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Abstract  

In this work, a new 3-D modified trigonometric displacement model was used to study the structural behavior 

and bending analysis of rectangular thick plate which was clamped in one edge and other three edges simply 

supported. The theoretical model whose formulation is based on static elastic principle as already reported in 

the literature are presented herein, obviating the shear correction coefficients while considering shear 

deformation effect and transverse normal strain/stress in the analysis. The equilibrium equations are obtained 

using 3-D kinematic and constitutive relations. An exact solution of deflection and rotation are obtained from the 

equilibrium equation using the general variational principle. The minimization, energy equation yields the 

general equation which was used to obtain the 3-D trigonometric displacement model of the plate. The percentage 

difference between the present work and those of 2-D Refined Plate Theory (RPT) with an assumed displacement 

and 2-D Refined plate theory (RPT) with derived function is 1.43% and 5.15% respectively. More so, percentage 

difference between the present work and those using polynomial shape function is 3.29%. The result showed that 

the 3-D trigonometric model for the present work predicts the vertical displacement and the stresses more 

accurately than RPT and polynomial displacement model. It is concluded that the 3-D trigonometric model gives 

an exact solution unlike polynomial and can be used with confidence in the analysis of thick plate under the 

particular initial condition. 

 

Keywords: Structural bending behavior, new 3-D modified theory, trigonometric displacement model, CSSS 

thick plate. 
                                   

 

1.0  INTRODUCTION 

A plate is basically a three-dimensional structural 

element with its thickness lesser than the other parallel 

and plane surfaces [1], whose applications spans 

across mechanical, marine, naval, aerospace, 

geotechnical and structural engineering [2], for 

customizing offshore and port foundations, ship hulls, 

retaining walls, railway structures and floor slabs [3]. 

 

Categorically, plates can be orthotropic, anisotropic, 

or isotropic based on their material properties and 

deformation nature; based on its shape, they can be 

triangular, square, circular, or rectangular [4-6]; as 

regards to support conditions, plates are either 

clamped, free or simply supported at their edges, and 

they can be thin, moderately thick, or thick according  

to their weight [7-9]. Considering span-to-depth ratio 

in [10], rectangular plates with 40 ≤ a/t ≤ 100 are 

grouped as thin plate, 20 ≤ a/t ≤ 40 as moderately thick 

and a/t ≤ 15 as thick plate. 

 

The significance desirable features of thick plates 

includes; extreme fatigue strength, high strength to 

weight, high stiffness to weight, excellent corrosion 

resistance, low density and improved tailor ability, 

have increased their demand in different industries 
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[11]. The behavior of thick plates can be studied 

through dynamic analysis, stability analysis and static 

analysis [12].  

 

The deformation of thick plates at right angles to the 

plate surface because of the influence of forces and 

moments is regarded as bending [13]. Structural 

elements are displaced with induced stresses as loads 

are applied and to resist these loads, the structure 

becomes prone to bending.  The elasticity of plates 

largely depends on their thickness property as 

transverse loads are resisted through their bending 

behavior [14, 15].   

 

In order to capture the bending characteristics of thick 

plates, researchers have invented and advanced 

assorted theories; the Classical Plate Theory (CPT) 

which is commonly regarded a Kirchhoff Plate Theory 

[16], and Refined Plate Theories (RPT). RPT consists 

of First Order Shear Deformation Theory (FSDT), 

Second Order Shear Deformation Theory (SSDT), 

Exponential Shear Deformation Theory (ESDT) [17], 

Polynomial Shear Deformation Theory (PSDT) [18], 

Trigonometric Shear Deformation Theory (TSDT) 

[19] and the Higher Order Shear Deformation Theory 

(HSDT) [20]. The exact bending attributes of thick 

plates cannot be determined with CPT as it neglects 

the upshot of transverse shear [21]. FSDT was 

presented with the incorporation of correction factor 

[22, 23] to conquer the drawback of CPT so as to 

obtain a desired result. 

 

HSDTs were developed to take into account the effect 

of shear deformation in the absence of correction 

factor [24, 25], and to predict accurately the structural 

bending behavior of isotropic thick plates. However, 

the omission of normal stress and strain along the 

thickness axis of the plate, makes the RPT 

unpredictable; hence it is considered as a 2-D theory 

or an incomplete 3-D theory [26]. A typical a 3D 

theory is required in order to obtain exact bending 

solutions for a 3-D structural element and this 

endorses the essence of this study.  

 

The bending behavior of thick plates can be 

investigated using different methods such as 

numerical methods (approximate approach) and the 

analytical methods (closed-form approach) [27].  In 

[28, 29, 6], analytical method was employed to 

analyze the bending of plates with varying loads and 

boundary conditions. This method which includes 

integral transform method, Eigen expansion methods, 

Navier and Levy series; satisfies the governing 

equations of the plate at the edges of the plate and at 

every position on the plate surface [21]. 

The authors in [30, 31, 32, 33], employed numerical 

approach which gives approximate solutions and they 

are challenging to obtain in complicated bending 

problems. This study applied a close form approach to 

energy method to obtain its exact solution for the 

bending problem of thick isotropic plates elastically 

restrained along one edge and other three edges simply 

supported (CSSS).  
 
1.1  LITERATURE REVIEW 

The bending behavior of rectangular Kirchhoff plates 

was analyzed by Ike [34] and Nwoji et al. [35] using 

Kantorovich-Galerkin method and Ritz method 

respectively. With one term Kantorovich-Galerkin 

solution, the deflection and bending moment 

coefficients for deflection at the center of the plates 

under uniform load were derived in [34] while the 

authors in [35] obtained exact solutions using exact 

shape functions and had similar outcomes when 

compared with Navier double Fourier sine series 

method. Both authors could not address thick plates as 

their assumption is restricted to CPT which cannot 

give a good outcome for a relatively thick plate. They 

also did not consider plates with CSSS support 

conditions. The authors did not apply the Three 

Dimensional (3-D) plate theory with energy approach 

and trigonometric function. 

 

Hyperbolic shear deformation theory and Fourier 

series method were employed by Ike [36] to ascertain 

the blending solution for thick beams without the 

application of FSDT’s shear correction factors. Using 

hyperbolic sine and cosine functions, transverse shear 

stress free conditions at the upper and lower surfaces 

of the beam were achieved in the study. CSSS plate 

boundary conditions were not covered in the study. 

The author did not employ trigonometric functions 

and three-dimensional plate theory. With the 

application of virtual work principle, HSDT was 

analytically used by Ghugal and Gajbhiye [37] to 

solve the bending problem of simply supported plates. 

They evaluated the effect of strain and shear 

deformation in their study neglecting the use of shear 

correction factor associated with FSDTs. The 3-D 

plate theory was not addressed in their study and 

plates with CSSS edge conditions were not taken into 

account.  

 

RPT with exponential functions was used by Sayyada 

and Ghugal [17] to analyze displacement and stresses 

for simply supported thick plates. The solution obtains 

in their work was sufficiently good when juxtaposed 

with other refined plate theories. The authors did not 

cover CSSS plates and the trigonometric displacement 
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function was not applied. The 3-D plate theory was not 

considered. Onyeka et al. [3] and [38] evaluated the 

lateral critical imposed load of isotropic plates using 

polynomial shear deformation theory.  In [38], they 

studied the effect of aspect ratio, shear and deflection 

on the critical lateral load of the plates using the direct 

variational method.  Both authors failed to employ 3-

D trigonometric plate theory and plates with CSSS 

support conditions were not covered. 

 

The 2-D plate theories with trigonometric and 

polynomial displacement function was applied to 

analyze the bending of thick plates by Mantari et al. 

[39] and Onyeka and Okeke [40], respectively. In 

[40], the trigonometric displacement model was not 

presented. The authors in [39, 40] did not address the 

stresses and strain in the thickness axis and could not 

cover plates with CSSS edge conditions. The in-plane 

displacements, deflections, moments, shear force, 

with the deformation rotations at the plate with two 

opposite edges clamped and simply supported (CSCS) 

arbitrary points was investigated by Onyeka et al. [41] 

using Refined Plate Theory (RPT) with polynomial 

function. Their study is not valid for a typical three-

dimensional equilibrium equation as an incomplete 3-

D elasticity theory was applied. The CSSS thick plates 

were not taken into consideration. 

 

Ibearugbulem et al. [42], Onyeka and Mama [26], 

analyzed the bending of thick plates with simply 

supported edges. In [26], direct variational energy 

with trigonometric shape functions was used. In [42], 

exact polynomial displacement functions were 

derived from the governing equation with an 

analytical technique. Although both authors employed 

3-D plate’s theory, their analysis did not cover plates 

with CSSS boundary conditions. Hadi et al [43] 

employed three-dimensional elasticity theory with a 

numerical approach to examine the bending of 

rectangular plates made of functionally graded 

material with the variable exponential properties. 

They investigated the influence of graded material 

properties on the plate’s behavior. The authors did not 

consider trigonometric functions and CSSS plates. 

 

Onyeka et al. [46] studied the bending analysis of 

thick plate while Ibearugbulem et al. [47] studied 

bending analysis of all clamped (CCCC) rectangular 

thick plate using higher order shear deformation 

theory based on Ritz energy method and the 

displacement function based on polynomial function. 

They formulated the total potential energy equation of 

the plate and ensured that the transverse shear stress 

from constitutive relation that satisfied zero shear 

stress condition on the top and bottom surfaces of the 

plate.  They did not derive the displacement function 

from the elasticity theory rather an assumed shape 

function was used which could not produce a close 

form solution thereby mathematically unreliable for 

the thick plate analysis. More so, they could not apply 

a complete 3-D theory of elasticity which is capable 

of analysing all the stress element in the plate material, 

rather 2-D Ritz theory was used. The work in [47] 

could not study the bending analysis of rectangular 

thick plate which was clamped in one edge and other 

three edges simply supported (CSSS) rather their work 

was limited to the plate that is clamped at all the edges. 

  

In contrast to previous studies, the uniqueness of this 

study stems from its analytical approach, application 

of 3-D elasticity theory, the use of trigonometric 

functions and the boundary condition of the thick 

plate. The studies reviewed shows that most 

researchers considered numerical approach and 

polynomial functions or exponential function [40, 41, 

42, 43, 45, 46]. Approximate solutions produced by 

this approach coupled with the impossibility in the 

determination of displacements at any point in the 

plate; is a gap worth filling.  

 

The outcome of polynomial functions tends to infinity 

whereas the application of trigonometric function 

employed in this study, yields closed-form solution. 

Also, the need for analyzing a typical three-

dimensional plate structure with a 3-D plate theory 

validates the relevance of this study. The aim of this 

work is to investigate the structural behavior and 

bending of rectangular plates elastically restrained 

along one edge and other three edges simply supported 

(CSSS), using a modified 3-D trigonometric 

displacement model to consider the effect of 

deflection and stresses on the plate. 

 

2.0  METHODOLOGY 

Using the thick plate assumption (see [46]), the in-

plane displacements along x-axis and y axis 𝑢 and 𝑣 

are given as: 

 

𝑢 = 𝑡𝑠. 𝑠𝑥                                                                       (1) 

𝑣 = 𝑡𝑠. 𝑠𝑦                                                                      (2) 

 

Thereafter, the total potential energy which is the 

summation of the dot product of stress, strain and 

external work done in the plate is mathematically 

expressed as ([46]): 
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=
𝐷∗𝑎𝑏

2𝑎2
∫ ∫ [(1 − 𝜇) (

𝜕𝜃𝑠𝑥

𝜕𝑅
)

2

+
1

𝛽

𝜕𝑠𝑥

𝜕𝑅
.
𝜕𝑠𝑦

𝜕𝑄

1

0

1

0

+
(1 − 𝜇)

𝛽2
(

𝜕𝑠𝑦

𝜕𝑄
)

2

+
(1 − 2)

2𝛽2
(

𝜕𝑠𝑥

𝜕𝑄
)

2

+
(1 − 2)

2
(

𝜕𝑠𝑦

𝜕𝑅
)

2

+
6(1 − 2)

𝑡2
(𝑎2𝑠𝑥

2 + 𝑎2𝑠𝑦
2 + (

𝜕𝑤

𝜕𝑅
)

2

+
1

𝛽2
(

𝜕𝑤

𝜕𝑄
)

2

+ 2𝑎. 𝑠𝑥

𝜕𝑤

𝜕𝑅
+

2𝑎. 𝑠𝑦

𝛽

𝜕𝑤

𝜕𝑄
) +

(1 − 𝜇)𝑎2

𝑡4
(

𝜕𝑤

𝜕𝑆
)

2

] 𝑑𝑅 𝑑𝑄

− ∫ ∫ 𝑎𝑏𝑞ℎ𝐴1𝜕𝑅𝜕𝑄 
1

0

1

0

                                                       (3) 

 

Let: 

𝐷∗ =
𝐸𝑡3

12(1 + 𝜇)(1 − 2𝜇)
                                           (4) 

 

 

Where: 

𝐷∗, 𝐸 𝑎𝑛𝑑 𝜇 are the Rigidity, modulus of elasticity 

and Poisson’s ratio 

𝜃𝑠𝑥 and 𝜃𝑠𝑦 are the shear deformation rotation along 

x axis and y axis 

 

2.1  GOVERNING EQUATION 

The solution of the governing equation is presented as 

the result of energy functional minimization with 

respect to deflection to give the exact plate’s shape 

function (see [44]): 

 
ℎ 

= [1   𝑅   𝐶𝑜𝑠 (𝑐1𝑅)  𝑆𝑖𝑛 (𝑐1𝑅)] [

𝑎0

𝑎1
𝑎2

𝑎3

]. 

[1   𝑄   𝐶𝑜𝑠 (𝑐1𝑄)  𝑆𝑖𝑛 (𝑐1𝑄)] [

𝑏0

𝑏1

𝑏2

𝑏3

] /𝐴1                             (5) 

 

Let: 

∪ = 𝐴1. ℎ                                                                         (6) 

𝑠𝑥 =
𝐴2

𝑎
.
𝜕ℎ

𝜕𝑅
                                                                 (7) 

𝑠𝑦 =
𝐴3

𝑎𝛽
.
𝜕ℎ

𝜕𝑄
                                                                (8) 

 

Where; 𝐴2 and 𝐴3  are the coefficient of shear 

deformation along x axis and coefficient of shear 

deformation along y axis respectively. 

 

Substituting Equation (6), (7) and (8) into (3), gives: 

 


=
𝐷∗𝑎𝑏

2𝑎4
[(1 − 𝜇)𝐴2

2𝑘𝑥  

+
1

𝛽2
[𝐴2. 𝐴3 +

(1 − 2)𝐴2
2

2
+

(1 − 2)𝐴3
2

2
] 𝑘𝑥𝑦

+
(1 − 𝜇)𝐴3

2

𝛽4
𝑘𝑦

+ 6(1 − 2) (
𝑎

𝑡
)

2

 ([𝐴2
2 + 𝐴1

2 + 2𝐴1𝐴2]. 𝑘𝑧

+
1

𝛽2
. [𝐴3

2 + 𝐴1
2 + 2𝐴1𝐴3]. 𝑘2𝑧)

−
2𝑞𝑎4𝑘ℎ𝐴1

𝐷∗
]                                                                       (9) 

 

 

𝑊ℎ𝑒𝑟𝑒: 𝑘𝑧 = ∫ ∫ (
𝜕ℎ

𝜕𝑅
)

2
1

0

1

0

𝑑𝑅𝑑𝑄; 𝑘2𝑧 = ∫ ∫ (
𝜕ℎ

𝜕𝑄
)

2

𝑑𝑅𝑑𝑄

1

0

1

0

; 

𝑘𝑥 = ∫ ∫ (
𝜕2ℎ

𝜕𝑅2
)

2

𝑑𝑅𝑑𝑄;

1

0

1

0

 

𝑘𝑥𝑦 = ∫ ∫ (
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

𝑑𝑅𝑑𝑄;

1

0

1

0

𝑘𝑦 = ∫ ∫ (
𝜕2ℎ

𝜕𝑄2
)

2

𝑑𝑅𝑑𝑄;

1

0

1

0

 

𝑘ℎ = ∫ ∫ ℎ .  𝑑𝑅𝑑𝑄

1

0

;

1

0

 

 

Minimizing Equation (9) with respect to 𝐴2 and 𝐴3 

and simplifying the outcome gives: 

 

𝐴2 = 𝑀𝐴1                                                                     (10) 

𝐴3 = 𝑁𝐴1                                                                     (11) 
 

Let: 

𝑀 =
(𝑟12𝑟23 − 𝑟13𝑟22)

(𝑟12𝑟12 − 𝑟11𝑟22)
                                              (12) 

𝑁 =
(𝑟12𝑟13 − 𝑟11𝑟23)

(𝑟12𝑟12 − 𝑟11𝑟22)
                                               (13) 

 

Where: 

𝑟11 = (1 − 𝜇)𝑘𝑥 +
1

2𝛽2
(1 − 2)𝑘𝑥𝑦

+ 6(1 − 2) (
𝑎

𝑡
)

2

𝑘𝑧                           (14) 

𝑟22 =
(1 − 𝜇)

𝛽4
𝑘𝑦 +

1

2𝛽2
(1 − 2)𝑘𝑥𝑦 +

6

𝛽2
(1 − 2) 

(
𝑎

𝑡
)

2

𝑘2𝑧                                                                                  (15) 

𝑟12 = 𝑟21 =
1

2𝛽2
𝑘𝑥𝑦;  𝑟13 = −6(1 − 2) (

𝑎

𝑡
)

2

𝑘𝑧; 

𝑟23 = 𝑟32 = −
6

𝛽2
(1 − 2) (

𝑎

𝑡
)

2

𝑘2𝑧                                (16) 
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Minimizing Equation (9) with respect to A1 

simplifying gives: 

 

𝐴1 =
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)                                                          (17) 

 

𝑊ℎ𝑒𝑟𝑒: 𝑇 = 6(1 − 2) (
𝑎

𝑡
)

2

∗ ([1 + 𝑈]. 𝑘𝑧 +
1

𝛽2
. [1 + 𝑉]. 𝑘2𝑧)  (18) 

 

2.2  INITIAL/BOUNDARY CONDITION 

A rectangular thick plate with CSSS boundary 

conditions whose Poisson’s ratio is 0.3 and carrying 

uniformly distributed load (including self-weight) 

shown in the Figure 1 is presented as problem of this 

study.  

 

 
 

Figure 1:   CSSS Rectangular Plate 

 

The analytical particular solution of the trigonometric 

deflection function of the plate after satisfying the 

boundary conditions of the structure in Figure 1 is 

given as (see [44]): 

  

∪= 𝐴1(𝑆𝑖𝑛 𝜋𝑅). ( 𝑓1 − 𝑓1𝑄 − 𝑓1𝐶𝑜𝑠 𝑓1𝑄
+ 𝑆𝑖𝑛 𝑓1𝑄)                                      (19) 

 

 

2.3  EXACT DISPLACEMENT AND STRESS 

EXPRESSION 

Substituting the value of 𝐴1 in Equation (17), 𝐴2 

Equation (10) and 𝐴3 in Equation (11) into Equation 

(1&2) and simplify, the in-plane displacement along x 

and y-axis becomes: 

 

𝑢

= 𝑡𝑠.
𝑀

𝑎
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

𝜕ℎ

𝜕𝑅
                                                (20) 

𝑣

= 𝑡𝑠.
𝑁

𝑎𝛽
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

𝜕ℎ

𝜕𝑄
                                               (21) 

 

Substituting the value of 𝐴1 in Equation (17) into 

Equation (19) and simplify, the deflection equation of 

the plate becomes: 

 

∪ 
= (𝑆𝑖𝑛 𝜋𝑅). ( 𝑓1 − 𝑓1𝑄 − 𝑓1𝐶𝑜𝑠 𝑓1𝑄

+ 𝑆𝑖𝑛 𝑓1𝑄).
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)                                                  (22) 

 

Substituting the value of 𝐴1, 𝐴2 and 𝐴3 in Equation 

(17), (10) and (11) into Equation (3) – (8) and simplify 

appropriately, the six stress elements becomes: 

 
𝑥

=
E

(1 + μ)(1 − 2μ)
[ (1 − μ) 

ts

a
.
∂2ℎ

∂𝑅2
+ 

ts

aβ
.

∂2ℎ

∂𝑄2

+ 
1

t
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

∂h

∂S
]                                                           (23) 

𝑦

=
E

(1 + μ)(1 − 2μ)
[
ts

𝑎
 .

∂2ℎ

∂𝑅2
+

(1 − 𝜇)ts

𝑎𝛽
.
∂2ℎ

∂𝑄2

+


𝑡
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

∂h

∂S
]                                                              (24) 

𝑧

=
E

(1 + μ)(1 − 2μ)
[
ts

𝑎
 .

∂2ℎ

∂𝑅2
+
ts

𝑎𝛽
.

∂2ℎ

∂𝑄2

+
(1 − 𝜇)

𝑡
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

∂h

∂S
]                                                  (25) 

 

𝑥𝑦  

=
𝐸(1 − 2)

(1 + 𝜇)(1 − 2𝜇)
. [

ts

2𝑎𝛽
.

∂2𝜕ℎ

∂𝑅 ∂𝑄
+

ts

2𝑎
.

∂2𝜕ℎ

∂𝑅 ∂𝑄
]        (26) 

𝑥𝑧  

=
(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
. [

1

2

∂h

∂𝑅
+

1

2𝑎
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

𝜕ℎ

𝜕𝑅
]         (27) 

𝑦𝑧

=
(1 − 2)𝐸

(1 + 𝜇)(1 − 2𝜇)
. [

1

2

∂h

∂𝑄
+

1

2𝑎𝛽
.
𝑞𝑎4

𝐷∗
( 

𝑘ℎ

𝑇
)

𝜕ℎ

𝜕𝑄
]       (28) 

 

3.0  RESULT AND DISCUSSION  
The result covered the 3-D bending and stress analysis 

of rectangular plate at varying length, breadth and 

thickness of the plate. This work presents the result of 

the analysis between the aspect ratio of 1, 1.5 and 2, 

while the span-thickness ratio considered is ranged 
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between 4, 5, 10, 15, 20, 50, 100 and CPT, which is 

obviously seen to span from the thick plate, 

moderately thick plate and thin plate (see [11]). 

 

The non-dimensional result in the Figure 2 and 3 

shows that an increase in the aspect ratio of the plate, 

increases the displacements (u, v and w) and stresses 

(𝜎𝑥 , 𝜎𝑦, 𝜎𝑧, 𝜏𝑥𝑦, 𝜏𝑥𝑧 and 𝜏𝑦𝑧) that may occur due to 

the applied load on the plate section. On the other 

hand, the results in the Figure 2 and 3 shows that as 

the span-thickness ratio of the plate increase, the in-

plane displacement along x and y axis (u and v) and 

the deflection (w) which occurs at the plate due to the 

uniformly distributed load decrease. Similarly, the 

stress perpendicular to the x, y and z axis (𝜎𝑥 ,
𝜎𝑦 & 𝜎𝑧) decreases as the span-depth ratio of the plate 

increases. Meanwhile, the increase in the span-

thickness ratio of the plate decreases the value of the 

shear stress (𝜏𝑥𝑦, 𝜏𝑥𝑧 and 𝜏𝑦𝑧) in the plate. This means 

that an increase in the ratio of span - depth causes a 

decrease in the value of the stress could arise due to 

shear deformation of the plate. It can be deduced that, 

further span increase without a commensurate 

increase in the thickness of the plate element results to 

failure in the plate structure. Hence, the plate structure 

deflects beyond the elastic yield stress and thus, can 

fail without further increase in the load.  

 

 
Figure 2:  Displacements and stresses of a CSSS 

rectangular plates with aspect ratio of 1. 

 

Figure 2 shows that, at a span-thickness ratio between 

4, 5, 10 and 15, the value of out of plane displacement 

varies between 0.0063, 0.0058, 0.0050 and 0.0048 

respectively. These values maintain a constant value 

of 0.0048 at the span - thickness 15 till 100 which is 

the same as the CPT. Similarly, Figure 2 shows that in 

a span-thickness ratio between 4, 5, 10 and 15, the 

value of in-plane displacement varies between 0.0087, 

0.0084, 0.0081 and 0.0080 respectively. These values 

maintain a constant value of 0.0080 at the span - 

thickness 15 till 100 which is the same as the CPT.  

Furthermore, Figure 2 shows that, at a span-thickness 

ratio between 4, 5, 10 and 15, the value of shear stress 

along x-y axis varies between 0.0077, 0.0073, 0.0069 

and 0.0067 respectively. These values maintain a 

constant value of 0.0067 at the span - thickness 15 till 

100 which is the same as the CPT thereby confirms 

the displacement analysis outcome. It is also 

discovered that the variation in deflection and stress 

parameter is more when the plate is thicker (between 

4 and 15) and less when the plate is thinner (beyond 

15) under the same loading criterion. Since deflection 

and stress characteristics of the plate remain constant 

and equal to the value of the CPT at span-thickness 

ratio of 15 as seen in the Figure 2, it can be said that 

the square plate can be categorized as thick when the 

span – thickness ratio is between 4 and 15. Similarly, 

the span – thickness ratio beyond 15 till CPT, the 

square plate can be categorized as thin or moderately 

thick plate. 

 

Figure 3 shows that, at a span-thickness ratio between 

4, 5, 10 and 15, the value of out of plane displacement 

varies between 0.0089, 0.0091, 0.0071 and 0.0070 

respectively. These values maintain a constant value 

of 0.0070 at the span - thickness 15 till 100 which is 

the same as the CPT. Similarly, Figure 3 shows that in 

a span-thickness ratio between 4, 5, 10 and 15, the 

value of in-plane displacement varies between 0.0099, 

0.0091, 0.0082 and 0.0080 respectively. These values 

maintain a constant value of 0.0080 at the span - 

thickness 15 till 100 which is the same as the CPT. 

Furthermore, Figure 3 shows that, at a span-thickness 

ratio between 4, 5, 10 and 15, the value of shear stress 

along x-y axis varies between 0.444, 0.426, 0.401 and 

0.395 respectively. These values maintain a constant 

value of 0.395 at the span - thickness 15 till 100 which 

is the same as the CPT thereby confirms the 

displacement analysis outcome.  It is also discovered 

that the variation in deflection and stress parameter is 

more when the plate is thicker (between 4 and 15) and 

less when the plate is thinner (beyond 15) under the 

same loading criterion. Since deflection and stress 

characteristics of the plate remain constant and equal 

to the value of the CPT at span-thickness ratio of 15 

as seen in the Figure 2, it can be said that the plate with 

aspect ratio of 1.5 to 2.0 can be categorized as thick 

when the span – thickness ratio is between 4 and 15. 

Similarly, the span – thickness ratio beyond 15 till 

CPT, the square plate can be categorized as thin or 

moderately thick plate.  

 

Study in the Figure 2 and 3 shows that, there are major 

categories of rectangular plates. The plates whose 

deflection and vertical shear stress do not vary much 

or the same as CPT are categorized as thin or 
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moderately thick plate depending on the rate of 

variation with the aspect ratio of the plate. 

 

 
Figure 3:  Displacement and stresses of 1.5 aspect 

ratio CSSS plate  

 

In this study, thin or moderately thick plate is 

categorized as those plates whose span-thickness ratio 

is greater than 15 (𝑎/𝑡 > 15). On the other hand, the 

plate whose deflection and transverse shear stress 

varies very much from zero is categorized as thick 

plates. Here, the variation between the value of 

deflection and stresses is much compared to those of 

thin plates. In this study, the results showed that a 

thick plate is categorized as plate whose span to 

thickness ratio is less than or equal to 15 (𝑎/𝑡 ≤  15). 

The comparative analysis was performed in this study 

as presented in the Figure 4 to show the validity of the 

derived relationships and the conformity between the 

present study and various method/theories in the plate 

analysis using percentage difference evaluation 

techniques. 

 

 
Figure 4:  Comparison between different studies 

([P], [44] and [45]) 

 

The present study in-plane displacement at aspect 

ratio of 1.5, which used a new 3-D trigonometric 

model is compared with the work of Onyeka et al. [44] 

and Gharah [45] that used to derive polynomial 

displacement and those with assumed function 

respectively as presented in the Figure 4. The 

percentage difference between the present work and 

those of Onyeka et al. [44] in a span - depth ratio of 5, 

10, 20, 50, 100 and CPT are 1.354%, 1.474%, 1.683%, 

1.725%, 1.741% and 1.744% respectively. On the 

other hand, the percentage difference between the 

present work and those of Gwarah [45] in a span - 

depth ratio of 5, 10, 20, 50, 100 and CPT are 5.574%, 

5.602%, 5.870%, 6.010%, 6.083% and 6.047% 

respectively. It can be observed that the value of the 

percentage difference increase with an increase in the 

span-depth ratio of the plate which suggests that the 

credibility and the exactness of the model is higher 

when applied in the thick plate analysis but can also 

give good result in the analysis of the thin or 

moderately thick plate. The average percentage 

difference between the present work and those of 

Onyeka et al. [44] and Gharah [45] is 1.43% and 

5.15%, respectively. It is found in the table that, the 

difference between the present work and the works of 

Onyeka et al. [44] is lower than those of Gwarah [45] 

percentagewise with about 3.72%, which proves that 

a derived displacement function produces a close-

form solution when compared with 3-D elasticity 

trigonometric theory while an assumed deflection 

gives approximate solution. Hence, exact 3-D plate 

theory is required to achieve efficiency. The 3.29% 

total percentage difference obtained in this work is 

quite small which thereby depicts the credibility of the 

derived relationships. 

 

4.0   CONCLUSION AND RECOMMENDATION 

The 3-D bending and stress analysis of thick 

rectangular plate using 3-D elasticity theory has been 

investigated and following conclusion has been 

drawn: 

i. The present theory stress prediction shows 

that the result of the displacement and stress 

of thin and moderately thick plate using the 3-

D theory is the same at span-thickness ratio 

beyond 15% for the bending analysis of 

rectangular plate under the CSSS boundary 

condition and as such, CPT is recommended 

for the analysis. 

ii. The 2-D derived displacement function gives 

close-form solution, but assumed polynomial 

function over-predicts loads in the relatively 

thick plate analysis. Thus, a derived 

deflection function is recommend for accurate 

prediction of the design load in the analysis. 

iii. The 3-D exact plate model developed in this 

study which all the stress elements on the 

plate is recommended for the analysis of any 

category of the plate. 
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iv. Plate analysis required 3-D analogy for a true 

solution, but the 2-D shear deformation theory 

gives an approximate solution which is 

practically unrealistic.  
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