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Abstract 

Traditional methods for assessing upper-limb functional outcomes in stroke 

patients often fail to estimate the number of trials required to achieve 

performance stability of a chosen kinematic metric. Limited non-model-based 

studies have attempted to tackle this issue. To bridge this gap, this study utilized 

an iterative learning algorithm (ILA) in MATLAB, employing linear models to 

represent the muscle dynamics and forearm extension of impaired patients. The 

reference task space trajectory was set as a straight-line point-point trajectory 

within a range of 0 - 0.2828m. By using the root mean square error (RMSE) as 

a metric for evaluating kinematic accuracy, a maximum kinematic deviation 

error of 0.01m was imposed with respect to the trajectory by the (ILA). Results 

indicate that over 16 trials, performance stability was obtained with 

improvement in deviation error from 0.0168m in the first trial to 0.0060 at 

sixteen trials. The result obtained is in line with similar non-model studies and 

our findings inform the potential of ILAs with linear models for estimation of 

trial numbers required to attain performance stability of a selected kinematic 

metric (i.e., kinematic accuracy). 
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1.0  INTRODUCTION 

Stroke is a neurological condition that arises from 

death of brain cells due to obstruction of proper flow 

of blood or injuries leading to blood spillage within 

the cerebrum [1-2]. Globally, stroke accounts for 

11.6% of total deaths and 5.7% of total disability 

adjusted life years, thereby making it the second 

leading cause of death and disability respectively [3].  

Recovery from stroke is highly time-dependent and 

often categorized into phases. The most significant 

improvement is known to happen between the 

hyperacute (<24h), acute (first 7 days) and beyond the 

early sub-acute (3-months). Beyond the sub-acute 

phase, recovery is reported to be at its limit leading to 

chronic deficit [4]. In most situations, the functional 

deficits developed by impaired patients is due to the 

huge financial burden (cost) on the patient, family, and 

society [5]. To further this claim, burden arises from 

direct and indirect cost associated with expensive 

health care systems and loss of downtime (i.e., 

productive time) [6].  

 

Despite the cost, rehabilitation from stroke is seen as 

a cornerstone to restoration of brain tissue and 

networks via relearning and compensating for lost 

functional abilities [7]. It involves plastic re-

organization of entire regions and brain pathways for 
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the generation of commands to the same muscles that 

produced unique motor actions and patterns before the 

occurrence of stroke [8]. Clinician’s prognoses are 

said to be an important factor in determining how 

timely an impaired patient starts or access 

rehabilitation and how much is paid. Currently, the 

widely utilized traditional scales (such as the modified 

Rankin Scale (mRS)) only provide a binary good or 

bad general outcome prediction that’s not sufficiently 

detailed, helpful for patients and families [9]. 

 

Consequently, a new yardstick for evaluating 

adequacies of prediction tools was declared [9]. First, 

these tools should be capable of predicting future 

function rather than correlating current function. 

Second, usage should be at the start of recovery and 

rehabilitation so that predictions can inform 

rehabilitation sessions and discharge planning. Third, 

the tools need to make a forecast for a specified time 

point rather than the expected outcome at discharge. 

Lastly, the tools provide context and meaning for the 

individual patients being rehabilitated. In upper limb 

impairment, several studies have considered 

classification and identification of upper limb 

recovery. Additionally, these studies have employed 

prediction models for estimating upper limb function 

post stroke, but few have been transferred successfully 

from research to clinical practice due to lack of time, 

need for specific equipment and lack of adoption by 

therapists over their experience [10].   

 

In a previous study, an algorithm called PREP was 

developed to predict potential for upper limb function 

[11]. Biomarkers obtained from specialized 

equipment’ were combined with clinical scores 

measured with the action research arm test (ARAT) as 

predictors for the algorithm. The outcome of the study 

indicated a high positive predictive power for 

estimation of functional recovery post stroke. A graph 

probability curve tool for prediction of upper limb and 

ambulatory function six months post-stroke was 

developed [12]. Predictors employed were the 

national institute of health stroke scale (NIHSS) and 

age for estimating recovery. The outcome of the study 

showed that models combining the age and severity of 

stroke obtained using NIHSS predicted the 

ambulation and ability to perform functional tasks.  In 

another study, a decision tree based PREP2 algorithm 

for upper limb function after stroke was created [13]. 

The study improved on earlier studies by applying 

clinical, neurophysiological, neuroimaging biomark-

ers of corticospinal integrity for prediction of motor 

function 3 months post stroke. The outcome of the 

study proved to be more accurate, efficient, and 

accessible than the preceding algorithm.  

Another previous research applied machine learning 

for prediction of individual upper limb motor 

impairment after therapy in chronic stroke subject 

[14]. Predictors required by the machine learning 

algorithms were obtained using the Fugl-Meyer 

Assessment (FMA). The study concluded that elastic-

net algorithm outperformed other algorithms in 

predicting recovery.  Similarly, a computerized 

mixed-effect model was developed for patient-

specific prediction in the upper limb area 6 months 

post stroke [15]. The predictors for the model were 

clinical (i.e., finger extension, shoulder abduction) 

and obtained using the ARAT. The outcome of the 

study indicated that only ARAT time course model 

performed as good as models with covariates when 

predicting upper limb function.  A predictive 

algorithm using traditional logistic regression and 

random forest for early prediction of upper-limb 

function after 3-months post stroke was developed 

[16]. Predictors for respective models were extracted 

using ARAT. The outcome produced high 

classification accuracy when used to predict probable 

class (i.e., poor, limited, and good) of the subject. 

Additionally, several studies have developed 

simulation frameworks that combine models 

describing the non-linear dynamics of stroke subjects 

with robotics to estimate the level of functional 

recovery of impaired patients [17, 18, 19]. 

Rehabilitation robots are known to offer repetitive, 

goal-oriented, and highly intense tasks that invoke 

plastic changes and reduce burdens on therapists [20, 

21]. However, owing to the time taken in identifying 

the mechanistic non-linear models used by these 

simulation frameworks, these works have found little 

adoption amongst therapists in traditional rehabilitat-

ion settings [22, 23].  

 

Indeed, it can be stated that scholars have invested 

considerable effort in estimating the eventual 

functional outcome for individuals who have suffered 

from a stroke. Nevertheless, only a few studies up to 

date have explored the possibility of determining the 

specific number of trials needed to achieve 

performance stability. In a recent study, a non-model 

approach was utilized in determining the smallest 

number of trials required to attain a good performance 

stability of desired kinematic variables in a reach-and-

drink task amongst non-disabled and stroke 

population [24]. The outcome of the study declared 

little trials were sufficient for attaining most 

functional outcomes in both groups within a given 

session except for outcomes that required more trials 

like reaching task, returning task, time to peak 

velocity, joint coordination, and movement 

smoothness. In another study, virtual reality simulat-
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ion environment was used to estimate the number 

trials necessary to obtain stable kinematic variables 

during reaching movements in non-stroke subjects 

[25]. The outcome of the study showed that after five 

and three trials reaching stabilized in kids and adults 

respectively. Unlike previous works that relied on 

physical iterative experiments, this study utilizes 

iterative learning algorithms with linear models to 

estimate the number of trials required for achieving 

performance stability of a desired kinematic outcome. 

Notably, the goal is to show visible improvements 

from trial to trial on a planar surface within a single 

rehabilitation session. The study's significance lies in 

its ability to easily assess patients' performance 

stability for a selected kinematic outcome without 

subjecting vulnerable stroke subjects to tasks that 

yield limited benefits. Specifically, we utilize a single 

kinematic metric for determining performance 

stability of linear models representing an impaired 

subject tracking a given trajectory. This metric is 

referred to as kinematic accuracy (trajectory error) as 

given in [26].  

 

2.0  MATERIALS AND METHODS 

2.1  Models Employed 

The models employed in this study is described from 

a top-bottom approach. First, a linear model that 

couples a forearm and robotic effect that approximates 

the effect of a physical therapist opposing a movement 

is discussed. Second, a linear muscle component of an 

established muscle model is presented. Third, a 

controller that ensures the resulting muscle activation 

is stable is considered.  

 

2.1.1  Linear forearm model 

In the present section, a linear approximate model is 

adopted because it offers a means to rapidly model a 

patient’s forearm and desired opposing effects to 

movements. In healthy subjects, coordination of the 

arm results from the brain recruiting some muscle 

fibers to produce contractions necessary for 

movement [27]. As a result, a single input and single 

output (SISO), linear, time-invariant transfer function 

that gives a relationship between output forearm 

elbow joint movement and linear activated muscular 

contraction at the input is chosen.  Furthermore, 

Equation (1) embeds an effect of a stroke patient 

interacting with a 5-link manipulator robot for upper 

limb stroke rehabilitation.   (PULSR) [28].  

 

Tar(s) =
ϑf

Tβ
=

1

s((ba3+KM2)s+KB2)
                             (1)                                                                                                            

 where parameter ba3
 represents the triceps-brachii 

region of the forearm desired for rehabilitation, KM2
 

and KB2
 parameters incorporate the virtual load and 

viscous friction to movement that a traditional 

therapist will present to an impaired patient during a 

rehabilitation session, ϑf denotes the resulting forearm 

movement due to muscle contraction Tβ.  

 

Furthermore, to accommodate differences in forearm 

length, weight, and other physical attributes of 

impaired patients’ parameter ba3
 can be computed 

using the equation below.  

 

ba3
= mflf1

2 + If + Ie (
sγ

1−cf
2cγ

2)
2

             (2)                                                                                                                        

where c(.), s(.) denotes cosine and sine of orientation 

of elbow angles, mf represents mass of forearm, lf1 is 

the length of forearm from the olecranon joint to the 

forearm center of gravity, Ie explains the moment of 

the forearm, γ gives static angle of elevation of the 

arm on a 2D task surface and 
𝐬𝛄

𝟏−𝐜𝐟
𝟐𝐜𝛄

𝟐  defines the region 

in the elbow where muscle is stimulated applied. Next 

section describes how Tβ is modelled to yield 

necessary contraction that drives Equation (i). 

 

2.1.2  Linear muscle model 

There exist several methods such as the non-linear 

black box, light grey-box with physical insight 

approach and block-oriented approaches to capture 

dynamics of the muscle [29]. In the present work, a 

simplified block modelling approach given in 

Equation 3 is selected for its established dynamics in 

describing torque generated by the muscle as a 

function of stimulation delivered to the recruited 

muscle fibers, forearm movement dynamics and 

length. pulse-width, passive multiplicative effect of 

forearm length, active multiplicative effect of forearm 

displacement and velocity [30].  

 

Tβ = ( Hirc(wu) × Hlad) × Fma(ϑ̇𝐟, ϑf) + Fmp(lf)          (3)                                                                                                                             

where Fma(ϑ̇𝐟) captures the active multiplicative 

effect of forearm displacement and its rate of change, 

Fmp(lf) denotes passive multiplicative effect of 

forearm length, Hlad represents linear activation 

dynamics and  Hirc(wu) denotes the recruitment 

dynamics of the muscle based on applied stimuli wu .  

 

In accordance with [17, 31], the following equations 

approximated the inner blocks of Equation (3). 

 

Hirc = f(u) = a1.
ea2.wu−1

ea2.wu+a3
                                     (4)                                                                                                                       

Hlad =
wn

2

s2+2sζwn+wn
2                                        (5) 

Fma(ϑ̇𝐟) = 0.54 tan−1( 5.69ϑ̇𝐟 + 0.51) + 0.745          (6)                                                                                   
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Fmp(lf) = e
−(

l
−

f−1

ε
)

2

                                          (7) 

where, a1, a2 and a3 represents the static gain of the 

muscle contraction, ϑ̇𝐟 connotes the normalized rate of 

forearm displacement of the subject with respect to the 

maximum forearm displacement ability (
ϑf

ϑmax
), l

−

f 

describes the normalized forearm length (
lf

lmax
) and ε 

represents the shape-factor of force-length 

relationship. From [25], we approximate ζ to model 

damping factor and wn oscillatory behavior of the 

muscle when excited.  

 

With a focus on developing a linear simulation 

framework, the nonlinear torque elements contained 

in Equation (3) were linearized in the fashion below to 

leave the transfer function that describes only the 

activation or contraction dynamics of the muscle 

model in Equation (9) using Equation (8).  

 

T𝛃linearization
= ((((wu + Fmp(lf)  ) (Hirc

−1(Hlad ×

Hirc))) × Fma
−1(ϑ̇𝐟, ϑf)) × Fma(ϑ̇𝐟, ϑf)) − Fmp(lf)       (8) 

Tβ(s) =  Hlad =  
Tβ

wu
=

wn
2

s2+2sζwn+wn
2                       (9)                                          

 

2.1.3  Feedback controller 

In an unimpaired patient with no stroke, joint 

coordination and movement requires relaying of fine-

tuned, stable signals from the brain through the 

efferent pathways to the muscle [28]. Accordingly, it 

is deemed important to have a form of controller in the 

simulation framework that ensures transient response 

of the modelled unresponsive flaccid muscle of 

impaired subjects during a rehabilitative task to attain 

a steady state response rather than oscillatory 

response. Forthwith, an approximate form of a PD 

controller known as phase-lead compensator is 

selected to guarantee appropriate and stable physical 

characteristic during movement [32].  

 

Tpd(s) =  
wu

e
=

KP

1

τs+1

ϖτs+1
                             (10)                                                                         

where τ =
KD

KP
 , 0 < ϖ < 1, and e is the feedback error 

between subject’s movement error and the reference 

task given. The expression in (10) can be re-written as  

Tpd(s) =
wu

e
=  

(
KD
KP

s+ 1)KP

ϖ
KD
KP

s+1
                   (11) 

 

As ϖ
KD

KP
→ 0, the numerator approximates a typical 

PD controller. Next, an intelligent algorithm that 

estimates the number of trials that may be required by 

a subject to learn how to track a trajectory until a 

certain trajectory error is attained is discussed.  

 

2.2  Feedforward Learning Algorithm 

Iterative learning control (ILC) is a method that seeks 

to improve tracking accuracy of repetitive processes. 

The idea behind the technique is to use previous 

information from past operations to update the control 

input, in between iterations for better performance 

[33][34][35]. In the present study, ILC is formulated 

to estimate the number of trials required to attain 

certain level of tracking accuracy and to generate 

control efforts that causes the closed loop feedback 

system (i.e., the combination of the feedback 

controller, linear muscle model and subject’s forearm) 

to have an improved performance at every trial within 

a given rehabilitation session.   

 

2.2.1  Problem formulation 

To begin with, a typical stroke rehabilitation is 

decomposed from an algorithmic perspective in this 

section. In rehabilitation scenarios, session starts with 

the clinicians assessing the physical impairment of the 

subject and using the relevant information obtained to 

define how long each session should be (i.e., number 

of repetitions per time unit/session) to avoid further 

injuries like ligament tears, capsule injuries  and 

muscle fatigue [36, 37, 38, 39, 40].  For favorable 

outcomes, it is reported that a given session should last 

about 36 minutes to 1 hour per day [41]. In addition to 

this, recent consensus has established 15 trials as the 

least recommended number for functional task 

repetitions per session for both planar and 3D 

functional tasks [42].  Also, patient-specific tasks for 

each session must be developed to accommodate 

differences in physical attributes of patients and 

impairment stages [40]. Moreso, clinicians are 

occasionally tasked with setting the learning rate at 

which the subject should undertake the defined 

trajectory task [23, 39]. Accordingly, based on these 

real-life scenarios, these fundamental assumptions 

were established to formulate a proportional type of 

iterative learning algorithm for the linear simulation 

framework. 

i. Definition of finite time interval for each trial for 

every given simulation/rehabilitation session. 

ii. Availability or identification of system to be 

controlled. This refers to the closed loop 

feedback system. In this case is the linear models 

representing the stroke patients. 

iii. Definition of the desired reference task plane 

trajectory to be tracked. 

iv. Selection of a learning gain.  
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Likewise, fundamental ILC requirements that ensure 

the algorithm learns from repeating movement errors 

of an impaired subject were considered [43].  

v. The bandwidth of the closed loop system must be 

known. 

vi. Design of a Q-filter that removes ILC input 

signals that are above system’s bandwidth at 

every iteration if noises exist in the feedforward 

input. 

vii. The previous input signal applied by ILC must be 

stored in memory. 

viii. The output displacement of the subject at every 

trial must be stored in memory. 

ix. The error signal between the desired reference 

trajectory and the output displacement of the 

subject must be computed. 

 

Consequently, a p-type linear-time invariant ILC 

structure is adopted in the present formulation [44]. It 

is indexed as a two-dimensional process over an 

iteration and fixed time domain [45]. 

 

𝑈𝑘+1(𝑡) = 𝑄(𝑈𝑘(𝑡) + 𝐿𝑐𝑒𝑘(𝑡)) 

𝑒𝑘(𝑡) = 𝑌𝑟(𝑡) − 𝑌𝑘(𝑡)                                       (12)                                                         

where, t = trial period, 𝑘 = iteration index,  𝑈𝑘(𝑡) is 

the ILC output over the present iteration index over 𝑡, 

𝑒𝑘(𝑡) is the error at present iteration index over 𝑡, 

𝑌𝑟(𝑡) = reference trajectory over 𝑡 , 𝑌𝑘(𝑡) = subject 

forearm displacement over 𝑡,  𝑈𝑘+1(𝑡) = Next trial 

feedforward input over 𝑡, 𝐿𝑐 = Proportional learning 

gain and Q = Filter.  

 

2.2.2 Iterative learning algorithm (ILA) Develop-

ment 

The main objective or idea of the new algorithm is to 

estimate the number of trials 𝑘 in the iteration domain 

that yields good forearm tracking performance under 

a given tracking error boundary  𝑒
−

 within a given 

rehabilitation period 𝑡. To start with,  

i. Let 𝑡𝑚 =
𝑡

𝑡𝑠
 be the length of vector space obtained 

from the ratio of trial time 𝑡 and sample time 𝑡𝑠. 

ii. Let the vector pair space of sample time and 

desired control variable be defined as  

ℝ𝑡𝑚×2 =  {(𝜒, 𝑡𝑠)|𝜒, 𝑡𝑠  𝜖 ℝ}                            (13)                                                                                   

 where 𝑈𝑘, 𝑈𝑘+1, 𝑒𝑘, 𝑌𝑟, 𝑌𝑘 𝜖 𝜒. Also let 𝑄, 𝐿𝑐  𝜖 ℝ 

iii. To obtain number of trials 𝑘 which satisfies the 

objective, Equation (14) must be satisfied. 

Find 𝑘 ∶  ‖𝑌𝑟(𝑡) − 𝑌𝑘(𝑡)‖  ≤  𝑒
−

          (14) 

𝑒
−

 is the error threshold or boundary that must be 

met to predict 𝑘. 

iv. With a defined desired reference trajectory 𝑌𝑟(𝑡) 

and trial interval 𝑡, feedback controller parameters 

𝜛, 𝐾𝐷 , 𝐾𝑝, muscle model parameters ζ, 𝑤𝑛, subject 

forearm parameter 𝑏𝑎3
, mechanical guide 

parameters 𝐾𝑀2
, 𝐾𝐵2

, given error threshold 𝑒
−

, 

sampling time 𝑡𝑠, learning gain 𝐿𝑐 , and Q filter 

Compute 

i. Create storage variables 𝑌ℎ , 𝑒ℎ,  𝜖 ℝ𝑡𝑚×2 

ii. Initialize 𝑌ℎ ← (𝜒, 𝑡𝑠)|𝜒 = 0 ∀ 𝑡𝑠  and 𝑒ℎ ← 

(𝜒, 𝑡𝑠)|𝜒 = 0 ∀ 𝑡𝑠   
iii. Set 𝑘 ←  0  

iv. Compute 𝐺(𝐻) ←  𝑇𝑎𝑟(𝑠). 𝑇𝛽(𝑠). 𝑇𝑝𝑑(𝑠) 

v. Develop the closed loop feedback transfer 

function 𝑇𝑐 ←  
G(H)

1+G(H)
 

vi. while (e >  e
−

)  do  

vii.         while (ts < t) 
viii.               simulate (Tc, ts, Uk, Yr ) 
ix.               store Yk ← [Yh, ts]  

x.               store ek ← [eh, ts] 

xi.          k ← k + 1 

xii.          compute Uk+1 in Equation (12) 

xiii.           Uk ← Uk+1 
xiv.  return k    

 

2.3  Implementation 

In the section, an end-to-end straight line task plane 

trajectory was developed in MATLAB/SIMULINK 

environment for a typical reach-extend task for the 

linear forearm model discussed in the earlier sections. 

Anthropometric variables and muscle parameters 

describing an impaired stroke patient with upper-limb 

extremity were adapted from [31, 46]. Desired end-

effector gains that incorporates a challenging task 

were manually selected as KD = 2, Kp= 9.98, ϖ = 0.05 

over statistically observed value range. Via Equations 

15 - 20 and Table 1, the forearm joint angle movement 

is converted into the task plane trajectory for 

determination of performance stability of the model’s 

kinematic movement with respect to the reference 

trajectory of 0 – 0.2828m. Thereafter, the algorithm 

generate signals for improving performance stability 

of the modelled subject until the kinematic movement 

error e ≤ e
−

 = 0.01m is satisfied over a trial period of 

10 s. 

 

𝑟 = √d1
2 + 𝐿2                                      (15)                             

where d1 and 𝐿 are horizontal (𝑥) axis and vertical (y) 

axis respectively.  

𝜙 = 𝑡𝑎𝑛−1 d1

𝐿
                                                 (16)                                           

𝑌𝑟(𝑡) = [𝑟, 𝑡𝑠]               (17) 

 

With the output of 𝑇𝑎𝑟(𝑠) been a joint variable 𝜗𝑓 and 

the designed trajectory paths mainly a resultant 

derived from cartesian plane components d1 and 𝐿. 
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Thus, the forward kinematic relationship employed 

for mapping the joint space ϑf into cartesian space is  

 

(ϑf) = [
x
y

] = [
Lu cos(k(ϑf)) + Lf cos(k(ϑf) + ϑf)

Lu sin(k(ϑf)) + Lf sin(k(ϑf) + ϑf)
]    (18)                                                                                      

𝑟ℎ =  √x2 + 𝑦2                            (19) 

𝑌ℎ(𝑡) = [𝑟ℎ , 𝑡𝑠]                    (20)             

 

Table 1: Trajectory Path Parameters 
Trajectory Parameter Description Notation Data 

Minimum length of reach from glenohumeral joint 

base on the table 

r1 0.1m 

Maximum Length of reach (MALOR) from 

glenohumeral joint base 
r2 0.3m 

Task space trajectory orientation angle  𝜙 0.6109 rad 

Horizontal distance from Subject’s body d1 0.2 m 

Subject specific workspace (Difference between 

MALOR and MILOR ) 

L 0.2 m 

 

3.0  RESULTS AND DISCUSSION  

3.1  Results 

In this section simulation results of ILA with linear 

models representing impaired patients' muscle 

dynamics and forearm extension kinematic movement 

on a planar surface is reported. The root means square 

error (RMSE) metric was used for assessing the 

performance stability of the model tracking accuracy. 

As seen from Figure 1, the desired threshold that 

satisfies kinematic stability error e ≤ e
−

 = 0.01m was 

met under 2, 8 and 16 trial length for learning gains 

0.9, 0.8, 0.2 and 0.1 respectively.  

 

 
Figure 1:  Plot of different kinematic stability error 

(e) at different learning gain (L) and trials (k) 

 

Investigating further, Figure 2 shows the plot of 

kinematic movement of the subject’s model around 

the given trajectory under an iterative learning gain of 

L = 0.1. Comparing the 1st and 16th trial of the 

simulation, the subject’s model kinematic stability 

error e improved from a distance of 0.0168m to 

0.0060m with respect to the trajectory. Furthermore, 

Figures 1 and 3 depict the impact of learning gain 

choice on kinematic stability performance. While it 

took the subject’s computed model 16 trials to meet 

the desired error at L = 0.1, a step-by-step increase in 

learning gain depicts that a subject’s computed model 

can be made to attain kinematic stability faster. Figure 

3 confirms this claim by showing how the kinematic 

stability was attained under 2 iterations at L = 0.9.  

 

 
Figure 2:  Plot of subject’s model kinematic 

stability along reference trajectory at L = 0.1 

 

 
Figure 3:  Plot of subject’s model kinematic 

stability along reference trajectory at L = 0.9 

 

3.2  Discussion 

This study employed an iterative learning algorithm 

(ILA) to determine the optimal number of trials 

needed for achieving performance stability. Linear 

models represented impaired subjects, facilitating the 

investigation of kinematic movement on a planar 

surface. To assess kinematic stability, a predefined 

maximum deviation threshold (e
−

 = 0.01m) was set, 

and simulation results showed that around 16 trials 

with a learning gain of L = 0.1 were required for 

attainment. Notably, the model’s deviation error 

improves at every trial for instance, a noticeable 

improvement from 0.0168m to 0.0152m was observed 

between the 1st and 2nd trials, respectively.  With e > 

e
−

, the simulation scheme continued until a good 

performance stability was attained at a constant error 

(e < e
−

 ) of 0.0066m at k = 16 trials. In comparison to 

other studies, ILA with linear model approach 

demonstrated progressive effectiveness in estimating 

the number of trials needed to achieve improved 

performance or meet the predefined maximum 
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deviation threshold. According to [42], authors 

recommended at least a minimum of 15 trials per task 

for assessment of performance on a 2D planar surface. 

In [47], an approximate number of 15 – 25 trials were 

utilized for reaching tasks in chronic stroke patients. 

In [24], authors reported that it took 2 – 3 trials to 

reach good performance stability of simpler kinematic 

measures in healthy and stroke subjects but more trials 

were needed to attain complex kinematic movements 

like reaching and returning task. As such, different 

studies reported that varying numbers of trials are 

required for kinematic stability based on task 

complexity and subject health status [25].  

 

Another noteworthy outcome that deserves discussion 

is the influence of the learning gain (L) and the 

predefined kinematic error threshold (e
−

) in estimating 

the number of trials required to achieve kinematic 

stability. In a study without a specific kinematic error 

threshold, it was reported that a total of 47 trials before 

terminating movement due to non-improving 

kinematic stability in healthy individuals [48]. 

However, in the present work, by defining e
−

 the 

iterative learning algorithm (ILA) successfully 

simulated scenarios representing slow, medium, and 

fast recovery based on the choice of learning gain (L). 

Notably, when L was set to 0.9, the simulated model 

achieved the desired performance stability in only 2 

trials, while L values of 0.2 and 0.8 required 8 and 2 

trials, respectively. The careful selection of the 

learning gain proves to be critical, especially for 

models representing impaired subjects. For impaired 

patients nearing full recovery, it is advisable to use 

learning gains close to L = 1, while for severely 

impaired patients, learning gains between L = 0.001 

and L = 0.1 may be more appropriate. This finding 

highlights the importance of tailoring the learning gain 

parameter to suit the specific needs and progress of the 

individual’s undergoing rehabilitation or intervention.  

 

Performance stability of selected kinematic metrics 

has been declared important  for identification of 

deviations from typical patterns and evaluation of 

effectiveness of possible intervention [25]. This 

model-based study validates the combination of the 

ILA algorithm with linear models for estimating the 

number of trials needed to achieve kinematic accuracy 

under a strict deviation setpoint. The trial estimation 

results align with prior research in this field. 

Furthermore, it highlights the adaptability of the ILA 

learning gain subspace for different impaired subjects. 

Nevertheless, several caveats need consideration. 

Firstly, the linear forearm model only assesses a single 

kinematic variable (i.e., accuracy of elbow extension 

on a planar surface). Secondly, parameter values were 

sourced from existing studies, and validation with 

actual stroke subjects is essential. Thirdly, the efficacy 

of the scheme depends on cautious selection of ILA 

gains and accurate parameters for modeling impaired 

subjects.  

 

4.0  CONCLUSION 

Modeling and simulation can be an important first step 

at the start of recovery and rehabilitation. This claim 

is because it offers multiple benefits such as 

forecasting the number of trials that may be needed to 

attain kinematic stability rather than a precise 

functional outcome. The future of this work would 

investigate and validate ILA + linear model results 

with impaired subjects during pilot studies. 

Additionally, future work will focus on estimating the 

number of sessions that may be required to attain more 

selected kinematic skills along with likelihood 

prediction of subject recovery.  
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