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Abstract  

The development of regression equations in terms of welding flux ingredients for prediction and optimisation of 

weld-metal quality has received much attention. However, studies that take edge effects into account are sparse. 

In this study, models that incorporate edge effects were proposed for the predictions of carbon, nitrogen and 

phosphorus contents in weld-metal using secondary data. From the study, none of the models provides an 

adequate fit for carbon and nitrogen content in weld-metal (𝑅𝐴𝑑𝑗
2  are < 50%). The models showed some promise 

for phosphorus content (𝑅𝐴𝑑𝑗
2 > 50%). Special cubic and full cubic with inverse terms fitted the phosphorus data 

better than others. Their respective (𝑅𝐴𝑑𝑗
2 ;  𝑅𝑃𝑟𝑒𝑑

2 ) values were (81.32; 80.27%) and (81.57; 80.48%). The 

difference between their respective 𝑅𝐴𝑑𝑗
2   and 𝑅𝑃𝑟𝑒𝑑

2  are less than 0.2 as specified in the literature. Development 

of prediction models for carbon and nitrogen and understanding of the phenomenon of edge effects are 

recommended for further study.                                    
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1.0  INTRODUCTION 

The type and proportions of ingredients used in 

welding flux formulation determine the quality of 

weld-metal, cost and productivity of the welding 

process as well as the health of the welder and other 

workers in the welding environment [1-4].  Also, flux 

ingredients, welding wire constituents and welding 

parameters react and interact in a very complex way. 

Hence, the formulation of welding flux to achieve the 

best balance among multiple conflicting quality 

attributes is not a trivial problem.  As a result of the 

daunting problem, the traditional approach of flux 

formulation has been by lengthy and expensive trial-

and-test experiments [5, 6]. Efforts to mitigate the 

drawbacks of the traditional approach have led to the 

development of methodologies for the development of 

regression equations for the prediction and 

optimisation of welding flux performance [5, 7-9]. 

 

In the last two decades, the use of statistical design of 

experiment (DoE) and development of regression 

models for the prediction and optimisation of welding 

flux quality attributes have received a lot of attention 

[10-14]. However, there are instances where the 

models fitted to the experimental data could not 

adequately predict some of the responses. For 

instance, Scheffe’s Quadratic Canonical Polynomial 

(SQCP) used by Kanjilal et al, [7], was able to 

adequately predict the 𝑂2, 𝑀𝑛, 𝑆𝑖, 𝑆, 𝑎𝑛𝑑 𝑁𝑖 contents 

in the weld-metal, but they couldn’t predict those of 

𝐶𝑎𝑟𝑏𝑜𝑛, 𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑢𝑠 𝑎𝑛𝑑 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 because it is 

limited to modelling overall curvature. Given the 

importance of the roles these elements play in weld-

metal quality, there is the need to identify models that 

can adequately predict their contents as a function of 

flux ingredients. Adeyeye and Oyawale [5] suggested 

other model forms and sequential model build-up 

procedure for Scheffe’s canonical polynomials (SCP) 

and their extensions to check for (i) third order 

curvature (ii) asymmetric third order curvature (iii) 

planar and edge effects (iv) overall curvature with 

edge effects (v) third order curvature with edge effects 

and (vi) third order asymmetric curvature with edge 

effects. The first two approaches have been 

implemented recently [15 -18], while the remaining 

four that consider edge effects are yet to be 
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implemented [3]. Since there exist some quality 

attributes that the SQCP couldn’t adequately predict, 

other prediction and optimisation tools are required 

for the formulation of welding flux with optimum 

performance. It is unlikely that this could be 

efficiently achieved without appropriate prediction 

models for such attributes. There is therefore the need 

to look beyond the SQCP models. In this study, 

Kanjilal et al [7] work will be revisited and the 

efficacy of other model forms will be tested taking 

edge effects into account for the prediction and 

optimisation of weld-metal chemistry as a function of 

welding flux ingredients.  

 

1.1  LITERATURE 

A survey of the literature revealed that the traditional 

approach of welding flux formulation involves 

extensive experiments and application of physical 

science principles such as reaction kinetics and 

thermodynamics, plasma physics and chemistry, 

solution thermodynamics and slag chemistry.    For 

instance, Baune et al. [19, 20] studied the effect of 

fluoride and calcite on the diffusible hydrogen content 

of weld-metal, while Du Plessis and Du Toit [21] 

investigated the effect of flux-oxidising ingredients on 

the diffusible hydrogen content. Farias et al, [22] 

studied the effects of wollastonite and quartz on fusion 

rate and short-circuit frequency. They observed that 

the intermediate-wollastonite-content flux (8% quartz 

and 8% wollastonite) performed better in fusion rate 

analysis on direct current electrode positive and direct 

current electrode negative. The intermediate-

wollastonite-content electrode also tended to present a 

higher short-circuit frequency on DC. They did not 

give the reasons for the observed behaviours. This 

could be because the approach used could not identify 

and quantify the direction and magnitude of 

interaction among the process variables. One of the 

possible reasons for the better performance of the 

intermediate-wollastonite-content flux on these 

criteria might be due to the synergetic binary 

interaction effects of quartz and wollastonite. It may 

also be due to the ternary or even quaternary 

synergism of wollastonite, quartz, Mn powder and 

iron powder. The traditional approaches are lengthy, 

costly and not able to guarantee optimum flux 

formulation and identify the direction and magnitude 

of interactions among the flux ingredients. Also, the 

models developed through them are cumbersome and 

not easy to use [3, 5, 6]. 

 

The application of the physical science approach 

coupled with extensive experiments lacks the rigour 

and sophistication to model the complex reactions and 

interactions among the flux ingredients, welding wire 

and process parameters. A usual practice in such 

complex situations is to apply regression analysis in 

which some equations are fitted to experimental data. 

Kanjilal et al. [7-9] used the statistical design of 

experiment method known as mixture design coupled 

with regression analysis to develop regression 

equations for flux quality attributes as a function of 

flux ingredients to complement the detailed scientific 

approaches. Although regression analysis is not new, 

Kanjilal  et al. [7-9] appeared to be among the earliest 

application of it to welding flux design. Prediction 

equations were developed for the prediction of 

mechanical, chemical and microstructural properties 

of weld-metal as a function of the flux ingredients. In 

addition to prediction, the models also gave 

information in terms of the direction and magnitude of 

binary interactions among the flux ingredients.  

 

However, the SQCP models used by Kanjilal et al. [7], 

could not adequately predict the carbon, phosphorus 

and nitrogen contents of the weld-metal. To address 

this limitation, Adeyeye and Oyawale [5], suggested 

other model forms such as Scheffe’s Full Cubic 

Canonical Polynomial (SFCCP) for asymmetric third 

order curvature and ternary interactions, and Scheffe’s 

Special Cubic Canonical Polynomial (SSCCP) for 

third order curvature and ternary interactions. These 

models have been very useful. For example, Sharma 

and Chhibber [15] used SSCCP for the prediction of 

Cr and Ti, Sharma and Chhibber [14] used SFCCP for 

the prediction of change in enthalpy and specific heat. 

Other researchers used the SFCCP for prediction of 

density, specific heat and change in enthalpy and 

SSCCP for thermal conductivity, thermal diffusivity, 

grain fineness number, change of enthalpy, weight 

loss, thermal conductivity, thermal diffusivity and 

specific heat with flux ingredients as the predictor 

variables [14-18, 23, 24].  

 

Adeyeye and Oyawale [5] further suggested the use of 

models with term of the form  𝑥𝑖
−1 added to reflect the 

possible extreme changes in the quality attributes that 

sometimes occur in some mixture problems as the 

value of certain ingredients tend to a boundary value 

(𝑥𝑖 → ∈𝑖). This behaviour is referred to as the edge 

effects [25]. The sequence of model build-ups to take 

individual effects, binary and ternary interactions as 

well as the edge effects into account were also 

presented. Available literature reveals that these 

models have not been tested in real-world welding 

flux formulation situations [3]. There is the need to 

test the relevance and efficacy of these models. 

Adeyeye and Oyawale [6] extended the work of 

Kanjilal et al. [7] beyond prediction by performing 
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optimisation with the models for single criterion 

cases. Later, the approach was further extended to 

address real-world multiple criteria welding flux 

design situations [10, 11, 13]. The multi-response flux 

formulation situations are encountered more often in 

practice; hence, it has received a lot of attention [3, 23, 

24, 26-32]. Since regression equations for attributes 

are needed for prediction and optimisation, 

researchers need to look for more models to cater for 

edge effects and other situations where the models 

currently in use are inadequate. 

 

2.0  METHODOLOGY 

The procedure for fitting mixture models to data starts 

from a simple model and progresses through models 

with increasing complexity such as planar, overall 

curvature, third order curvature and asymmetric third 

order curvature and the inverse terms is presented in 

this section. The commonly used mixture model 

proposed by Scheffe [33, 34] and model fitting 

procedure suggested by Adeyeye and Oyawale [5] and 

Draper and John [25] are adopted in this study. 

     

Step 1: Start with a simple model and increase the 

complexity of the model until acceptable model 

adequacy is achieved. Start the model fitting with 

Scheffe’s First Order Polynomial (SFOP) to see if the 

response/quality attribute surface is a plane (equation 

1).  

 

𝑓𝑛(𝑥𝑖) = ∑ 𝛽𝑖𝑥𝑖

𝐼

𝑖=1

                                                (1) 

 
where, 

𝑓𝑛(𝑥𝑖): The response variable representing weld-metal 

quality attribute  

𝑥𝑖: Predictor variable representing the proportion of 

the 𝑖𝑡ℎ flux ingredient in the flux mixture, 

𝛽𝑖: Coefficient representing the individual effect of 

the 𝑖𝑡ℎ flux ingredient 

 

Check for the adequacy of the model. If the model is 

adequate go to step 9, otherwise, go to the next step. 

 

Step 2: Fit SFOP with Inverse Terms (SFOPIT) to 

check if there is a planar surface with edge effects as 

in equation 2 below.  

 

𝑓𝑛(𝑥𝑖) = ∑ 𝛽𝑖𝑥𝑖

𝐼

𝑖=1

+  ∑ 𝛽−𝑖𝑥𝑖
−1

𝐼

𝑖=1

                               (2) 

where, 

𝛽−𝑖: Coefficient of the inverse term of flux ingredient 

𝑖 
 

If the model is adequate go to step 9, otherwise, go to 

the next step.  

     

Step 3: Fit Scheffe’s Quadratic Canonical 

Polynomial (SQCP) to check the overall curvature of 

the surface (equation 3). 

 

𝑓𝑛(𝑥𝑖) = ∑ 𝛽𝑖𝑥𝑖 +  ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗1≤𝑖<𝑗≤𝐼
𝐼
𝑖=1                    (3)    

      

where, 

𝑥𝑗: The proportion of the 𝑗𝑡ℎ flux ingredient in the flux 

mixture 

𝛽𝑖𝑗: Coefficient representing the binary effect of flux 

ingredients 𝑖 𝑎𝑛𝑑 𝑗 

 

If the model is adequate, go to step 9, otherwise, go to 

the next step. 

 

Step 4: Fit SQCP with Inverse Terms (SQCPIT) to 

the experimental data to check for the overall 

curvature of the surface and edge effect (equation 4). 

 

𝑓𝑛(𝑥𝑖) = ∑ 𝛽𝑖𝑥𝑖 +  ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗1≤𝑖<𝑗≤𝐼
𝐼
𝑖=1  +

 ∑ 𝛽−𝑖𝑥𝑖
−1𝐼

𝑖=1                                                                     (4) 

                                        
Check for model adequacy. If adequate, go to step 9, 

otherwise, go to the next step. 

 

Step 5: Fit Scheffe’s Special Cubic Canonical 

Polynomial (SSCCP) to the experimental data to 

check for third-order curvature of the model (equation 

5). 

 

𝑓𝑛(𝑥𝑖) = ∑ 𝛽𝑖𝑥𝑖 +  ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗1≤𝑖<𝑗≤𝐼
𝐼
𝑖=1 +

∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘1≤𝑖<𝑗<𝑘≤𝐼                                                   (5)      

    

where, 
𝑥𝑘: The proportion of the 𝑘𝑡ℎ flux ingredient in the 

flux mixture 

𝛽𝑖𝑗𝑘: Coefficient representing the ternary effects of 

flux ingredients 𝑖, 𝑗 𝑎𝑛𝑑 𝑘 

 

If the model is adequate go to step 9 otherwise, go to 

the next step. 
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Step 6: Fit SSCCP with Inverse Terms (SSCCPIT) 

to the experimental data to check for third-order 

curvature and edge effects (equation 6). 

𝑓𝑛(𝑥𝑖) = ∑ 𝛽𝑖𝑥𝑖 +  ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗1≤𝑖<𝑗≤𝐼
𝐼
𝑖=1 +

∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘1≤𝑖<𝑗<𝑘≤𝐼 +  ∑ 𝛽−𝑖𝑥𝑖
−1𝐼

𝑖=1                     (6)                 

 

If the model is adequate go to step 9 otherwise, go to 

the next step. 

 

Step 7: Fit Scheffe’s Full Cubic Canonical 

Polynomial (SFCCP) to the experimental data to 

check for asymmetric third-order curvature (equation 

7). 

 

𝑓𝑛(𝑥𝑖) = ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗1≤𝑖<𝑗≤𝐼
𝐼
𝑖=1 +

 ∑ 𝛾𝑖𝑗𝑥𝑖𝑥𝑗(𝑥𝑖 − 𝑥𝑗)1≤𝑖<𝑗≤𝐼 +

∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘1≤𝑖<𝑗<𝑘≤𝐼                                                  (7)  

                                                                  
where, 

𝑥𝑗: The proportion of the 𝑗𝑡ℎ flux ingredient in the flux 

mixture 

𝛾𝑖𝑗: Cubic coefficient representing the binary effect of 

flux ingredients 𝑖 𝑎𝑛𝑑 𝑗 

 

If the model is adequate go to step 9 otherwise, go to 

the next step. 

 

Step 8: Fit SFCCP with Inverse Terms (SFCCPIT) 

to the experimental data to check for asymmetric 

third-order curvature and edge effects (equation 8). 

 

𝑓𝑛(𝑥𝑖) = ∑ 𝛽𝑖𝑥𝑖 +  ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗1≤𝑖<𝑗≤𝐼
𝐼
𝑖=1 +

∑ 𝛾𝑖𝑗𝑥𝑖𝑥𝑗(𝑥𝑖 − 𝑥𝑗)1≤𝑖<𝑗≤𝐼 + ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘1≤𝑖<𝑗<𝑘≤𝐼 +

 ∑ 𝛽−𝑖𝑥𝑖
−1𝐼

𝑖=1                                                                   (8)      

 

If the model is adequate go to step 9 otherwise, this 

procedure can not fit the data. 

 

Step 9: Conduct a confirmatory test. 

Step 10: Accept the model for prediction and 

optimisation. 

 

Note: Carry out this procedure for each of the welding 

flux quality attributes (for ∀ 𝑛). If necessary, after 

obtaining an adequate model, the modeller may 

explore the remaining models to gain more insight into 

the interactions among ingredients and their 

relationships to the various response. 

 

3.0  NUMERICAL EXAMPLES 

The problem for illustration in this example is taken 

from Kanjilal et al. [7] in which SQCP was fitted to 

flux experiment data for the prediction of weld-metal 

chemical composition. The lower and upper limits of 

flux ingredients and the extreme vertices design 

matrix with the corresponding experimental data are 

presented in Tables 1 and 2, respectively. The 

proportions of CaO, MgO, CaF2 and Al2O3 were 

varied as per mixture design and the experiments were 

conducted in four replicates. The remaining 

ingredients were made up of silica (10%), 

ferromanganese (4%), ferrosilicon (3%), nickel (1%) 

and bentonite (2%). The SQCP model used by 

Kanjilal et al. [7] was not able to adequately predict 

carbon, phosphorus and nitrogen contents in the weld-

metal. The constant proportion ingredients were 

excluded from the models. The efficacy and 

usefulness of mixture models with inverse terms 

(SFOPIT, SQCPIT, SSCCPIT and SFCCPIT) are 

tested by fitting them to Kanjilal et al. [7] data for 

carbon, phosphorus and nitrogen. The stepwise model 

reduction approach is adopted to fit the models using 

Minitab®17 software.  

 

Table 1:  Limits of welding Flux Ingredients. 

Kanjilal et al, [7] 
Flux Ingredient  Lower Limit Upper Limit 

CaO (wt %) 15.00 35.00 

MgO (wt %) 15.00 32.40 

CaF2 (wt %) 10.00 40.00 

Al2O3 (wt %) 8.00 40.00 

 

4.0  RESULT 

The summary of the ANOVA of the models are 

presented in Table 3 below. None of the models could 

provide a good fit for carbon and nitrogen content in 

the weld-metal. The values of 𝑅𝐴𝑑𝑗
2  and 𝑅(𝑃𝑟𝑒𝑑)

2  are 

low (< 50%). The highest values of 𝑅𝐴𝑑𝑗
2  and 𝑅(𝑃𝑟𝑒𝑑)

2  

for Carbon are 48.73 and 45.51 while that of nitrogen 

are 44.86 and 43.32% respectively (see Table 3). 

However, all the models (SFOPIT, SQCPIT, 

SSCCPIT and SFCCPIT) showed some promise for 

modelling phosphorus content in the weld-metal with 

𝑅𝐴𝑑𝑗
2  and 𝑅(𝑃𝑟𝑒𝑑)

2  values > 50%. The 𝑅𝐴𝑑𝑗
2  obtained 

by fitting SFOPIT, SQCPIT, SSCCPIT and SFCCPIT 

for phosphorus in the current study are  55 < 𝑅𝐴𝑑𝑗
2 <

81.57%. The performance of the models in terms of 

describing the variations in the phosphorus content in 

weld deposit and predictive ability in ascending order 
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Table 2:  Flux Formulations Determined by Mixture Design. Kanjilal et al, [7] 

C
a

se
 N

o
. Mixture Variables/Flux composition (wt 

%) 

Oxygen (ppm)  Phosphorus (wt%) Nitrogen (ppm) 
C

a
O

 

M
g

O
 

C
a

F
2
 

A
l 2

O
3
 Replicates Replicates Replicates 

 1 2 3 4 1 2 3 4 1 2 3 4 

C1 15.00 15.00 10.00 40.00 0.07 0.068 0.069 0.067 0.025 0.024 0.026 0.024 92 93 90 90 

C2 15.00 15.00 40.00 10.00 0.07 0.071 0.068 0.068 0.028 0.026 0.026 0.03 95 96 98 98 

C3 15.00 32.40 10.00 22.60 0.07 0.07 0.071 0.073 0.025 0.025 0.027 0.026 103 102 100 100 

C4 15.00 17.00 40.00 8.00 0.06 0.061 0.062 0.059 0.023 0.026 0.025 0.027 86 88 88 90 

C5 15.00 32.40 24.60 8.00 0.068 0.067 0.07 0.065 0.024 0.027 0.026 0.025 86 87 86 92 

C6 35.00 15.00 10.00 20.00 0.098 0.096 0.095 0.093 0.021 0.022 0.022 0.02 65 66 68 63 

C7 17.00 15.00 40.00 8.00 0.072 0.076 0.072 0.07 0.026 0.027 0.025 0.028 68 68 66 66 

C8 35.00 15.00 22.00 8.00 0.07 0.069 0.078 0.072 0.022 0.024 0.022 0.024 62 66 61 65 

C9 29.60 32.40 10.00 8.00 0.068 0.07 0.069 0.07 0.023 0.025 0.025 0.025 61 63 63 64 

C10 35.00 27.00 10.00 8.00 0.063 0.067 0.066 0.06 0.022 0.026 0.024 0.02 70 69 70 62 

C11 24.43 23.14 24.43 8.00 0.073 0.072 0.074 0.075 0.046 0.045 0.045 0.042 62 64 64 68 

C12 15.67 15.67 40.00 8.66 0.095 0.092 0.091 0.091 0.04 0.044 0.044 0.038 73 73 71 63 

C13 25.92 24.36 10.00 19.72 0.084 0.08 0.082 0.085 0.032 0.03 0.033 0.032 70 73 72 75 

C14 23.40 15.00 24.40 17.20 0.089 0.085 0.087 0.091 0.047 0.043 0.043 0.042 66 64 67 67 

C15 19.87 32.40 14.86 12.87 0.094 0.095 0.093 0.092 0.046 0.042 0.042 0.044 68 66 66 63 

C16 15.00 22.36 24.92 17.72 0.061 0.062 0.059 0.057 0.025 0.026 0.024 0.03 76 75 75 75 

C17 35.00 19.00 14.00 12.00 0.082 0.082 0.082 0.078 0.045 0.041 0.043 0.041 75 74 78 77 

C18 22.67 21.63 21.63 14.07 0.058 0.057 0.055 0.06 0.044 0.043 0.042 0.043 101 100 100 100 

                

is SFOPIT < 𝑆𝑄𝐶𝑃𝐼𝑇 < 𝑆𝑆𝐶𝐶𝑃𝐼𝑇 < 𝑆𝐹𝐶𝐶𝑃𝐼𝑇. The 

response functions are presented in eqautions (9 – 12). 

 

Scheffe’ First Order Polynomial with Inverse Terms 

 

𝑃𝑆𝐹𝑂𝑃𝐼𝑇  
=  0.01963CaO +  0.15897MgO +   0.19672Ca𝐹2  

+  0.20857𝐴𝑙2𝑂3  −  
0.01702

CaO
 −

0.00480

MgO

−
0.00269

Ca𝐹2
−

0.00103

𝐴𝑙2𝑂3
                                                (9) 

 

 

Scheffe’s Quadratic Canonical Polynomial with 

Inverse Terms 

 

𝑃𝑆𝑄𝐶𝑃𝐼𝑇  

=  0.068CaO +  0.011MgO +  0.211Ca𝐹2  
+  0.277𝐴𝑙2𝑂3 +  1.180CaO. MgO

−  1.398Ca𝐹2. 𝐴𝑙2𝑂3 +
0.007

MgO
 −  

0.013

Ca𝐹2
 

−  
0.008

𝐴𝑙2𝑂3 
                                                                      (10) 

 

Scheffe’s Special Cubic Canonical Polynomial with 

Inverse Terms 

 

𝑃𝑆𝑆𝐶𝐶𝑃𝐼𝑇  =  0.623CaO +  0.705MgO +
0.831Ca𝐹2  +  0.695𝐴𝑙2𝑂3  −  0.875CaO. MgO −
 0.731CaO. Ca𝐹2  − 0.977MgO. Ca𝐹2  −
 4.807CaO. MgO. 𝐴𝑙2𝑂3  −

 6.594MgO. Ca𝐹2. 𝐴𝑙2𝑂3  −  
0.024

CaO
 − 

0.039

MgO
−  

0.011

Ca𝐹2
  −

  
0.009

𝐴𝑙2𝑂3
                                                                           (11)                                         

 

Scheffe’s Full Cubic Canonical Polynomial with 

Inverse Terms 

 

𝑃𝑆𝐹𝐶𝐶𝑃𝐼𝑇

=  0.373CaO +  0.719MgO −  0.653Ca𝐹2  
+  0.709𝐴𝑙2𝑂3  −  6.027MgO. Ca𝐹2. 𝐴𝑙2𝑂3  
+ 0.734CaO. MgO(CaO − MgO)
− 2.078CaO. Ca𝐹2(CaO − Ca𝐹2)
− 2.545MgO. Ca𝐹2(MgO − Ca𝐹2)
+ 3.188Ca𝐹2. 𝐴𝑙2𝑂3(Ca𝐹2 − 𝐴𝑙2𝑂3)

−
0.038

Ca𝐹2
                                                                      (12) 

 
This shows that it is possible to have more than one 

response functions that adequately describe a 

response. It may be necessary to explore all potential 

models and then pick the one that gives the best fit. To 

do this, more than one statistic is required.  The 

𝑅2 values were not used to assess the fit of the models 

in the current study because it could give misleading 

results in situations where the models have different 

number of terms. For instance, if we use 𝑅2 to select 

the best model, SSCCPIT with 𝑅2 = 84.56% will be 

adjudged better than SFCCPIT with 𝑅2 = 83.91% 

but the reverse was the case when 𝑅𝐴𝑑𝑗
2 values were 

used. The 𝑅𝐴𝑑𝑗
2  value for SFCCPIT shows it is better 

in explaining the variations in phosphorus content in 
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the weld-metal than the SSCCPIT. This is so because 

𝑅𝐴𝑑𝑗
2 ,  takes the number of terms in the model relative 

to the number of observations into account. 

 

Table 3:  Summary of Major Statistic for 

Assessing the Various Models 
Respon

se 
Model 𝑹𝟐 𝑹𝑨𝒅𝒋

𝟐  𝑹(𝑷𝒓𝒆𝒅)
𝟐  𝑺 𝑷𝒓𝒆𝒔𝒔 

Carbon SFOPIT 46.11 41.13 36.87 0.0090 0.00618 

SQCPIT 53.06 48.73 45.51 0.00840 0.00533 

SFCCPIT 53.06 48.73 45.51 0.00840 0.00533 

SSCCPIT 53.06 48.73 45.51 0.008405 0.00533 

Phosph

orus 

SFOPIT 59.43 55.00 50.34 0.00591 0.00274 

SQCPIT 72.42 68.92 65.60 0.00491 0.001896 

SFCCPIT 83.91 81.57 80.48 0.00378 0.00108 

SSCCPIT 84.47 81.32 80.27 0.00381 0.00109 

Nitroge

n 

SFOPIT 46.59 42.55 37.56 10.1839 8002.52 

SQCPIT 48.60 43.85 39.45 10.0675 7760.52 

SFCCPIT 48.74 44.86 43.32 9.977 7264.20 

SSCCPIT 48.60 43.85 39.45 10.9675 7760.52 

 

Although the 𝑅𝐴𝑑𝑗
2  statistic explains the variations in 

the flux quality attributes, it does not necessarily 

indicate the predictive ability of the model. From the   

𝑅𝑃𝑟𝑒𝑑
2  and 𝑃𝑟𝑒𝑠𝑠 statistic values, SFCCPIT has 

superior predictive ability compared to SSCCPIT (see 

Table 3). The 𝑅𝑃𝑟𝑒𝑑
2  and 𝑃𝑟𝑒𝑠𝑠 statistic values also 

show that none of the models for phosphorus content 

is overfit. The reduced response model for SSCCPIT 

and SFCCPIT and the ANOVA are presented in 

Tables 4 and 5. The F and p values in the ANOVA 

Tables, show that the regression models and the terms 

in them (linear, quadratic, special cubic, full cubic and 

inverse) are significant, while terms that are not 

significant and do not make positive contribution to 

the predictive ability of the models were automatically 

eliminated. For instance,three quadratic/binary terms 

(𝐶𝑎𝑂. 𝐴𝑙2𝑂3, 𝑀𝑔𝑂. 𝐴𝑙2𝑂3 𝑎𝑛𝑑 Ca𝐹2. 𝐴𝑙2𝑂3) and one 

special cubic term (CaO. MgO. Ca𝐹2) were eliminated 

from the SSCCPIT model (see equation (11) and 

Table 4). In the case of SFCCPIT, all the quadratic 

terms and three out of four inverse terms were among 

the terms that were eliminated (see eqaution (12) and 

Table 5). 

 

 

Table 4:  Analysis of Variance for SSCCPIT 
Source DF                         Seq SS Adj SS Adj MS F P 

Regression                      12 0.004656 0.004656 0.000388 26.75 0.000 

Linear                    3 0.000121 0.000713 0.000238     16.39 0.000 

Quadratic               3 0.000979   0.000219 0.000073      5.03 0.004 

CaO.MgO             1     0.000000 0.000066 0.000066      4.53 0.037 

CaO.CaF2 1     0.000899 0.000038 0.000038      2.60 0.112 

MgO.CaF2 1   0.000080 0.000084        0.000084 5.77 0.019 

Special Cubic        2  0.001371 0.001139       0.000569 39.26 0.000 

CaO.MgO.Al2O3 1   0.001356 0.000246       0.000246 16.98 0.000 

MgO.CaF2.Al2O3 1   0.000016 0.001101       0.001101 75.89 0.000 

Inverse               4   0.002184 0.002184     0.000546 37.65 0.000 

1/CaO               1  0.000384 0.000151       0.000151 10.44 0.002 

1/MgO              1   0.000325 0.000504     0.000504 34.76 0.000 

1/CaF2 1   0.001331 0.000084     0.000084 5.82 0.019 

1/Al2O3 1     0.000143 0.000143 0.000143      9.87 0.003 

Residual Error              59 0.000856 0.000856 0.000015   

Lack-of-Fit          5     0.000690 0.000690 0.000138   45.13 0.000 

Pure Error         54       0.000165 0.000165 0.000003   

Total                   71 0.005512     

The 𝑆 statistic also shows that the SFCCPIT describes 

the phosphorus content in weld-metal as a function of 

flux ingredient better than the SSCCPIT. The 

difference between the values of 𝑅𝐴𝑑𝑗
2  and 𝑅𝑃𝑟𝑒𝑑

2  for 

SSCCPIT and SFCCPIT are 0.0105 and 0.0109 

respectively.  

 

According to the literature [35], 𝑅𝐴𝑑𝑗
2 − 𝑅𝑃𝑟𝑒𝑑

2 < 0.2 

for a regression model to be acceptable. Hence, 

SSCCPIT and SFCCPIT provide a good fit for 

phosphorus since their respective 𝑅𝐴𝑑𝑗
2 − 𝑅𝑃𝑟𝑒𝑑

2  

values (0.0109 and 0.0105) are less than 0.2. Also, the 

values obtained for 𝑅𝐴𝑑𝑗
2 ,  𝑅𝑃𝑟𝑒𝑑

2 , 𝑃𝑟𝑒𝑠𝑠 𝑎𝑛𝑑 𝑆 show 

that the models with inverse terms are good for 

prediction of phosphorus content and has promise for 

modelling flux quality attributes as a function of flux 

ingredients. Welding flux formulators may include 

models with inverse terms among candidate models 

for fitting welding flux data.  Future studies need to 

focus on understanding the edge effects of flux 

ingredients and explore other models for the 

prediction of carbon and nitrogen since the commonly  
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Table 5:  Analysis of Variance for SFCCPIT 
Source DF                         Seq SS Adj SS Adj MS F P 

Regression                      9            0.004625 0.004625 0.000514 35.92 0.000 

Linear                    3            0.000121 0.003541 0.001180 82.52 0.000 

Special Cubic        1     0.000520   0.001062 0.001062      74.25 0.000 

MgO.CaF2.Al2O3 1            0.000520 0.001062 0.001062 74.25 0.000 

Full Cubic                     4 0.000636 0.003152 0.000788 55.09 0.000 

CaO.MgO(CaO-MgO)                   1 0.000471 0.000109 0.000109  7.62 0.008 

CaO.CaF2.(CaO-CaF2)               1   0.000002 0.000880 0.000880 61.50 0.000 

MgO.CaF2(MgO-CaF2)               1   0.000085 0.000923 0.000923 64.49 0.000 

CaF2.Al2O3(CaF2-Al2O3)             1   0.000077 0.000772 0.000772 53.98 0.000 

Inverse               1     0.003348 0.003348 0.003348     234.04 0.000 

1/CaF2 1           0.003348 0.003348 0.003348 234.04 0.000 

Residual Error              62     0.000887 0.000887 0.000014   

Lack-of-Fit          8            0.000722 0.000722 0.000090 29.48 0.000 

Pure Error         54       0.000165 0.000165 0.000003   

Total                   71  0.005512     

 

used models are not able to provide adequate fit for 

the case under study. 

 

5.0  CONCLUSION 

The following conclusions are drawn from this study. 

(i)  All the four Scheffe’s canonical polynomials 

(linear, quadratic, special cubic and full cubic) with 

inverse terms fitted the data for phosphorus well. 

However, special cubic and full cubic with inverse 

terms gave the best fit and predictive ability for 

phosphorus content in the weld-metal. They have 

promise for prediction and optimisation of phosphorus 

content as function of flux ingredients.  

(ii)  The models were not able to adequately fit the 

experimental data for carbon and nitrogen in the 

current study. Hence further studies are required for 

the development of models for carbon and nitrogen. 

(iii) Scheffe’s canonical polynomials with inverse 

terms have potential for application in modelling flux 

quality attributes. 

(iv) Further studies are required to understand the 

phenomenon of edge effects of flux ingredients.     
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