 3.7835 2.95494 2.3572 1.91413 

30 12.8759 12.501 9.2199 6.6919 4.9649 3.7835 2.95500 2.3572 1.91413 

40 12.8381 12.494 9.2184 6.6915 4.9648 3.7835 2.95503 2.3572 1.91413 

50 12.8205 12.491 9.2177 6.6914 4.9648 3.7835 2.95504 2.3572 1.91413 

60 12.8109 12.490 9.2173 6.6913 4.9647 3.7835 2.95504 2.3572 1.91413 

70 12.8052 12.489 9.2171 6.6912 4.9647 3.7835 2.95505 2.3572 1.91413 

80 12.8014 12.488 9.2169 6.6912 4.9647 3.7835 2.95505 2.3572 1.91413 

90 12.7988 12.488 9.2168 6.6911 4.9647 3.7835 2.95505 2.3572 1.91413 

100 12.7970 12.487 9.2168 6.6911 4.9647 3.7835 2.95505 2.3572 1.91413 

1000 12.7892 12.486 9.2164 6.6910 4.9647 3.7835 2.95506 2.3572 1.91413 

1500 12.7892 12.486 9.2164 6.6910 4.9647 3.7835 2.95506 2.3572 1.91413 

Average % 

difference 13.3137 12.582 9.2404 6.6977 4.9664 3.7838 2.95503 2.3573 1.9144 

Total 

Average % 

difference 

 

6.4234 

 

 

 

 

 

 
Figure 3: Critical buckling load (Nxcr) versus aspect ratio 

(a/t) of a square rectangular plate 

 

 
Figure 4: Critical buckling load (Nxcr) versus aspect ratio 

(a/t) of a rectangular plate with length to width ratio of 1.5. 
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Figure 5: Critical buckling load (Nxcr) versus aspect ratio (a/t) 

of a rectangular plate with length to width ratio of 2.0 

 

 
 

Figure 6: Critical buckling load (Nxcr) versus aspect ratio (a/t) 

of a rectangular plate with length to width ratio of 2.5 

 

 
Figure 7: Critical buckling load (Nxcr) versus aspect ratio (a/t) 

of a rectangular plate with length to width ratio of 3.0 

 

 
Figure 8: Graph of Critical buckling load (Nxcr) versus aspect 

ratio (a/t) of a rectangular plate with length to width ratio of 3.5 

 

 
 

Figure 9: Critical buckling load (Nxcr) versus aspect ratio (a/t) 

of a rectangular plate with length to width ratio of 4.0 

 

 
Figure 10: Critical buckling load (Nxcr) versus aspect ratio (a/t) 

of a rectangular plate with length to width ratio of 4.5 
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Figure 11: Critical buckling load (Nxcr) versus aspect ratio (a/t) 

of a rectangular plate with length to width ratio of 5.0 

 

5.0 CONCLUSION AND RECOMMENDATION 

From the result of this study as recorded in the 

percentage difference analysis, it can be concluded that the 

2-D refined plate theory (RPT) is only an approximate 

relation for buckling analysis of thick plate [22]. More, so, 

the trigonometric displacement function developed to give 

a close form solution, thereby considered more accurate 

and safer for complete exact three-dimensional thick plate 

analysis than the polynomial. Its use in the analysis of 

thick plates will yield almost an exact result. On the other 

hand, the polynomial displacement function which predicts 

a slightly higher value of average percentage difference 

gives a close form solution whose exact value is tends to 

infinity. Thus, proof that the 3-D plate theory provides a 

reliable solution in the stability analysis of plates and can 

be recommended for analysis of any type of rectangular 

plate under support condition and load configuration. 
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