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Abstract  
Solar water disinfection (SODIS) is recognised and promoted as a simple and low-cost method for water quality improvement and 

diarrhoea prevention. However, there is potential for underexposure and incomplete disinfection due to the uncertainty arising from 

variable weather/exposure period. This study presents a probabilistic methodology for obtaining exposure periods from time series of 

historical solar energy data capable of resolving this uncertainty. To do this, SODIS exposure period was interpreted and computed in 

agreement with the underlying physical processes that govern geometric distribution. The methodology was illustrated by using 

geometric distribution to predict monthly exposure periods at 5% exceedance probability for 324 locations in Southeastern Nigeria. 

The parameter of the geometric distribution was estimated from solar radiation data obtained from NASA geo-satellite database. The 

results revealed both spatial and temporal variation of exposure period. Two days of exposure would ensure complete disinfection 95% 

of the days in November to May in virtually all the locations of the region. June to September is the least favourable period for SODIS 

application in Southeastern Nigeria, mostly requiring more than 2 days of exposure to ensure treatment.  Performance validation of the 

model using confusion matrix showed an overall prediction accuracy of 83%, suggesting a reliable model for the prediction of exposure 

period. The exposure periods were presented in the form of monthly maps to serve as a tool for guarding against underexposure. 
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1.0 INTRODUCTION 
According to World Health Organisation (WHO), 

more than 50,000 infant Nigerians die annually from 

symptoms of diarrhoea disease due to the consumption of 

microbially contaminated water, a number that is only 

surpassed by India [1]. Relying on resource-intensive, 

centralised water treatment and supply such as piped-borne 

connections and tank-vended distribution will leave so many 

people without access to safe water because water could still 

be contaminated during transportation and storage [2]. World 

Health Organisation (WHO) favours household-based, 

drinking-water treatment methods, such as solar disinfection 

(SODIS), that allows water to be consumed directly from the 

container in which it was treated [3]. SODIS methods target 

the most vulnerable [4], improve health [5, 6], and can be 

employed to address the immediate water quality needs of the 

most disadvantaged communities of Nigeria [7]. Strategies 

aimed at removing some technical limitations and addressing 

behavioural change factors that impede the diffusion and large-

scale adoption of SODIS have been the focus of SODIS 

research and promotion campaign [8–10]. SODIS procedure    
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involves storing drinking water of questionable microbial 

quality in containers (glass or plastic bottles) that can transmit 

ultraviolet (UV) radiation and placing them under direct 

sunlight for a day or two, after which the water is rendered safe 

for consumption.  

The effect of UV and temperature components of the 

sun activates a series of degradation/oxidative processes that 

can cause loss of membrane potential, strand breakage in cell 

DNA, denaturation of cell protein, and interfere with the 

glucose uptake of the cells, leading to cell death [11]. To date, 

all pathogens classically characterised as water-borne are 

readily responsive to SODIS treatment within 6 h of exposure 

to strong sunlight [12].  

There are concerns about the leaching of potentially 

harmful compounds into SODIS water during solar exposure, 

notably genotoxins and endocrine disruptors. However, these 

concerns have been addressed through several dark-control 

experiments that either showed that photoproducts were either 

detected on the outside surface of PET bottles or detected in 

water at low concentrations with no health significance [13–

16]. Available evidence suggests that the health risk associated 

with consuming water stored in PET is the same, with or 

without solar exposure. Numerous clinical trials have proved 
the efficacy of SODIS at reducing diarrhoea in human 

populations [5, 6, 17-19], and more than 4.5 million people, 
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spread over 55 countries, have started using SODIS for their 

daily water treatment [20-21]. 

SODIS is recommended for regions and seasons 

where the average 5-h peak radiation intensity exceeds 500 

W/m2. This radiation intensity threshold (disinfection 

threshold) is required for complete and irreversible bacterial 

inactivation, and whether or not it is exceeded on any particular 

day is an uncertain/random phenomenon that can only be 

predicted with a certain probability of success. For this reason, 

the operation of SODIS systems requires variable exposure 

period depending on the degree of cloud cover/radiation 

intensity [22–26]. To address the issue of variable 

weather/exposure period, SODIS guidelines [21] 

recommended 1-day exposure during sunny days when the 

weather is less than 50% cloudy and 2-day exposure when the 

weather is more than 50% cloudy as a practical way of 

achieving the disinfection threshold. To operate SODIS based 

on this recommendation would require a means of gauging 

cloud coverage on a day-to-day basis through the use of 

weather measuring devices that may be outside the reach of 

most rural communities of developing countries, whom 

SODIS targets. 

In the absence of such devices, the term “50% cloudy” 

cannot always be perceived by the mind and is liable to the 

vagueness and error of human judgement due to the diurnal 

variation in cloud cover. To make such a determination on a 

partially cloudy day would require daylong, undivided 

attention to the sky. Such mental focus will increase the 

drudgery and cognitive stress of the overall SODIS operation. 

Increased labour and uncertainty about exposure period may 

reduce user’s confidence in the efficacy of SODIS and curb 

people’s inclination to adopt this method. 

Other studies have attempted to model SODIS 

exposure period in terms of uncertain weather and water 

quality parameters, such as cloud cover, water turbidity, and 

pathogen concentration [23, 24]. However, the utility of such 

models to the end-users of SODIS is doubtful, because there 

are no known simple methods for measuring cloud cover and 

pathogen concentration without the use of expensive, high-

tech devices or methods. Again, models that depend on 

variable and uncertain parameters cannot be thoughtlessly 

used for the design of water treatment systems without a report 

on the reliability and confidence level of the model results [27, 

28]. The use of chemical/electronic UV dosimeter indicators 

as a visual measure of UV dose that provides complete and 

durable disinfection has been suggested as a way of removing 

the uncertainty [29–31].  

These methods are based on the degradation and 

discolouration of a chemical dye when a requisite irradiation 

dose has been received. However, dosimetric determination of 

exposure period using chemical dyes does not seem realistic in 

practice because it will increase the complexity of the 

treatment process and create a need for the establishment of a 

supply chain for such chemicals. Moreover, if a chemical 

substance is to be added to the water, it may as well be one that 

disinfects the water without creating an additional need for 

irradiation (e.g., chlorination) [21]. 

Whenever uncertainty and randomness are present, it 

is a general engineering practice to select an appropriate 

probabilistic model that can quantify such uncertainty so that 

it can be taken into account in parameter selection and design 

[32, 33]. Despite the stochastic nature of SODIS exposure 

period, no studies have used a probability theory to quantify 

the associated uncertainty in order to produce location- and 

season-specific exposure periods that capture the variations in 

radiation intensity. Therefore, the objective of this study is to 

propose and verify a probabilistic methodology, using 

geometric distribution to model and extract exposure period 

(days) from time series of historical insolation data in order to 

eliminate the uncertainty arising from variable 

weather/exposure period. An exposure period determined in 

this way will be a character of that location and season, i.e., a 

characteristic exposure period (CEP) 

 
 

2.0 FRAMING SODIS EXPOSURE PERIOD (DAYS) 

AS A GEOMERIC RANDOM VARIABLE 
A geometric random variable describes the number of 

trials until the first occurrence of success, assuming each trial 

has equal success probability. Exposure period, if viewed as 

the number of exposure days (trials) until the occurrence of a 

threshold day (success), can be interpreted and modelled as a 

geometric random variable. The key assumption here is that 

complete disinfection is only achieved if the SODIS is exposed 

on a threshold day, i.e, a day whose radiation intensity is higher 

that the disinfection threshold. Table 1 compared the properties 

of geometric distribution with those of SODIS exposure 

period. 

 

 

Table 1: Similarities between the properties of geometric random variable and exposure period 

Properties of a Geometric Random Variable Properties of SODIS Exposure Period in days 

(i) Consist of a series of independent trials. (i) Consist of a series of exposure days. 

(ii) Each trial results in two possible outcomes: 

success or failure. 

(ii) Each exposure day can either be above the disinfection 

threshold (success) or below the disinfection threshold (failure). 

(iii) The probability of success stays the same for 

every trial. 

(iii) The probability of meeting the disinfection threshold in a 

single trial stays the same in a short time frame (weekly, 

monthly). 
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The cumulative density functions (CDF) of geometric 

distribution is given by: 

 

∀𝒌 ∈ 𝑁,           𝐹𝑜(𝑘; 𝑝) = 1 − (1 − 𝑝)𝑘                              (𝑖) 

 

Where 𝑁 is a set of positive integers. 

 

Equation (i) gives the probability that the first 

occurrence of success (a day with the disinfection threshold) 

requires 𝑘 exposure days. Cumulative probability (𝐹𝑜) is 

also known as the probability of non-exceedance and can be 

expressed as the complement of exceedance probability 

(1 − 𝐹𝑜). It is formed by summing the probabilities of 

occurrence of all events less than 𝑘. Exceedance probability 

represents the risk of underexposure associated with a given 

exposure period. Exposure time for any month and location 

can be evaluated based on this risk.  

Making the exposure period 𝑘 in Equation (i) the 

subject, we have: 

 

 

𝑘 =
𝑙𝑜𝑔𝑒(1 − 𝐹𝑜)

𝑙𝑜𝑔𝑒(1 − 𝑝)
                                                                  (𝑖𝑖) 

 

 

If the parameter 𝑝 is known, the exposure period 𝑘 

can be evaluated for different exceedance probabilities (1 −
𝐹𝑜), (notably 10%, 5%, 1%) depending on the acceptable 

risk of underexposure. The greater the probability of 

exceedance the higher the risk of underexposure. The value 

of 𝑘 given by Equation (ii) is always a decimal fraction and 

has to be rounded up to the nearest whole number. The 

resulting 𝑘 is slightly higher and will provide some safety 

margins. The parameter 𝑝 is usually estimated from the data 

as 𝑝̂𝑛. Where 𝑝̂𝑛 is the maximum likelihood estimator of  𝑝 

, which is given by: 

 

∀𝒌 ∈ 𝑁, 𝑝̂𝑛 = (
1

𝑛
∑ 𝑘𝑖

𝑛

𝑖=1

)

−1

                                      (𝑖𝑖𝑖) 

 

Equation (iii) is the inverse mean of the observed 𝑘. 

 

The variability of SODIS exposure period matches 

the assumptions of geometric distribution listed above. If a 

disinfection threshold is chosen for SODIS, i.e., radiation 

dose that must be received in a day to ensure adequate 

treatment, solar energy data can be converted to exposure 

(days) as demonstrated in Table 2. The key assumption here 

is that effective and irreversible damage to microbial 

pathogens can only be achieved if the disinfection threshold 

is reached in a single day. Receiving less-than-threshold 

irradiation would not achieve complete and irreversible 

inactivation, even if the bottles remain exposed for days. 

. 

3.0 APPLICATION OF GEOMETRIC 

DISTRIBUTION FOR THE ESTIMATION OF 

EXPOSURE PERIOD 

3.1 Data Collection and Processing 

Southeastern Nigeria was used to demonstrate the 

proposed procedure for determining monthly characteristic 

exposure period (CEP). Thirty-five years of solar energy 

data (Jul. 1983 – Dec. 2018 daily all-sky insolation incident 

on a horizontal surface) were collected for 27 locations 

monthwise in Southeastern Nigeria (lat. 4.5 – 7.5oN, log. 6.5 

– 8.5oE) from the NASA geo-satellite database [34], which 

amounted to 324 datasets (27 locations multiplied by 12 

months). The data is available for 1
2⁄  × 1

2⁄   degree for 

the entire globe. The intersections of the lines of longitude 

and latitude in Figure 1 corresponds with the geographical 

locations whose CEPs were estimated.  

 

 

 
Figure 1: Map of Southeastern Nigeria divided into half by half 

degree NASA grid 

 
 

Truncated data for the location of Nsukka (6.80oN, 7.40oE) 

was reproduced in Table 2 to demonstrate the procedure for 

transforming solar energy data to exposure period. 
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Daily cumulative solar irradiance (insolation) value 

of 4 kWh/m2 was selected as the disinfection threshold for 

every location in Southeastern Nigeria.  However, the actual 

disinfection threshold will vary slightly from location to 

location, depending on the ambient air temperature and UV 

content of solar radiation. Preliminary studies show that the 

occurrence of 4 kWh/m2 can be associated with the 

occurrence of an average of 500 W/m2 for 5 h, which is the 

SODIS radiation threshold, water temperature of > 50 0C, 

and irreversible damage to bacterial pathogens in relatively 

clear SODIS water (< 10 NTU) contaminated to the tune of 

106 CFU/ml.  

Another study carried out in Southwestern Ethiopia 

reported irreversible damage of faecal coliform after 4 h of 

exposure in a region with a daily cumulative solar irradiance 

of 3.99 kWh/m2 [35]. 

 

Table 2: Procedure for Converting Solar Energy Data to Exposure Periods 

1 2 3 4 5 6 7 

SN Location 

coordinate 

Date (d/m/y) All-sky insolation on 

horizontal surface 

(kWh/m2) 

Cutoff 

Threshold 

(kWh/m2) 

Treatment/no 

treatment 

Exposure 

period (EP) 

(days) 

1 6.8oN, 7.4oE 1/7/1983 3.32 4.00 No treatment 2 

2 6.8oN, 7.4oE 2/7/1983 4.24 4.00 Treatment 1 

3 6.8oN, 7.4oE 3/7/1983 4.06 4.00 Treatment 1 

4 6.8oN, 7.4oE 4/7/1983 2.97 4.00 No treatment 2 

5 6.8oN, 7.4oE 5/7/1983 4.30 4.00 Treatment 1 

6 6.8oN, 7.4oE 6/7/1983 5.05 4.00 Treatment 1 

7 6.8oN, 7.4oE 7/7/1983 3.43 4.00 No treatment 2 

8 6.8oN, 7.4oE 8/7/1983 5.34 4.00 Treatment 1 

9 6.8oN, 7.4oE 9/7/1983 5.30 4.00 Treatment 1 

10 6.8oN, 7.4oE 10/7/1983 4.82 4.00 Treatment 1 

11 6.8oN, 7.4oE 11/7/1983 5.71 4.00 Treatment 1 

12 6.8oN, 7.4oE 12/7/1983 4.79 4.00 Treatment 1 

13 6.8oN, 7.4oE 13/7/1983 4.16 4.00 Treatment 1 

14 6.8oN, 7.4oE 14/7/1983 3.98 4.00 No treatment 4 

15 6.8oN, 7.4oE 15/7/1983 3.87 4.00 No treatment 3 

16 6.8oN, 7.4oE 16/7/1983 2.48 4.00 No treatment 2 

17 6.8oN, 7.4oE 17/7/1983 4.02 4.00 Treatment 1 

18 6.8oN, 7.4oE 18/7/1983 4.95 4.00 Treatment 1 

19 6.8oN, 7.4oE 19/7/1983 4.51 4.00 Treatment 1 

20 6.8oN, 7.4oE 20/7/1983 4.17 4.00 Treatment 1 

21 6.8oN, 7.4oE 21/7/1983 5.44 4.00 Treatment 1 

22 6.8oN, 7.4oE 22/7/1983 4.39 4.00 Treatment 1 

23 6.8oN, 7.4oE 23/7/1983 4.50 4.00 Treatment 1 

24 6.8oN, 7.4oE 24/7/1983 4.13 4.00 Treatment 1 

25 6.8oN, 7.4oE 25/7/1983 4.37 4.00 Treatment 1 

26 6.8oN, 7.4oE 26/7/1983 4.59 4.00 Treatment 1 

27 6.8oN, 7.4oE 27/7/1983 4.23 4.00 Treatment 1 

28 6.8oN, 7.4oE 28/7/1983 3.78 4.00 No treatment 5 

29 6.8oN, 7.4oE 29/7/1983 3.12 4.00 No treatment 4 

30 6.8oN, 7.4oE 30/7/1983 2.10 4.00 No treatment 3 

31 6.8oN, 7.4oE 31/7/1983 3.76 4.00 No treatment 2 

. . . . . . . 

. . . . . . . 

. . . . . . . 

12968 6.8oN, 7.4oE 31/12/2018 5.42 4.00 Treatment 1 
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3.2 Model formulation and performance evaluation 

As shown in Equation (ii) based on the inverse 

transformation of the cumulative density function (CDF) of 

geometric distributions 

 

𝑘 =
𝑙𝑜𝑔𝑒(1 − 𝐹0)

𝑙𝑜𝑔𝑒(1 − 𝑝̂𝑛)
                                                                 (𝑖𝑣) 

 

 

Where “𝑙𝑜𝑔𝑒” is the natural logarithm; Fo and p̂n 

are the same as in Equation (ii). 

For 95% confidence level (or 5% exceedance of exposure 

periods); that is, Fo = 0.95, Equation (iv) becomes 

 

𝐾𝑐𝑒𝑝 =
−2.996

𝑙𝑜𝑔𝑒(1 − 𝑝̂𝑛)
                                                             (𝑣) 

 

Where 𝑘𝑐𝑒𝑝 is the theoretical estimate of the CEP 

such that only 5% of exposure periods fall above 𝑘𝑐𝑒𝑝. Once 

p̂n is computed for any month, Equation (v) can be used to 

estimate the 𝑘𝑐𝑒𝑝. Setting Fo = 0.95 guarantees that the 

estimated values of 𝑘𝑐𝑒𝑝 (days) have a 95% chance of 

containing at least a day whose total radiation energy 

exceeds the selected disinfection threshold value of 4  

kW/m2.  

Using Equation (v), 𝑘𝑐𝑒𝑝 for the 324 datasets, 

representing 27 locations in Southeastern Nigeria (January 

to December) was determined. The parameter, p̂n, was 

estimated for each month using 60 data points of EP 

randomly selected from the 35 years of EPs. The model 

performance was evaluated by comparing the observed and 

estimated CEPs (𝑘𝑐𝑒𝑝) for all the months and locations 

using a multiclass confusion matrix (matching matrix). The 

confusion matrix features the frequencies of the observed 

and predicted CEPs in a format that allows the visualisation 

of the model performance. The generalised formulae and 

derivations for comparing the actual and the predicted 

classes in confusion matrix are in Garillos-Manliguez [36]. 

 

3.3 Goodness-of-Fit Test 

Anderson-Darling (AD) goodness-of-fit (GOF) test 

was used to test the hypothesis of geometric distribution. 

Anderson-Darling test is the most powerful among the GOF 

tests that are based on empirical density function (EDF) and 

is used as a benchmark for comparing the power of other 

GOF statistics [37–39]. It is suitable when the data are small 

and the sample takes observed values comprising lots of 1s 

and 2s [38]. This is largely the case with the observed 

exposure periods in Southeastern Nigeria, especially for the 

sunny months. 

If Fn is the empirical density function (EDF) of the 

sample K1, …, Kn, 

 

∀𝑘 ∈ 𝑁, 𝑭𝒏(𝑘) =
1

𝑛
∑ 1(𝐾𝑖 ≤ 𝑘)

𝑛

𝑖=1

                               (𝑣𝑖) 

 

The general principle of the EDF test is to reject the 

null hypothesis if the 𝐅𝐧 and Fo are significantly different, 

where Fo is the cumulative density function (CDF) of a 

geometric distribution given in Equation (i).  

The AD statistic is generally given as 

 

 

AD =  n ∑
[𝐅𝐧(k) − Fo(k)]2[Fo(k) −  Fo(k − 1)]

Fo(k)(1 −  Fo(k))

∞

k=1

  (𝑣𝑖𝑖) 

 

 

The statistic was further developed to provide GOF 

test for discrete and geometric distribution [38, 40]: 

 
AD

= n ∑
[𝐅𝐧(k) − Fo(k; p̂n)]2[Fo(k; p̂n) − Fo(k − 1; p̂n)]

Fo(k; p̂n)(1 −  Fo(k; p̂n))

∞

k=1

 (𝑣𝑖𝑖𝑖) 

 

 

To compute the AD statistic, the sum must be finite. 

Henze [40] gave a truncation criterion:Ml = 1; 
 

 

Mu =  min {k ≥ K(n);  (1 − Fo(k; p̂n))
3

 ≤  10−4

n⁄ } (𝑖𝑥) 

So that: 

 

 
AD

=  n ∑
[𝐅𝐧(k) −  Fo(k; p)]2[Fo(k; p̂n) − Fo(k − 1; p̂n)]

Fo(k; p̂n)(1 −  Fo(k; p̂n))

Mu

k=Ml

   (𝑥) 

 

 

The critical values (𝐶𝛼) were estimated by the 

parametric bootstrap method. To do this, the inverse 

function of Fo(k; p̂n) was used to simulate 10,000 

replications of each of the 324 datasets using Scilab (version 

5.5.2). Anderson-Darling (AD) statistic was computed for 

each of the 10,000 samples. The critical values (Cα) were 

estimated as the empirical percentile of order  (1 −  α) for 

all the values of AD statistics computed from the 

replications, where α is the significant level of a p − value. 

The null hypothesis is rejected if the value of the AD 
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statistic is greater than Cα. The significant level (α) was 

chosen as 0.05 (i.e. 5% level of significance) for all the test. 

Henze [40] validated this method by showing that as n and 

N tends to infinity, the significant level of the test tends to 

α. 

 

4.0 RESULTS AND DISCUSSION 

The maps of monthly CEPs estimated for the region 

of Southeastern Nigeria are shown in Figures 2 – 3. The 

CEPs were determined based on the inverse cumulative 

density function (CDF) of geometric distribution given in 

Equation (v). The parameter, p̂n , for each month and 

location was estimated from 60 data point of exposure 

periods (EP) values (equivalent to 2 years of solar energy 

data) randomly selected from the 35 years of EPs computed 

from the NASA solar energy data for the corresponding 

locations. Monthly estimates of CEP, 𝑘𝑐𝑒𝑝, is defined as the 

value of EP (days) such that only 5% of the observed EPs 

for that month are higher than 𝑘𝑐𝑒𝑝. The numbers contained 

in the maps are the estimated CEPs. They are displayed at 

the coordinates of the geographical location they represent, 

which correspond with the points of intersection between 

the lines of longitude and latitude. The same shade of grey 

was used to represent locations of equal CEPs so that 

SODIS users, just by knowing their location in the region, 

could select the appropriate CEPs for the application of 

SODIS.  

To validate the procedure, the estimated CEPs 

(𝑘𝑐𝑒𝑝) for all the locations and months were compared with 

the observed CEPs using the confusion matrix shown in 

Table 3. The observed CEPs were computed as the 95th 

percentile of the 35 years of monthly exposure periods. The 

main diagonal values in bold texts (from top left of the 

matrix down to bottom right corner) represent the frequency 

of accurate estimations, i.e., the number of times the 

estimated equals the observed. The overall accuracy, which 

is the proportion of accurate estimation, is 83 %, suggesting 

a reliable model for the prediction of exposure period.  

However, the accuracy of the estimation decreased with 

increasing values of CEP. It remained acceptably high until 

the CEP value of 4 days, after which the performance of the 

model declined drastically. 

The low estimation accuracy of the model for CEP 

values higher than 4 days may not affect the utility of the 

model, since the use of SODIS in regions where more than 

4 days of exposure is required is hardly recommended [21]. 

The guidelines recommend the use of other household water 

treatment and safe storage (HWTS) options in such 

situations [21].  

Moreover, extended exposure periods could render 

SODIS laborious and unattractive. Therefore, obtaining a 

CEP value of greater than 4 using the model may as well 

serve as an indication that SODIS will not work well for that 

particular month and location. 
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Figure 2: Maps of characteristic exposure periods (CEPs) for Southeastern Nigeria (January to June) 
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Figure 3: Maps of characteristic exposure periods (CEPs) for Southeastern Nigeria (July to December) 

 

 

Table 3: Confusion matrix and the class frequencies of the observed and estimated CEPs for different month and location 

in Southeastern Nigeria 

  Estimated CEPs  
CEP 

(Days) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Acc. 

(%) 

O
b

se
rv

ed
 C

E
P

s 

1 82 6 0 0 0 0 0 0 0 0 0 0 0 0 93.2 

2 0 114 1 0 0 0 0 0 0 0 0 0 0 0 99.1 

3 0 5 39 2 0 0 0 0 0 0 0 0 0 0 84.8 

4 0 0 0 24 0 0 0 0 0 0 0 0 0 0 100 

5 0 0 0 7 10 0 0 0 0 0 0 0 0 0 58.8 

6 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 2 4 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 6 2 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

 

Maps displaying monthly CEPs, such as the ones 

shown in Figure 2 – 4, can be developed to assess the 

applicability of SODIS in any region of the world. The 

probability model presented in this document proved to be 

an effective tool for estimating monthly CEPs for this 

purpose. Presenting the estimated monthly CEPs as maps 

will improve the utility of the model results, especially 

among rural users. It will also clear up the confusion and 

uncertainty arising from variable weather/exposure period, 

thereby minimizing the risk of underexposure and incorrect 

application of SODIS. 

One would only need to obtain daily insolation 

values of the location (say, from NASA) and convert the 

data to exposure periods in order to calibrate the model. The 
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NASA data should be applied with caution because their 

spatial resolution does not capture the presence of 

microclimates within 1
2⁄  ×  1 2⁄   degree longitude and 

latitude, which can cause inaccurate predictions for specific 

locations [41]. This means that the model estimations can 

only be as accurate as the solar energy data used in 

calibrating the model. Therefore, even though NASA data 

was used to validate the probability model, actual ground 

measurement of solar radiation should be used to estimate 

the model parameter if available. 

Exposure period has an implication on SODIS 

productivity (litre/day), PET utilisation, and labour input for 

SODIS operation. The maps will allow potential users to 

weigh these factors in the context of other HWTS 

technologies in order to determine if and when to use 

SODIS, depending on preference and the capacity of their 

resources. The maps will also eliminate the cognitive stress 

associated with day-to-day gauging of cloud cover 

recommended by the guidelines for SODIS users [21], and 

replace it with the simple task of knowing the current month 

and one’s location in their region. Locations and months 

unsupportive of the SODIS process can be easily identified 

on the maps. 

The need to be certain of complete inactivation at 

all times led to an unusually high estimate of exposure 

periods displayed in some locations, even when treatment 

could well be affected long before the end of the CEP. For 

example, location (5.0oN, 8.0oE) in July has an estimated 

exposure period of 10 days to stand a 95% chance of 

meeting the radiation threshold, but two days of exposure in 

the same location and month would give more than 50% 

chance of meeting threshold. Therefore, it should be noted 

that this study focused on recommending exposure periods 

that will work at all times in order to prevent underexposure 

and incorrect application of SODIS. Such a long exposure 

period could be relaxed if SODIS users are certain of the 

operating solar radiation and water temperature. 

 

5.0 CONCLUSIONS 

A methodology/model for estimating SODIS 

exposure period based on the cumulative density function 

(CDF) of geometric distribution has been presented. The 

methodology can always be applied to determine the 

characteristic exposure period (CEP) for any location in the 

world once solar radiation data are available. CEP 

represents a fixed, location-specific exposure period that 

captures and quantifies the day-to-day variation in cloud 

cover depending on the acceptable risk of underexposure. 

This is better than relying on the vagueness of human 

judgement to determine days that met the disinfection 

threshold, which could lead to massive underexposure and 

incomplete disinfection. The model demonstrated 

satisfactory prediction accuracy and is adequate for its 

purpose. Presenting the exposure periods obtained from the 

model in the form of maps could be a valuable tool in 

regions where there is high variability in cloud cover and 

there are no solar measuring devices to gauge the degree of 

cloud coverage. 
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