

Nigerian Journal of Technology (NIJOTECH) Vol. 41, No. 2, March, 2022, pp.339-358 www.nijotech.com

Print ISSN: 0331-8443 Electronic ISSN: 2467-8821 http://dx.doi.org/10.4314/njt.v41i2.16

Analysis of Akangba Transmission Substation Protection System

P. O. Oluseyi^{1,*}, O. O. Tinuoye², T. O. Akinbulire³, C. O.A. Awosope⁴, O. M. Babatunde⁵

1, 2, 3, 4, 5 Department of Electrical & Electronics Engineering, University Of Lagos, Lagos State, NIGERIA

Abstract

The challenges of the Nigeria power system have deprived the yearning electricity consumer access to stable power supply. Apart from the incessant load shedding due to inadequate power generation capacities, poor power system protection design, lack of constant protection system review after several changes to the power network is one of the contributing factors for unstable power system and unplanned outages. The network engineers must devise method of reviewing the protection settings as changes are made to power system components. This motivates the adoption of power system symmetrical fault analysis model presented herein. The model was applied to Akangba Transmission substation using the network planning software (NEPLAN software). The results show the fault current flowing through every part of the network. The effect of network expansion, switching Scenarios /Component changes on the fault current and protection coordination and relay setting. The method is interesting and can be used as a template for reviewing protection scheme when changes are made on the power network. This will ensure better power protection management, enhance stable power supply and reduce damage to expensive power components.

Keywords: Protection system review, unplanned outage, Changes made on power system component, symmetrical fault analysis, Akangba Transmission substation, Neplan software.

1.0 INTRODUCTION

The power system has evolved over time. Generation plants, transmission facilities, distribution lines, and customer loads are all connected through complex electrical networks. Due to this complexity, adequate protection has become paramount to ensure security and quality of power supply. The primary function of any power system protection is to prevent or limit damage to power system components. Whether the fault or abnormal condition exposes the equipment to excessive voltages or excessive currents, shorter fault times will limit the amount of stress or damage that occurs [1].

Power systems are not static networks. Transmission lines and generators are continuously being put into or taken out of service. Each change in the network potentially affects the operations of protective relays. Protection engineers must decide how to alter the relay settings to compensate for a change in the power network [2].

Oluseyi), tobbyabbey@gmail.com (O. O. Tinuoye), takinbulire@unilag.edu.ng (T. O. Akinbulire), coaawosope@yahoo.com (C. O. A. Awosope), mobabatunde@unilag.edu.ng (O. M. Babatunde) The demand for power has increased rapidly with advancement in technology. This has also brought about urgent need for expansion of power network and replacement of existing power system components. Implementation of those changes must be such that it does not upset the balance of power supply [3]. The aim of this paper is to investigate the effect of this constant changes and switching configuration on the protection settings of a power network. The first step to achieving the aim was to create a simulation platform which allows the Akangba power network to be analyzed on power analysis software.

This is to ensure planned changes are simulated to determine the fault current and required relay settings for the changes made on the network. The paper is also meant to be used to encourage the aggregation of the Nigeria power network centrally with a power analysis software to monitor and control changes on the entire network. This will ensure efficient network planning and prevention of damage caused by improper relay setting due to various power component modifications across the network. Other relevant research was also considered. Author [4] used mathematical formation of Admittance matrices and computational framework of short circuit analysis program (SCAP) to assess the composite effects of balanced and unbalanced faults on the overall reliability of electric power system using a 6-bus power system. The result is

^{*}Corresponding author (**Tel:** +234 (0) 8034106278) **Email addresses:** *poluseyi@unilag.edu.ng* (P. O.

outstanding but has limitation when extending it to complex network due to the triangular admittance matrices formation and factorization.

[5] adopted Electrical Transient and Analysis program (ETAP) to evaluate the transient stability limits of Ikeja west Sub-network with consideration for transmission line faults and result showed the power station that could cause serious loss of synchronism during fault conditions based on the present load.

Author [6] used his research to highlight ways of solving the planning issues associated with electric power distribution networks that is important for designers and investors to help optimize network cost plan. The Mixed binary linear programming (MBLIP) modelling was used to achieve excellent computation and robust solution.

Author [7] assessed the effect of introducing additional power source (i.e., Distributed generator) on the protection scheme of 33kv radial network. It highlighted how most protective device coordination fails due to changes in power flow, direction, and the magnitude of fault current contribution from the additional generators on the network. The paper used Simulink modelling and programmable FCL to make the protection schemes more extensible to allow future addition of DGs without modifications to existing scheme.

Author [8] presented the state of specific load centers connected on the 330kVA transmission network under fault using Etap software for analysis.

In this paper, the Akangba Transmission substation protection system was analyzed and investigated to verify the effect of the newly acquired, installed and yet to be commissioned 300MVA transformer on the protection scheme. This was tested by opening and closing the 300MVA transformer breaker and simulating fault for each scenario. This was to confirm the level of changes in the fault current when expansion, modification is made to the network. The Akangba Transmission Substation was considered because it's a hub for 132kV lines (Isolo, Itire, Ijora, Ojo) and 33kV lines (Iganmu, Amuwo, Sanya, Idiaraba, Adelabu). The entire Akangba transmission substation was modeled and simulated on the NEPLAN software. The NEPLAN is a real time planning, modeling and analysis tool with special features to perform load flow, short circuit, transient, reliability in on-load and off-load conditions. At the end of this study, fault current flowing through every part of the network was determined, thus supplying the relevant information on the protection scheme and the significant effect of the changes that the protection engineers need to ensure reliable power supply and reduce damage to expensive power components.

There are two types of faults which can occur on any transmission line: balanced fault and unbalanced fault.

They are also known as symmetrical and asymmetrical faults respectively. Most of the faults that occur on power systems are the unbalanced faults. In addition, faults can be categorized as the shunt faults, series faults and simultaneous faults. In the analysis of power system under fault conditions, it is necessary to make a distinction between the types of fault to ensure the best results possible in the analysis. However, for this paper, only shunt faults are analyzed.

2.0 MATERIALS AND METHODS

2.1 Mathematical Techniques

A general representation of a balanced three-phase fault is shown in Figure 1 where F is the fault point with impedances Z_{f} and Z_{g} . Figure 2 shows the sequence networks interconnection diagram.

Figure 1: Three-phase fault general representation

Figure 2: Three-phase fault interconnection of sequence networks

As seen from Figure 2, the positive sequence network has internal voltage source. Therefore, the corresponding currents for each of the sequences can be expressed as

$$I_{a0}=0 \tag{1}$$

$$I_{a2}=0$$
 (2)

$$I_{a1=} \frac{1.0 < 0^{\circ}}{z_1 + z_f}$$
(3)

If the fault impedance Z_{f} is zero, then

$$I_{a1=} \frac{1.0 < 0^{\circ}}{z_1}$$
(4)

Since

$$\begin{bmatrix} I_{af} \\ I_{bf} \\ I_{cf} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} I_{a0} \\ I_{a1} \\ I_{a2} \end{bmatrix}$$
(5)

Substituting equations 1 and 2 into equation 5, gives

$$\begin{bmatrix} I_{af} \\ I_{bf} \\ I_{cf} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} 0 \\ I_{a1} \\ 0 \end{bmatrix}$$
(6)

From which,

$$I_{af=I_{a1}=} \frac{1.0 < 0^{\circ}}{z_{1} + z_{f}}$$
(7)

$$I_{bf=a^2}I_{a1=} \frac{1.0<240^{\circ}}{Z_1+Z_f}$$
(8)

$$I_{cf=} a I_{a1=} \frac{1.0 < 120^{\circ}}{Z_1 + Z_f}$$
(9)

Since the sequence networks are short-circuited over their own fault impedance, then

$$V_{a0} = 0$$
 (10)

$$V_{a1} = Z_f I_{a1} \tag{11}$$

$$V_{a2} = 0 \tag{12}$$

$$\begin{bmatrix} V_{af} \\ V_{bf} \\ V_{cf} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} V_{a0} \\ V_{a1} \\ V_{a2} \end{bmatrix}$$
(13)

Therefore, substituting equations 10, 11 and 12 into

equation 13 gives

$$\begin{bmatrix} \boldsymbol{V}_{af} \\ \boldsymbol{V}_{bf} \\ \boldsymbol{V}_{cf} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{V}_{a1} \\ \boldsymbol{0} \end{bmatrix}$$
(14)

Thus,

$$V_{af=}V_{a1=}Z_fI_{a1} \tag{15}$$

$$V_{bf=} a^2 I_{a1=} Z_f I_{a1} \angle 240^{\circ} \tag{16}$$

$$V_{cf} = aI_{a1} = Z_f I_{a1} \angle 120^\circ$$
 (17)

Hence, the line-to-line voltages become

$$V_{ab} = V_{af} V_{bf} = V_{a1}(1 a^2) = \sqrt{3}Z_f I_{a1} \angle 30^\circ$$
(18)

$$V_{bc} = V_{bf} V_{cf} = V_{a1} (a^2 - a) = \sqrt{3} Z_f I_{a1} \angle -90^\circ$$
(19)

$$V_{ca} = V_{cf} V_{af} = V_{a1}(a - 1) = \sqrt{3}Z_f I_{a1} \angle 150^{\circ}$$
(20)

In the event of having $Z_f = 0$, then $I_{af=} \frac{1.0 \angle 0^{\circ}}{Z_1}$

$$I_{bf=} \frac{1.0 \angle 240^{\circ}}{Z_1}$$
(22)

$$I_{cf=} \frac{1.0 \angle 120^{\circ}}{z_1} \tag{23}$$

The phase voltages become

$$V_{af=0}$$
 (24)

$$V_{bf=0}$$
 (25)

$$V_{cf=0}$$
 (26)

And the line voltages become

$$V_{a0} = 0$$
 (27)

$$V_{a1} = 0$$
 (28)

$$V_{a2} = 0$$
 (29)

2.2 Material Collection and Preparation of Samples

Akangba Transmission station located at Adelabu Street in Surulere Lagos is strategically located to

(21)

interconnect power at 132kV and 33kV level to area and regions such as Amuwo, Sanya, Iganmu, Ijora, Itire, Ikeja West etc. It takes 330kV supply via Ikeja west, steps it down to 132kV via the two 150MVA, four 90MVA and the newly installed 300MVA transformers. The 132kV common bus also has 60MVA transformers that step down to 33kV.

The Akangba power network has three substation 330kV, 132kV and 33kV which are interconnected but managed by different personnel at three different substations in the same premises. The whole network has been considered as an entity in this analysis with data obtained for the different substations. The data are as listed in the appedices. For instance Appendix A gives information on line impedances, Appendix B displayed the load profile while Appendix C gives the transformer asset inventory. In the case of Appendix D it presents data of the Grounding transformers installed in the system. While Appedix E gives parameters of the installed transformers. Appendix E, Appendix F and Appendix H give information of protection schemes (I.e. relay, 330kV, 132kV breakers as well asd the 33kV breakers. The 132kV and 33kV lines connected to the Akangba Transmission Substation are named accordingly as:

- I. Itire Line 1(132kV)
- II. Itire Line 2 (132kV)
- III. Ojo Line 1 (132kV)

- IV. Ojo Line 2 (132kV) V. Ijora Line 1 (132kV) VI. Ijora Line 2 (132kV) VII. Isolo Line 1 (132kV) VIII. Isolo Line 2 (132kV) IX. Sanya Line (33kV) X. Amuwo Line (33kV) XI. Igamu Line (33kV) Idiaraba Line (33kV) XII.
- XIII. Adelabu Line (33kV)

2.3 Method of Analysis

The single line diagram of Akangba Transmission Substation system simulated on NEPLAN is shown in Figures 3, 4 & 5. The load and transformer parameters gathered from Akangba Substation can be seen in the appendix section. The parameters were inputted into the single line diagram implemented with the NEPLAN Software. Three phase fault was simulated for different nodes to determine the fault current when the fault level at the 330kV incoming bus from Ikeja west is 1500MVA. Figure 3, 4 & 5 is a continuous network and simulated as a whole network. Twenty-seven faulted node were used as test for this simulation to model the relay positions on the present Akangba network

Figure 3: NEPLAN tool Implementation of Akangba 330kV Network

Figure 4: NEPLAN tool Implementation of Akangba 132kV Network

Figure 5: NEPLAN tool Implementation of Akangba 33kV Network

3.0 RESULTS AND DISCUSSION

The NEPLAN software was used to verify the effect of the newly acquired 300MVA transformer on the protection scheme. This was implemented by opening and closing the breaker (CB-1) between the 300MVA transformer and the 330kV line from Ikeja west in figure 3.

The CB-1 open scenario 1 is the present existing situation while the CB-1 closed scenario 2 is the expansion that was just implemented. The system is assumed to be under load condition and the required data gathered for the system representation in NEPLAN include;

• Single line network diagram of Akangba power station,

- Parameters of transformers in each substation involved,
- Types and rating of circuit breakers,
 - Distance of transmission lines and type/rating of conductors (see Appendix A),
 - Power readings on incoming feeders to the substation involved,
 - Peak demand and present load profile (see Appendix B).

The two scenarios are depicted in Figure 6 and 7 below to show the effect of the expansion work (i.e., the introduction of the new 300MVA) to the existing Akangba Transmission substation network. Scenario 1 (Figure 6) is the existing condition of the network while scenario 2 (Figure 7) is the condition after the 300MVA transformer has been added to the network.

Figure 6: Scenario 1 (CB-1 Opened for the 300MVA Transformer)

Figure 7: Scenario 2 (CB-1 Closed for the 300MVA Transformer)

3.1 Simulated Results for Three Phase and Single Line to Ground Fault for Scenario 1 and 2.Scenario 1 (CB-1 opened for the 300MVA Transformer)

							NEPLA	N - [Cu
File Edit Format Grid Settings V	iew Wind	wob	Help					
Short Circuit Results	× 🗩	Ģ	P	≡ ≡ B	J U	2J 21		
Result tables	1 I		ID	Fault location	Un	IK"(RS T)	AIK"(RST)	Faul
Fault currents					kV	kA	۰	type
Comparison of fear distance biograph		1	178981	ISOLO LINE 1	132.000	7.732	-89.13	3phase
Lurrents at fault locations		2	178434	OJO LINE 1	132.000	7.414	-88.54	3phase
		3	178172	ITIRE LINE 2	132.000	7.801	-89.39	3phase
Node voltages		4	180359	SANYA	33.000	8.492	-89.81	3phase
		5	180643	IDIARABA/NR	33.000	12.07	-89.72	3phase
Overloaded elements		6	179292	N179292	132.000	7.816	-89.43	3phase
		7	179311	N179311	33.000	18.61	-89.60	3phase
Belay tripping time		8	179582	B-179582	132.000	7.816	-89.43	3phase
		9	178773	ISOLO LINE 2	132.000	7.732	-89.13	3phase
		10	179584	B-179584	33.000	18.61	-89.63	3phase
Arc Flash results		11	175784	B-175784	132.000	7.816	-89.43	3phase
		12	178520	OJO LINE 2	132.000	7.414	-88.54	3phase
Time behaviour i(t)		13	178242	ITIRE LINE 1	132.000	7.801	-89.39	3phase
		14	180710	IDIARABA/LU	33.000	13.18	-89.70	3phase
esult files		15	180501	AMUWO	33.000	5.466	-89.88	3phase
		16	181320	ADELABU I	33.000	17.25	-89.61	3phase
Export to file Format 4.x		17	181314	IGANMU	33.000	13.84	-89.68	3phase
		18	178611	JORA LINE 2	132.000	7.775	-89.28	3phase
		19	4532	B-4532	132.000	7.816	-89.43	3phase
iantau antiana		20	4528	B-4528	132.000	7.816	-89.43	3phase
		21	175629	B-175629	132.000	7.816	-89.43	3phase
		22	179466	N179466	132.000	7.816	-89.43	3phase
OV OA OKVA		23	180844	ADELABU II	33.000	15.95	-89.64	3phase
 Documentation 		24	1/94//	B-1/94//	33.000	18.61	-89.57	3phase
		25	3492	B-3492	132.000	7.816	-89.43	3phase
Results selection		26	178702	JORA LINE 1	132.000	7.775	-89.28	3phase
		27	1/5/09	B-175709	132.000	7.816	-89.43	3phase
Close								
	J							
Start Analysis Check Network Connectivity -> Number of isolated Nodes -> Number of not feeded Network -> Number of partial Networks Assign Results As I M Messages Errors An	ks to calcu alysis /	late	0 2 1					
lelp, press F1								

Figure 8: Result of Three Phase Fault with 300MVA Transformer Breaker Opened

For Help, press F1

Figure 9: Result of Three Phase Fault Relay Trip Time with 300MVA Transformer Breaker Opened

x=0.8 | y=-53.9

File	Edit Format	Grid Settings	View	Wind	wol	Help					
	Short Circuit	t Results	\times	Æ	P	P	≡ ≡ в	J U	⊉↓ ⊉1		
Resul	lt tables			۲ ۱		ID	Fault location	Un	Ik"(RS T)	AIK"(RST)	Fau
	Fault curre	nts						kV	kA	۰	typ
	Commente et (eucle)	I			1	178981	ISOLO LINE 1	132.000	36.78	-88.10	1phas
	Currents at rault	locations			2		1		0.000	180.00	
					3		1		0.000	180.00	
	Node volta	ges			4	178434	OJO LINE 1	132.000	26.39	-84.82	1phas
					5		1		0.000	-90.00	
	Overloaded ele	ements			6		1		0.000	-90.00	
					7	178172	ITIRE LINE 2	132.000	38.94	-89.59	1phas
	Belau tripping	a time			8		1		0.000	180.00	
					9		1		0.000	180.00	
					10	180359	SANYA	33.000	3.104	-15.92	1phas
	Arc Flash re:	sults			11		1		0.000	0.00	
					12		1		0.000	-90.00	
	Time behavio	our ift)			13	180643	IDIARABA/NR	33.000	6.561	-22.44	1phas
		~ ~			14		1		0.000	-90.00	
Besul	It files				15		1		0.000	-90.00	
					16	179292	N179292	132.000	39.62	-89.85	1phas
E×	port to file	Format 4.x			17		1		0.000	0.00	<u>.</u>
					18		1		0.000	0.00	
					19	179311	N179311	33.000	30.29	-89.83	1phas
					20		1		0.000	-90.00	
Displa	ay options	<u> </u>			21				0.000	-90.00	
\circ	kV 💌 kA				22	179582	B-179582	132.000	39.62	-89.85	1phas
0	V OA	⊂ kVA			23		1		0.000	0.00	
✓ 1	Documentation				24				0.000	0.00	
			_		25	178773	ISOLO LINE 2	132.000	36.45	-88.05	1phas
	Results sele	ction			26		1		0.000	-90.00	
					27				0.000	-90.00	
	E	<u></u>			28	179584	B-179584	33.000	30.29	-89.95	1phas
		Llose			29		<u> </u>		0.000	-90.00	
					30				0.000	-90.00	l
					31	175784	B-175784	132.000	39.62	-89.86	1phas
					32		1		0.000	0.00	
					33				0.000	0.00	
					34	178520	OJO LINE 2	132.000	26.39	-84.82	1phas

For Help, press F1

Figure 10: Result of Single Phase to Ground Fault with 300MVA Transformer Breaker Opened

For Help, press F1

Figure 11: Result of Single Phase to Ground Fault Relay Trip Time with 300MVA Transformer Breaker Opened Scenario 2 (CB-1 closed for the 300MVA Transformer)

Figure 12: Result of Three Phase Fault with 300MVA Transformer Breaker Closed

RAM					NEPLA	N - [Relay	tripping ti	me]				
📲 File Edit Format Grid Settings View	Window	Help										
Short Circuit Results	€€	¢ ≡ ₹	≣≣ B	$I \underline{U} \hat{z} \downarrow \hat{z}$	î.							
Result tables	1	ID	Name	From Node	Element	Туре	Faulted Node	Trip Time	U L-E (RST)	AU L-E (RST)	lk"(RST)	Alk"(R ST)
Fault currents								s	kV.	0	kΔ	•
Currents at fault locations	1	1512483	Relay-2	B-175784	E-175785	Overcurrent	B-175784	0.050	83,831	180.00	6.851	90.62
Canerits at radit locations	2	1512588	Relay-17	N179311	E-179332	Overcurrent	N179311	2.749	20.958	180.00	14,497	90.46
Nodo voltados	3	1512665	Relay-28	B-4528	E-175887	Overcurrent	B-4528	9.911	83.831	180.00	7.471	90.61
Node Voltages	4	1512658	Relay-27	B-4532	E-176041	Overcurrent	B-4532	9.984	83.831	180.00	7.404	90.61
	5	1512497	Relay-4	B-3492	E-3496	Overcurrent	B-3492	9.992	83.831	180.00	7.395	90.61
Overloaded elements	6	1512504	Relay-5	B-175629	E-176003	Overcurrent	B-175629	10.080	83.831	180.00	7.301	90.61
	7	1512490	Relay-3	B-175709	E-175710	Overcurrent	B-175709	10.723	83.831	180.00	6.679	90.59
Relay tripping time												<u>.</u>
Arc Flash results												
Time behaviour i(t)												
Result files												
Export to file Format 4.x												
Display options												
● kV ● kA ● MVA												
Besults selection												
Close												
Check Network Connectivity > Number of isolated Nodes > Number of not feeded Networks. > Number of partial Networks to Assign Results	calculate	0 2										
H + H Messages A Errors Analys	is /											
or Help, press F1											x=0.8 y	/=-59.7

For Help, press F1

Figure 13: Result of Three Phase Fault Trip Time 300MVA Transformer Breaker Closed

File	Ealt	Format	Ghd Settings	view	vvin	dow	нер					
	Sho	rt Circui	it Results	×	۶	Ð 🗩	₽ ─	≡ ≡ B	J U	2J 21		
Resul	lt tables				1		ID	Fault location	Un	Ik"(RS T)	AIK"(RST)	Fau
		Fault curre	ents						kV	kA	•	typ
	6			_		1	178981	ISOLO LINE 1	132.000	47.32	-87.60	1phas
	Lurre	nts at rault	locations			2		1		0.000	180.00	
						3				0.000	206.57	
		Node volta	ages			4	178434	OJO LINE 1	132.000	31.39	-83.87	1phas
						5				0.000	0.00	
	0.20	erloaded e	lements			6		1		0.000	0.00	
						7	178172	ITIRE LINE 2	132.000	50.97	-89.52	1phas
	В	elau trippin	a time			8		1		0.000	180.00	
		oldy (hppin	ig time			9		1		0.000	180.00	
						10	180359	SANYA	33.000	3.107	-15.75	1phas
	A	vro Flash re	esults			11		l		0.000	-90.00	
						12		1		0.000	-90.00	
	Ti	me behavi	our ift)			13	180643	IDIARABA/NR	33.000	6.578	-22.09	1phas
						14		Ī		0.000	0.00	
Basul	t files					15		1		0.000	-90.00	
Tresul	it mes					16	179292	N179292	132.000	52.14	-89.86	1phas
E×	port to fi	le	Format 4.x			17		1		0.000	180.00	
						18		1		0.000	180.00	
						19	179311	N179311	33.000	31.24	-89.83	1phas
						20				0.000	0.00	
Displa	ay option	s				21				0.000	0.00	
\odot	kV	💌 kA				22	179582	B-179582	132.000	52.14	-89.86	1phas
0	\sim	⊂ a	🔘 kVA			23				0.000	-90.00	
	Docume	ntation				24		1		0.000	-90.00	
	00041110			_		25	178773	ISOLO LINE 2	132.000	46.78	-87.55	1phas
	F	esults sele	ection			26				0.000	0.00	
-						27		1		0.000	0.00	
						28	179584	B-179584	33.000	31.24	-89.95	1phas
			Close			29		1		0.000	-90.00	
						30				0.000	-90.00	
						31	175784	B-175784	132.000	52.14	-89.87	1phas
						32				0.000	-90.00	
						33				0.000	-90.00	
						34	178520	OJO LINE 2	132.000	31.39	-83.87	1phas

 Image: Terrors
 Analysis

 For Help, press
 F1

Figure 14: Result of Single Phase to Ground Fault with 300MVA Transformer Breaker Closed

	ī	ID	Name	From Node	Element	Туре	Faulted	Trip	UL-E	AU L-E	Ik"(RST)	Alk"(R	Description	Zone	Area	Partial
Fault currents							Noue	s	(KST) kV	(KST) 0	kA	°	-			network
Currents at fault locations	1								3.486	179.89	3.172	90.04				
Node voltages	3								31.477	0.07	1.979	90.14				
	4								31.477	0.07	4.216	90.21				
Overloaded elements	6								31.477	0.07	1.468	90.23				
Palau tripping time	7								31.477	0.06	0.896	90.19				
Treay appling ane	9								31.477	0.06	2.249	89.97				
Arc Flash results	10								31.477	0.06	1.085	90.19				
	11	_							31.477	0.06	2.411	90.10				
Time behaviour i(t)	12								31.477	0.06	0.959	90.52				
(,)	14								31.477	-0.02	15.672	-89.90				
	15	1512483	Relay-2	B-175784	E-175785	Overcurrent	B-175784	0.050	83.831	180.00	46.339	90.12		Zone 1	Area 1	1
to file Format 4 x	16	1512588	Relay-17	N179311	E-179332	Overcurrent	N179311	2.089	20.958	180.00	26.096	90.19		Zone 1	Area 1	1
	17	1512658	Relay-27	B-4532	E-176041	Overcurrent	B-4532	4.244	83.831	180.00	49.312	90.15		Zone 1	Area 1	1
	10	1512665	Relay-28 Delay 5	B 175620	E-1/566/	Overcurrent	B-4528 B 175620	4.283	03.031 83.831	180.00	48.998	90.14		Zone 1	Area 1	1
	20	1512497	Relay-4	B-3492	E-3496	Overcurrent	B-3492	4.283	83.831	180.00	48,760	90.15		Zone 1	Area 1	1
kA MVA	21	1512490	Relay-3	B-175709	E-175710	Overcurrent	B-175709	5.228	83.831	180.00	28.360	90.07		Zone 1	Area 1	1
Besults selection																
Close		0														
		2														
		1														
er of partial Networks to n Results	calculate															
Results selection]	0														

Figure 15: Result of Single Phase to Ground Fault Relay Trip Time with 300MVA Transformer Breaker Closed

Figure 17: Time Current Curve

3.1 Discussion

Figure 6 above shows scenario 1 where breaker CB-1 interconnecting the 300MVA transformer to the 330KV bus is opened. Figure 7 shows scenario 2 where breaker CB-1 interconnecting the 300MVA transformer to the 330KV bus is closed. Scenario 2 also depicts the expansion of the network under construction. Three phase and single line to ground short circuit faults were simulated for the two scenarios to determine the fault current on each of the 132kV and 33kV feeders.

Condition 1: (300MVA Transformer breaker Opened and three-phase fault simulated), Figure 8 shows the fault locations, the fault current and phase angle when a three-phase fault was simulated. Figure 9 indicates the tripping time and fault current at which the protective devices (relay) on the power network responds under the condition of a three-phase fault.

Condition 2: (300MVA Transformer breaker opened and Single phase to ground fault simulated), Figure 10 displays the fault locations, fault current and phase angle for a single phase to ground fault and Figure 11 is the tripping time and fault current at which the relay in the zone of protection operates.

Condition 3: (300MVA Transformer breaker closed and three-phase fault simulated), Figure 12 also reveals the fault locations, associated fault current and phase angle under condition 3. The tripping time and fault current for the protective device is as indicated in Figure 13.

Condition 4: (300MVA Transformer breaker closed and Single phase to ground fault simulated), Figure 14 indicates the fault current, the location and phase angles of condition 4 with figure 15 also showing the tripping time and fault current for the protective instruments.

The comparison of results of Figure 8 versus figure 12, as well as figure 10 versus figure 14 when the CB-1 is opened and closed for different fault types shows variation ranges of 10-20%. The variation is much more significant on the single phase to ground fault than the three-phase fault. This goes to prove that expansion of power network, changes in switching configuration or replacement of power components with lesser or higher specification on a power network has significant effect on the fault current that can flow in the system. This can also impact the protection scheme, cause outage of healthy part of the power network or damage the critical power components if these changes are not managed with a simulation software.

Furthermore, as the fault current in the locations increased from the scenario earlier highlighted, the tripping time of relay has an inverse relationship. As current increases, the tripping time reduces which is depicted in figure 9, Figure 13 for three phase fault and Figure 11, figure 15 for single line to ground fault.

Figures 16 and 17 are the time-current curve (TCC) plots which is used to achieve coordination of protective devices. It presents a graphical view of the protection system for protection Engineers to make decisions and adjustments on the sequence of operation of protective devices in a particular power network. For the simulations in this article, the TCC is shown in figures 16 and 17 with the fault current plots on the abscissa and the corresponding tripping time on the ordinate.

Protection engineers must therefore take note of changes when planning protection coordination and relay setting. This will ensure expensive power system are not damaged because of improper relay setting, human safety is not put at risk because of poor design. This will also ensure provision of reliable power supply to the yearning populace.

4.0 CONCLUSION

As the demand for power supply increases, there will always be the need to constantly expand the power network. This will in turn necessitate the review of existing protection system to be able to guarantee adequate protection and quick isolation of fault part of the network. Any Additional component on the power network or replacement of power system component with a different specification of equipment has effect on the amount of fault current flowing in the system when there is a fault.

Protection engineers must be well versed in the analysis of faulted power systems so that they can make appropriate relay settings and analyze complex system operations. Analysis of the Akangba Transmission substation shows variation ranges of 10-20% of fault current on the feeders when a new 300MVA was added to the network. This variation is significant and must be taken into consideration when reviewing the present relay setting in the station. It is my hope that this article will stimulate future study of the Nigeria transmission network as an entity, with a centrally managed protection scheme software and database. This will ensure appropriate study of the network protection and aid proper decision making on the relay settings. It also has the advantage of creating a balance in power distribution, and reduction of damage to expensive power system components (i.e., transformers).

The following recommendations are suggested for improvement of distribution of Akangba TS:

• Embrace a power analysis software to analyze periodically the power system to ensure proper setting of relay and coordination especially when changes are made on the network

- Replace vandalized pilot cables, old transformers (most of which were manufactured in 1968) and reterminate them for the remote control switching to be enabled instead of the manual switching done at the switchgear. (see Appendix C, Appendix D and Appendix E)
- Restore decommissioned reactors to limit fault current in the power network
- Purchase additional 330kV breakers and relays to separate the two 90MVA sharing the same breaker (See Appendix F and Appendix G).

ACKNOWLEDGMENT

The authors wish to acknowledge the assistance and immnse contribution of staff of the Power Holding Company of Nigeria (Akangba Transmission Substation) towards the success of this work.

CONFLICT OF INTEREST

There is no conflict of interest associated with this work

REFERENCES

- J. J. Grainger and W. D. Stevenson, "Power System Analysis," New York McGraw-Hill, 1994, pp. 199-204.
- [2] H. Saadat, "Power System Analysis," *New York, McGraw-Hill*, p. pp. 45, 2000.
- [3] G. Gonen, "Electric Power Transmission System Engineering," *New York, CRC Press Taylor and Francis Group*, 2005, pp. 23-40.
- [4] G. C. Ejebe, "A Computer Program for Short Circuit Analysis of Electric Power Systems," *Nigerian Journal of Technology*, 5(1), 1981, pp. 46-61.
- [5] P. O. Oluseyi, T. S. Adelaja and T. O. Akinbulire, "Analysis of the Transient Stability Limit of Nigeria's 330kV Transmission Sub-Network," *Nigerian Journal of Technology*, 36(1), 2017, pp. 213-226.
- [6] L.Ogunwolu, O. Ero and O. Ibidapo-Obe, "Modeling and Optimization of an Electric Power Distribution Network Planning System Using Mixed Binary Integer Programming," *Nigerian Journal of Technology*, 36(2), 2017, pp. 552-562.
- [7] O. Oputa and T. C. Madueme, "Fault Analysis on Nigeria 330kv Transmission System Using ETAP," *Nigerian Journal of Technology*, 38 (1), 2019, pp. 202-211.
- [8] M. Abul Kalama and M. Jamil, "Wavelet-fuzzy based protection scheme of EHV-AC transmission system and efficacy of discrete Fourier transform.,"

Journal of Electrical Systems and Information Technology, 5, 2018, pp. 371-387.

- [9] R.W. Osabohien and R. Uhunmwangho, "Assessing the Impacts of Distributed Generation on the Protection Scheme of a Distribution Network: Trans Amadi 33kv Distribution Network as a Case Study," *Nigerian Journal of Technology*, 37 (1), 2018, pp. 209-215.
- [10] P. M. Anderson, "Analysis of faulted power systems," *Institute of Electrical and Electronics Engineers Press Power System Engineering Series*, 405, 1995 pp. 12.
- [11] A. U. Chukwu, D. A. Oyedele and S. K. Afolabi, "Protective Relay Studies For the Nigerian National Electric 330kV Transmission System," *Nigerian Journal of Technology*, 9(1), 1985, pp. 39-54,.
- [12] A. O. Ekwue, "Stochastic Fault Analysis of Balanced Systems," *Nigerian Journal of Technology*, 8(1), 1984, pp. 51-56.
- [13] B. Franc, B. Filipovic-Gricic and V. Viktor Milardic, "Lightning overvoltage performance of 110 kV airinsulated substation," *Electrical Power and Energy Systems*, 99, , 2016, pp. 78–84.
- [14] H. Lei and C. Chanan Singh, "Power system reliability evaluation considering cyber-malfunctions in substations," *Electric Power Systems Research*, 129, 2015, pp. 160–169.
- [15] S. B. Luo, H. L. Gao, D. Wang and G. B. Zou, "Nonunit transient based boundary protection for UHV transmission lines," *Electrical Power and Energy Systems*, 99, 2018, pp. 376–384,.
- [16] T. C. Madueme and P. G. Wokoro, "The Use of Artificial Neural Networks in the Theoretical Investigation of Faults in Transmission Lines," *Nigerian Journal of Technology*, 34 (4), 2015 pp. 851-860.
- [17] N. Neng Jin, X. Lin, H. Zhao, J. Xing, Z. Li, A. Tan, N. Tong, L. Chen, Y. Liu and R. Jing, "Special protection system to cope with the unavailability of sampling values from an entire substation," *Electrical Power and Energy Systems*, 102, 2018, p. pp. 265–271.
- [18] R. W. Osabohien and R. Uhunmwangho, "Assessing the Impacts Of Distributed Generation On The Protection Scheme Of A Distribution Network: Trans Amadi 33kV Distribution Network As A Case Study," *Nigerian Journal of Technology*, 37(1), 2018, pp. 209-215.
- [19] P. Sarajcev, D. Jakus, J. Vasilj and S. odopija, "Application of genetic algorithm in designing highvoltage open-air substation lightning protection

system," *Journal of Electrostatics*, 39, 2018, pp. 43-51.

[20] L. Tang and X. Dong, "A travelling wave differential protection scheme for half-wavelength transmission

[21] line," *Electrical Power and Energy Systems*, 99, 2018, pp. 376–384.

S/N	LINE	LINE IMPEI	DANCE(Z1)	LINE IMPEI	DANCE(Z0)	LENGTH(KM)
		R(ohm)	X(ohm)	R(ohm)	X(ohm)	
1	Akangba - Itire 132kv	0.0021127	0.006772	0.005664	0.02326	3
2	Akangba -Ijora 132kv	0.0056477	0.00112954	0.012672	0.03636	5
3	Akangba -Isolo 132kv	0.0082362	0.0164724	0.013573	0.03656	7
4	Akangba - Ojo 132kv	0.0112678	0.0361177	0.030212	0.12409	16
5	Akangba- Apapa Rd 132kv	0.0094128	0.0188256	0.021121	0.0606	8
6	Akangba-Iganmu 33kv	0.00142	0.125	0.00773	0.0745	3.1
7	Akangba - Adelabu 1	0.0134	0.1272	0.01772	0.0824	0.7
8	Akangba – Sanya	0.01452	0.122	0.0177	0.0724	11
9	Akangba – Amuwo	0.0164	0.122	0.01712	0.0724	22.2
10	Akangba - Idiaraba/NRC	0.01453	0.122	0.01731	0.0724	5
11	Akangba - Idiaraba/Luth	0.01324	0.122	0.0174	0.0724	3.8
12	Akangba – Ijora causeway	0.01632	0.124	0.0178	0.0824	6.4
13	Akangba - Yaba/NRC	0.01624	0.1223	1.773	0.07224	6.6
14	Akangba - Orile NRC	0.01522	0.1222	0.01877	0.0732	12.6

Appendix A: Impedance and distance of Akangba outgoing transmission lines

Appendix B: Akangba T.S Load profile

	AKANGB						
TIME	Α	IJORA	ISOLO	ITIRE	OJO	ILUPEJU	TOTAL
	132KV						
(HRS)	T.S.	132KV T.S.	(MW)				
1:00	28	15	14.8	11.1	25.6	11.7	106.2
2:00	21	15	5.2	28.5	30.7	13.9	114.3
3:00	22	15	6.2	0	30.6	15.4	89.2
4:00	19	18	6.2	0	27.5	17.7	88.4
5:00	33	18.6	9.8	0	33.9	0	95.3
6:00	14	24.5	9.7	13.5	36.6	0	98.3
7:00	13	30	15.6	10.4	37.5	9.5	116
8:00	14	0	9.1	2.7	32.6	13.5	71.9
9:00	19	4.4	8.6	23.9	0	16.2	72.1
10:00	19	10	16.4	16.6	15.3	8.4	85.7
11:00	25	10	21.1	19.1	0	15.2	90.4
12:00	26	16	27.9	21.9	5.4	15.2	112.4
13:00	24	15	18.4	9.9	10.2	0	77.5
14:00	16	0	19.6	0	0	10.7	46.3
15:00	23	7	19.8	14.4	0	11.9	76.1
16:00	22	8	14.4	17.2	11.2	20.2	93
17:00	23	8	12.3	10.7	16.1	0	70.1
18:00	36	18	19.2	22.5	15.4	10.2	121.3
19:00	30	22.5	20.2	18.5	17.2	10.7	119.1
20:00	27	22.5	16.6	17.2	4.6	10.9	98.8

		AKA	ANGB											
TI	ME	Α		IJORA	ISOLC)	ITIRF	C	OJO		ILUP	EJU	ТО	TAL
/111		132I	KV		1001/1		100171		100171		10017			
(H)	<u>KS)</u>	<u>T.S.</u>		<u>132KV T.S.</u>	132KV	1.5.	132K	1.5.	132K	v T.S.	132K	V 1. S.	(M) 102	<u>w)</u>
21:	00	27		23	23.2		18.6		20		11.4		123	.2
22:	00	19		33.3 32.5	17.2		4.0		10		1/ 10 1		107	.3
23:	00	15		23.5	4.6		12.4		22.7		18.1		90.3	5
24:	00:00	25	0700	23.5	4.6	1000	0	0000	20.7	0700	13.6	20400	8/.4	
MC	DRNING	33@	0500	30@0/00H	27.9@	1200	28.5@	0200	37.5@	0700	1/./@	¥0400	116	@0/00H
PE	AK	HKS	1000	KS	HKS	100	HRS	1000	HKS	2200	HRS	1 600	RS	0 @ 0100
EV	ENING	36@	1800	33.5@2200	23.2@2	2100	22.5@	1800	22.7@	2300	202@	1600	123	.2@2100
PE/	AK	HKS)	HKS	HKS		HKS		HK5		HK2		HK	5
1 nn	andix C. Ala	anah	а т с т е	anoformar A ag	t Invont	0								
Арр	enuix C: Aka	ango		ansionner Asse	et mvente	ory								
			KA I FD							NAMI	7			
	ASSET		VOI	DATE	OF	1221	FT			OF		MANI	IF	
S/	DESCRIPT	ГT	TAG	ACOUISIT	ION/I	SER	IAT.	мор	EL/C	MANI	IFC		RE	ASSET
N	ON		E	NSTALLA	FION	NO		СТТ	YPE	TURF	R	DATE	N L	CODE
	90MVA		-	110 111111		110		011				2		0022
	TRANSFO	RM	330/1											
1	ER		32KV	1968		1443	4	-		ASGE	N	1968		5T1A
	90MVA													
	TRANSFO	RM	330/1			7430	25010			MITSU	JBIS			
2	ER		32KV	1974		1		SUB-	MRD	HI		1974		5T1B
	90MVA													
	TRANSFO	RM	330/1			7430	25020			MITSU	JBIS			
3	ER		32KV	1974		1		SUB-	MRD	HI		1974		5T2A
	90MVA													
	TRANSFO	RM	330/1											
4	ER		32KV	1968		1443	6	-		ASGE	N	1968		5T2B
	150MVA													
	TRANSFO	RM	330/1			8134	48010			MITSU	JBIS			
5	ER		32KV	1985		1		SUB-	MRM	HI		1981		5T4A
	150MVA													
	TRANSFO	RM	330/1					SFSZ	-					
6	ER		32KV	2009		9063	9171	1500/	330	TBEA		2008		5T4B
	60MVA									ABB				
	TRANSFO	RM	132/3							POWE	R			
7	ER		3KV	2010		5412	68	-		TECH				10T1A
										TRAN	SFO			
										RMER	&			
	60MVA									RECT	IFIE			
_	TRANSFO	RM	132/3							R IN	IDIA			
8	ER		3KV	2011		3200	31	-		LTD		2009		10T2B
	60MVA					-								
~	TRANSFO	КM	132/3			54LY	(PT10				~			1000
9	ER		3KV	2012		673-1	11			LEEE	2	2010		10T2A

a.				Date o	of	~	Ass	et N	ame of					
S/	Asset	Rated		Acqui	sition	/Install	a Ser	ial N	Aanufactu	u M	anufact	u .		
N	Description	Voltage		tion			no	r	er	re	Date	Ass	et Cod	e
1	500KVA TRANSFORM ER 500KVA	13.800/.400 KV)	1968			405	60 N	/IILANO	19	68	5T1 2x9	A&5T 0MVA	IB, TRF
2	TRANSFORM ER 500KVA	13.800/.400 KV)	1968			405	58 N	/IILANO	19	68	5T2 TRI	2 A , 90 F	0MVA
3	TRANSFORM ER 540KVA	13.800/.400 KV)	1968			405	59 N	/IILANO	19	68	5T2 TRI	2 B , 9 F	0MVA
4	TRANSFORM ER 540KVA	33/.415KV		1985			271 7	21 N	AELCO	N/	A	5T4 TRI	A,150N F	AVA
5	TRANSFORM ER	33/.415KV										5T4 150	B, MVAT	RF
App	e ndix E: Transform	ner paramete	rs											
		ASS	Ur	Ur	Ur				Ukr	Ukr	Ukr	Ukr	Ukr	Ukr
		ET	1	2	3	Sr12	Sr23	Sr31		(1)	(1)	(0)	(0)	(0)
S/	ASSET	COD	(k	(k	(k	(MV	(MV	(MV	12	23	31	12	23	31
Ν	DESCRIPTION	E	v)	v)	v)	À)	A)	À)	(%)	(%)	(%)	(%)	(%)	(%)
	90MVA	5T1	33	13	13	,	,		11.2	~ /	~ /	10.4	~ /	~ /
1	TRANSFORME	R A	0	2	.8	90	30	30	7	5.91	2.19	1	4.31	1.67
	90MVA	5T1	33	13	13						12.2			11.3
2	TRANSFORME 90MVA	R B 5T2	0 33	.8 13	2 13	30	30	90	6.73 11.1	2.23	7	5.47 10.2	1.79	4
3	TRANSFORME	R A 5T2	0 33	2 13	.8 13	90	30	30	5	2.18	5.84 12.2	3	1.59	4.67 11-3
4	TRANSFORME 150MVA	R B 5T4	0 33	.8	2 13	30	90	109	6.73	2.23	7 12.3	5.45	1.89	7 11.3
5	TRANSFORME	R A 5T4	0	33 13	2	50	150	162	9.62 10.3	4.42 46.6	3	8.53	3.62 43.2	6 31.5
6	TRANSFORME	R B 10T1	0	2	33	150	150	50	8	6	3	9.47	2	5
7	TRANSFORME	R A 10T2	2	33	nil	60	nil	nil	4.85 10 4	nil	nil	4.85 10 4	nil	nil
8	TRANSFORME 60MVA	R B 10T2	2 13	33	nil	60	nil	nil	8 10.3	nil	nil	8 10.3	nil	nil
9	TRANSFORME	R A	2	33	nil	60	nil	nil	3	nil	nil	3	nil	nil

Appendix D: Akangba T.S Grounding Transformer asset inventory

App	enuix r: Akaligua I	5 Kelay a	sset inventory					
		RAT					MA	
		ED					NF	ASSET
		VOL	ASSET		MODEL/	NAME OF	R	CODE
S /	ASSET	TAG	IDENTITY/NUM	SERIAL	CIRCUIT	MANUFA	DA	NOMENC
Ν	DESCRIPTION	Ε	ENCLATURE	NUMBER	TYPE	CTURER	TE	LATURE
			ELECTRO	B345155/3	ICM21Ko			AMUWO
1	OVERCURRENT	33kv	MAGNETIC	8	p	BB	1968	FEEDER
		·	ELECTRO	B345155/3	I			
2	EARTH FAULT	33kv	MAGNETIC	20	ICM21Kp	BB	1970	
	_	·	ELECTRO	-	ICM21Ko			
3	OVERCURRENT	33kv	MAGNETIC	B345155/1	n	BB	1968	
-			ELECTRO		r CAGO.AK			
4	BUSBAR ZONE	33kv	MECHANICAL	B565683	420200	BB	N/A	
•	200211120112	conv	ELECTRO	2000000	CAGO AK	22	1 () 1 1	
5	BUSBAR ZONE	33kv	MECHANICAL	B565682	420200	BB	N/A	
U	OVERCURRENT/	JORV		D000002	120200	SCHNEID	1,011	ADELABU
6	EARTHFAULT	33kv	STATIC	11020200		ER	N/A	FEEDER 1
Ū	OVERCURRENT/	JORV	511110	11020200		Lit	1,011	ADELABU
7	EARTHFAULT	33kv	STATIC	50088396	P122	MICOM	2001	FEEDER 2
,		JORV	ELECTRO	20000270	ICM21Ko		2001	IDIARAB
8	OVERCURRENT	33kv	MAGNETIC	B345155/1	n	BB	1968	A/LUTH
U	o v Encontration	JORV	FLECTRO	HE367781/	Ρ	22	1700	1120111
9	EARTHFAULT	33kv	MANETIC	390	ICM21Kn	BB	1972	
1		JORV	ELECTRO	B345155/3	ICM21Ko	22	1772	
0	OVERCURRENT	33kv	MAGNETIC	8	n	BB	1968	
1	0 / 2110 011121 (1	conv	ELECTRO	B345155/3	ICM21Ko	22	1700	IDIARAB
1	OVERCURRENT	33kv	MAGNETIC	8	n	BB	1968	A/NRC
1			ELECTRO	B345155/4	r			
2	EARTHFAULT	33kv	MAGNETIC	4	ICM21Kp	BB	1971	
1			ELECTRO		ICM21Ko			
3	OVERCURRENT	33kv	MAGNETIC	B345155/1	р	BB	1968	
1			ELECTRO		CAGO,AK			
4	BUSBAR ZONE	33kv	MECHANICAL	B565675	420200	BB		
1			ELECTRO		CAGO,AK			
5	BUSBAR ZONE	33kv	MECHANICAL	B565674	420200	BB		
1	OVERCURRENT/					SCHNEID		IGANMU
6	EARTHFAULT	33kv	STATIC	11030721	N/A	ER	N/A	FEEDER
1	OVERCURRENT/				SEPAM	MERLIN		SANYA
7	EARTHFAULT	33kv	STATIC	020203S	2000	GERIN	N/A	FEEDER
					7SJ8011-			
1				BF110406	5EB90-			10T1A
8	OVERCURRENT	33kv	STATIC	6851 LOR	IFAO/CC	SIEMENS	N/A	SEC
					7SJ8011-			
1	STANDBY			BF110408	5EB90-			
9	EARTHFAULT	33kv	STATIC	9105 LOR	IFAO/CC	SIEMENS	N/A	"
					7SJ8011-			
2				BF110407	5EB90-			10T2B
0	OVERCURRENT	33kv	STATIC	7144	IFAO/CC	SIEMENS	N/A	SEC

Appendix F: Akangba T.S Relay asset inventory

						GOLDIEI	P	1050
2 OVER	JEALIL T	221 ₂₂ STAT	IC	11020710	MES120	SCHNEI ED		1012A SEC
I LAKII	IFAULI	JJKV SIAI		11030/19	MES120	EK	N/A	SEC
Appendix G	: Akangba T.	S 330ky and 132	kv circuit break	er asset inven	torv			
ASSET DESCRIPT ON	RATE D VOLT TI AGE(KV)	DATE OI ACQUISITIO N/INSTALLA TION	ASSET IDENTIT F Y NO(NUM ENCLAT URE)	ASSET SERIAL NO	MOD EL/C CT TYP E	NAME OF MANUF ACTUR ER	MANU FACT URE DATE	ASSET CODE(NO MENCLAT URE)
IKEJA					300-			
WEST LIN 1 BREAKE BUS COUPLER	E R 330	1985	W3L BUS	A02100 HVFN 21168/2CE	SFM- 40A I	MITSUB USHI	1984	X105
BREAKER IKEJA WEST LIN	330 F	1985	COUPLER	C5621071 HVFN 21168/2CF	FE2	GEC	1983	X130
2 BREAKE TRANSFOI	R 330 R	1984	W4L 5T1A&5T 1B TRES	C5621072	FE2 300- SFM-	GEC MITSUB	1983	X205
BREAKER TRANSFOI	330 R	1985	PRY 5T2A&5T	A02101	40A 300-	USHI	1984	X110
BREAKER	330	1985	26 TRFS PRY	A02184	40A	USHI MAGRI	1984	X210
TRANSFOI MER BREAKER	R 330	09-2013	5T4A TRF PRY	160041	362 SB6- 2Y	NI GALILE O MAGRI	2001	X410
TRANSFOI MER BREAKER TRANSFOI MER	R 330 R	2010	5T4B TRF PRY	160040	362 SB6- 2Y ELF 145nc	NI GALILE O	2001	X510
BREAKER	132 R	1982	5T1A SEC	HA190951	l lr	BBC	1982	410074
MER BREAKER TRANSFOI	132 R	1982	5T1B SEC	HA190952	HA14 1 5/C/R LTB	BBC	1982	410054
MER BREAKER TRANSFOI MER	132 R	2010	5T2A SEC	1HSB08440 70) 145D 1/B ELF 145nc	ABB	2008	410164
BREAKER TRANSFOI	132 R	1982	5T2B SEC	HA1909516	5 1r GL	BBC	1982	410124
MER BREAKER TRANSFOI	132 R	2010	5T4A SEC	6673-10- 2031006/13	312 8 F1	AREVA	2007	
MER BREAKER	132	2000	5T4B SEC	30464	FX 11	ALSTO M	1999	410174

	RATE		ASSET IDENTIT		MOD	NAME		
	D	DATE OF	Y		EL/C	OF	MANU	ASSET
ASSET	VOLT	ACQUISITIO	NO(NUM	ASSET	СТ	MANUF	FACT	CODE(NO
DESCRIPTI	AGE(N/INSTALLA	ENCLAT	SERIAL	TYP	ACTUR	URE	MENCLAT
ON	KV)	TION	URE)	NO	Ε	ER	DATE	URE)
TRANSFOR					LTB			
MER			10T1A	1HSB08460	145D			
BREAKER	132	2010	PRY	25	1/B	ABB	2009	410044
TRANSFOR								
MER			10T2B		HA14			
BREAKER	132	1982	PRY	1909513	5/C/R	BBC	1982	410104
TRANSFOR					120-			
MER			10T2A		SFM-			
BREAKER	132	2010	PRY	X302711	32B	ABB	2010	
FEEDER			IJORA		SB6	M/GALI		
BREAKER	132	2002	LINE 1	159508	145	LEO	2001	410084
FEEDER			IJORA					
BREAKER	132	N/A	LINE 2	N/A	N/A	N/A	N/A	410094
						GEC		
FEEDER			ISOLO			ALSTO		
BREAKER	132	2000	LINE 1	30462		Μ	1999	410014
FEEDER			ISOLO		SB6	M/GALI		
BREAKER	132	2002	LINE 2	159504	145	LEO	2001	B410034
FEEDER			ITIRE		HA14			
BREAKER	132	1982	LINE 1	1909514	5/C/R	BBC	1982	B410154
						GEC		
FEEDER			ITIRE			ALSTO		
BREAKER	132	2000	LINE 2	30463		Μ	1999	B410174
FEEDER			OJO LINE					
BREAKER	132	1982	1			ABB	1982	410132
FEEDER			OJO LINE		SB6	M/GALI		
BREAKER	132	2002	2	159509	145	LEO	2001	
BUSCOUPLE			BUS		HA14			
R BREAKER	132	1982	COUPLER	410008	5/C/R	BBC	1982	410008

Appendix H: Akangba T.S 33kv circuit breaker asset inventory

S		RATED VOLTA	DATE OF ACQUISITION/	ASSET	MODEL/	NAME OF MANUF	MANUF	ASSE
/	ASSET	GE(KV	INSTALLATIO	SERIAL	CCT	ACTURE	ACTUR	Т
Ν	DESCRIPTION)	Ν	NO	TYPE	R	E DATE	CODE
	IGANMU FDR							
1	BREAKER	33						
	ADELABU 1				OHB 36.			
2	FDR BREAKER	33		OHB 3119	16.32	ABB	2011	
					IVYN			
	SANYA FDR			VBF 36.	03011100			
3	BREAKER	33		20. 25	0078	ABB		
	60MVA,10T2A			OHB 36.16				
4	SEC BREAKER	33		32	OHB 2742	ABB	2010	

S		RATED VOLTA	DATE OF ACQUISITION/	ASSET	MODEL/	NAME OF MANUF	MANUF	ASSE
/	ASSET	GE(KV	INSTALLATIO	SERIAL	CCT	ACTURE	ACTUR	Т
Ν	DESCRIPTION)	Ν	NO	TYPE	R	E DATE	CODE
	AMUWO FDR				OHB 36.			
5	BREAKER	33		OHB 2755	16.32	ABB	2010	
	IDIARABA/LUT							
	H FDR			IVYNO	OHB			
6	BREAKER	33	2012	301200272	36.12.32	ABB	2012	
					DBG			
	IDIARABA/NRC			602111970	725mc			
7	FDR BREAKER	33	1968	Dm 7	150g	BBC	1968	
				IVYNO	-			
	ADELABU 2			501312000	OHB			
8	FDR BREAKER	33	2012	271	36.12.32	ABB	2012	
	60MVA, 10T2A				OHB 36.			
9	SEC BREAKER	33	2010	OHB 2742	16.32	ABB	2010	
					DBG			
	60MVA, 10T1A			602111970	725mc			
8	SEC BREAKER	33	1968	Dm 9	150g	BBC	1968	
				IVYNO	-			
	60MVA, 10T2B			303120002	OHB			
9	SEC BREAKER	33	2012	75	36.12.32	ABB	2012	210064