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Abstract 

The optimisation design approach has garnered significant attention in 

experimental design due to its ability to develop unique designs that align with 

specific experimental objectives. Welding has been a unique joining process 

applied across various engineering fields. Optimisation of the welding process 

can significantly affect the quality of the welded joint. However, the choice of 

which optimisation technique to deploy for an experimental process is often a 

random decision taken by researchers. The aim of this study, therefore, is to 

perform a comparative study of the Taguchi, fuzzy, and response surface 

methodology optimisation techniques in the optimisation of tungsten inert gas 

welding parameters of current, voltage, and gas flow rate of mild steel. Results 

obtained from the analytical and statistical analyses, with MATLAB used for 

fuzzy logic modelling, Minitab used for ANOVA and main effect analyses, and 

Design Expert used for chart analysis, revealed that all three optimisation 

techniques are effective, but fuzzy logic (with a % error range of 1.8–5.4) as 

against RSM (with a % error range of 0.72–12.3) and Taguchi (with a % error 

range of 0.79–33.54) was the more robust and effective model, as its results were 

closer to actual experimental results than the other two traditional techniques.
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1.0  INTRODUCTION 

The creation of tools for statistics is an ever-growing 

trend, and its continual deployment in industrial 

research, science, and engineering cannot be 

overemphasised.  According to [1], the optimal design 

technique has drawn a lot of interest in experimental 

design lately since it can produce customised designs 

that support particular experimental objective-

es.  Process parameters are one of the most important 

elements affecting the quality of welding. The 

operator has direct or indirect control over some 

factors that affect the microstructure and mechanical 

characteristics of the joints. To create weld 

microstructures with superior mechanical qualities 

and improve weldment performance throughout 

service, it is essential to choose the right process 

parameters for welding operations. According to [2], 

incorrect welding parameter selection is to blame for 

a large number of welded component failures that 

occur during service. Therefore, it is crucial to screen 

the various candidate process parameters to ascertain 

their impact on weld qualities to prevent unwanted 

microstructures with poor mechanical properties, 

which could be harmful to the safety and integrity of 
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welded structures in service. Research has indicated 

that, despite the vast range of statistical and modelling 

instruments available, Taguchi, response surface 

methodology, and fuzzy logic techniques are among 

the often employed predictive and optimisation 

strategies in literature [3-6].  

 

Taguchi's process modelling has shown to be a useful 

method by utilising minimal experimental runs, 

thereby reducing material wastage, enhancing process 

efficiency and potential cost savings; it utilises the 

mathematical design of experiments based on 

orthogonal arrays and not only saves costs and energy 

but also gives the required information about the 

primary and interaction outcomes [7]. [8] deployed the 

Taguchi technique to maximise tensile strength for 

dissimilar welds of AISI 4340 steel and 304 austenitic 

stainless steel. They investigated the influence of 

welding settings on surface roughness experimentally. 

In their investigation, they used 308L filler material 

and TIG welding to examine the effects of welding 

parameters on the micro-hardness, tensile strength, 

and surface roughness of AISI 316L stainless steel 

welded joints. [9], utilising the Taguchi optimisation 

technique, reported that minimum surface roughness 

was achieved at the parametric combination of current 

125 A, voltage 18 V, and gas flow rate 12 L/min. and 

concluded that arc current was the most influential 

factor. The Taguchi technique was utilised by [10] to 

optimise the input factors for tungsten inert gas 

welding of mild steel. 

 

RSM is a statistical and mathematical technique used 

to develop empirical models and optimise processes in 

which a response variable of interest is influenced by 

multiple parameters by fitting approximating models 

to the experimental data obtained in a designed 

experiment [11].   RSM was used by [12], to predict 

and optimise the welding parameters for tungsten inert 

welding of mild steel plates. [13], optimised output 

responses for TIG-welded low carbon by utilising an 

artificial neural network and the central composite 

design of trials of RSM. Using RSM, [11] optimised 

the welding and heat treatment parameters for 

improved mechanical performance in micro-alloyed 

steel components. They found that RSM-predicted 

outcomes could be obtained with minimal variations 

from experimental results of 0.67%. 

 

Zadeh's [14] set theory serves as the foundation for the 

idea of fuzzy theory. Fuzzy set theory is a very 

appealing technique to extract information from data 

for controller design, and it may be used to model the 

amount of ambiguity or uncertainty owing to 

parameter inaccuracy and unmodelled dynamics. A 

new approach to welding parameter optimisation is 

provided via fuzzy logic modelling. The components 

of fuzzy logic are the fuzzy inference system, 

membership functions, rule base, fuzzy inference 

system, and defuzzifier (Figures 1 - 4). Fuzzifier 

expresses the input variables in the form of fuzzy 

membership values based on various membership 

functions. Rules based on linguistic form are 

formulated based on experimental observations. The 

fuzzy logic method was applied for the optimisation 

of spot welding parameters of stainless steel (AISI 

304) by [15]. [16], optimised the process parameters 

of friction stud welding on the joining of AA 6063 and 

AISI 1030 steel, using Taguchi L9 orthogonal array 

method. In that work, they considered process 

parameters such as Rotational speed, friction time, and 

friction pressure as the influential input process 

parameters.  They analysed the impact strength, axial 

shortening, and microhardness across the weld 

interface. [17], investigated the optimisation of the 

MIG Arc weld-brazing process on aluminium and 

steel lap-joint welds using the intrgrated grey 

relational analysis and Taguchi method, and reported 

that the wettability and tensile strength of the Al-steel 

lap-joint specimens were improved simultaneously by 

using the proposed approach.  

 

 
Figure 1:  Fuzzy logic toolbox 

 

  
Figure 2:  Membership function editor 
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Figure 3:  Fuzzy rule editor 

 

 
Figure 4:  Fuzzy rule viewer 

 

A review of the various literature [8-13, 15-17] 

highlighted in this paper reveals that optimisation 

techniques have been extensively employed in 

research to determine suitable welding parameters for 

producing welds with optimal mechanical properties, 

thereby enhancing performance in critical service 

applications. However, the choice of which 

optimisation cum predictive model to deploy for an 

experimental process to achieve consistent, reliable, 

and accurate results is often a random decision taken 

by researchers [18-21].    Therefore, the optimisation 

of TIG welding process parameters, and its effect on 

structural steel's tensile strength; and the comparative 

analysis of Taguchi, fuzzy logic, and RSM predictive 

models are the main focus of this work. 

 

2.0  MATERIALS AND METHODS 

2.1  Materials and Equipment 

The mild steel samples utilised in this investigation 

had the chemical makeup shown in Table 1. The 

dimensions of the samples were 80 mm by 80 mm by 

6 mm. Argon was used as the shielding gas and 

electrode ER70S-6 for the welding process, which 

was performed with a tungsten inert gas (TIG) Miller 

welding machine. Table 2 displays the filler material's 

chemical composition. For this investigation, the 

ultimate tensile strength of the welded steel samples at 

different welding parameter settings was determined 

using a universal tensile test machine.  

 

2.2  Methods 

2.2.1  Welding procedure 

The weld joint's edges were ground away to eliminate 

surface contamination prior to welding. Additionally, 

the parts that needed to be joined were meticulously 

cleaned to remove any paint, dirt, oil, or grease. The 

bead-on-plate approach was used in the welding 

process, in which weld beads were placed 

longitudinally in the centre of each plate in a straight 

line. The preset parameter settings for the welding 

operation are outlined in Tables 3 and 4. 

 

2.2.2 Statistical analyses  

The signal-to-noise ratio (S/N) for the Taguchi 

analysis was computed using the larger-the-better 

option for tensile strength according to equation (1). 

The main effects analyses of fuzzy logic via the single 

multi response performance index (MRPI) and that of 

Taguchi, using signal-to-noise ratio with the option of 

larger-the-better, were achieved with the aid of 

MINITAB computer software, and the results 

obtained are illustrated in Tables 5–6 and Figure 5, 

respectively. The optimisation of the welding process 

output response by fuzzy logic was accomplished with 

the instrumentality of MATLAB computer software, 

using the fuzzy logic-Mamdani toolbox. 

 

𝐿𝑎𝑟𝑔𝑒𝑟 − 𝑖𝑠 − 𝑏𝑒𝑡𝑡𝑒𝑟: 𝑆/𝑁 =  −10 𝑙𝑜𝑔 (∑
𝑦𝑖

−2

𝑛

𝑛
𝑖=1 )   (1) 

 

The full quadratic model developed and the 

subsequent regression analysis of RSM was 

performed for the optimisation of tensile strength for 

mild steel were performed with the use of Design 

Expert computer software. Also, the determination of 

the statistical significance of the welding parameters 

employed in this study was carried out using analysis 

of variance (ANOVA), and the results are displayed in 

Table 7. The fit statistics results are exhibited in Table 

8.                                                                                                                                                                                                                                                             

 

Table 1: Chemical composition of the mild steel 
Element C Si Mn P S Cu Ni Cr Mo Al N Fe 

%Wt. 0.17 0.31 0.78 0.03 0.03 0.51 0.09 0.05 0.008 0.047 0.007 Bal. 

 

Table 2: Chemical composition of the filler material (ER70S-6) 
Element C Mn Si P S Ni Cr Mo V Cu 

%Wt. 0.15 1.60 1.1 0.025 0.035 0.1 0.12 0.13 0.03 0.50 
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Table 3: Welding parameters and their levels 

Parameters Unit 
Level 1 

(Low) 

Level 2 

(Medium) 

Level 3 

(High) 

Current Ampere (A) 95 100 105 

Voltage Volt (V) 23 25 27 

Gas flow rate 

Litre per 

minute 

(L/min.) 

10 15 20 

 

3.0  RESULTS AND DISCUSSION 

3.1  Analysis of Taguchi 

Results for the Taguchi analysis are displayed both in 

Table 5 and Table 6, respectively. Predicted Taguchi 

tensile strength is obtained based on Equation (2) 

according to [22].  

 

T = Tm + ∑ (𝑇𝑜 − Tm)𝑛
1                                                        (2) 

Where, 𝑇 is the calculated or predicted S/N; Tm is the 

mean of the total of the S/N of all the runs; 𝑇𝑜 is the 

mean of the S/N at the particular level of the process 

parameter, and 𝑛 is the relevant welding process 

parameter for the S/N. 

 

The experiments were conducted based on RSM 

central composite design of experiment of 20 runs 

(Table 4), and the results obtained were all subjected 

to the Taguchi, RSM and fuzzy logic optimisation 

techniques (Table 5) respectively. The purpose of this 

comparative study of the aforementioned optimisation 

techniques, was to determine the predictive modelling 

accuracy of each optimisation technique as compared 

with actual experimental results obtained. The 

deviations of predicted results from actual 

experimental results were calculated via percentage 

error computations; and the values so obtained formed 

the bases for comparisons.   From Table 6, among the 

20 experimental runs conducted, trial run three has the 

maximum experimental test tensile strength of 460.3 

MPa, signal-to-noise ratio of 53.26 dB, and a 

predicted tensile strength of 387.7 MPa, from a 

parametric combination of X2Y2Z3; While 

experimental run 8 has the least tensile strength of 

238.2 MPa, S/N of 47.54 dB and a predicted tensile 

strength of 318.1MPa, from a parametric combination 

of current 100 A, voltage of 27 and gas flow rate of 15 

L/min. According to Taguchi, the optimum condition 

(of the welding process) is obtained from the analysis 

of the main effects of the factors. Since the higher-the-

better is desired for the tensile strength, Table 9 and 

Figure 5, demonstrate that the optimal combination of 

welding parameters is X3Y2Z1, that is, a current of 105 

A, a voltage of 25 V, and a gas flowrate of 10 L/min. 

The percentage error for the Taguchi predicted tensile 

strength for the experimental runs ranges from 0.79 to 

33.54 %. Only 30 % of the data produced percentage 

errors above 10 %, indicating that the Taguchi 

predictive model is reliable. 

3.2  Fuzzy Logic 

The results obtained from the analysis of the fuzzy 

logic toolbox using MATLAB computer software are 

illustrated in Table 5 and Table 6, respectively. The 

fuzzy predicted tensile strength of 454 MPa was the 

maximum for order run 3 with the corresponding test 

tensile strength of 460.3 MPa at the same parametric 

combination of current at 100 A, voltage at 25 V and 

gas flow rate 20 L/min. Table 10 and the main effects 

plot for MRPI in Figure 5, developed by MINITAB 

computer software, also highlighted the optimum 

welding process parameters of current of 105 A, a 

voltage of 25 V, and a gas flowrate of 10 L/min. The 

fuzzy logic model recorded a maximum % error of 5.4 

and a minimum % error of 1.8 respectively. 100% of 

the fuzzy data exhibited a percentage error of less than 

10%, demonstrating that it is a very robust and reliable 

predictive model. 

 

 
Figure 5:  Main effects plot for single MRPI 

  

3.3  Statistical Analysis of the Response Surface 

Methodology Quadratic Model  
Analysis of variance (ANOVA) was used in the 

statistical testing of the quadratic model with the aid 

of Design Expert computer software and the results 

are presented in Table 7. The significance of the 

quadratic model was analysed via the Fisher’s value 

(F-value). The full quadratic model as presented in 

Table 7 for tensile strength with an F-value of 5.12 and 

a P-value of 0.0088 (less than 0.0500) implies the 

model and its terms are significant. The experimental 

data acquired is well-fitted to the second-order 

quadratic model developed. The final equation in 

terms of actual factors is given in equation (3). 

 
𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ = 382.67364 − 8.31𝑋 − 1.26𝑌 −
16.96𝑍 − 20.4𝑋𝑌 + 41.95𝑋𝑍 + 46.8𝑌𝑍 +
15.79091𝑋2 − 22.05909𝑌2 − 14.25909𝑍2                     (3) 

 

As depicted in Table 8, the standard deviation value of 

30.08 was achieved from the model. A coefficient of 

determination (R2) value of 0.8216 was obtained for 

the model indicating that there is an actual correlation 
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among the parameters selected in the experiment. It 

showed that only 17.84 % of the total variation in the 

tensile strength of structural cannot be accounted for 

by the experimentally studied variables. Adequate 

precision measures the signal-to-noise ratio. A ratio 

greater than 4 is desirable.  A sufficient signal of 9.941 

was obtained, indicating a satisfactory precision was 

achieved. As a result, the model can be used to 

traverse the design space.  

 

Figures 6 - 8 show generated 3D surface response 

graphs from the RSM quadratic model analysis. 

According to Figure 6, tensile strength decreases as 

voltage falls but it increases as current increases. This 

suggests that high tensile strength may be attained at 

moderate heat input, which is supported by [23]. The 

impact of voltage and gas flow rate on tensile strength 

is shown in Figure 7. Tensile strength increases with 

decreasing gas flow rate and lowers with increasing 

voltage.  The impact of gas flow rate and current on 

the tensile strength of structural steel is emphasised in 

Figure 8. It is noted that higher tensile strength values 

are obtained at lower current and gas flowrate levels; 

this provides additional evidence that; moderate heat 

is required for high tensile strength. A plot of 

predicted versus actual tensile strength values is 

presented in Figure 9. 

 

Table 5 shows that the RSM predicted tensile strength 

of 457.0 MPa was the highest for order run 3 with the 

corresponding test tensile strength of 460.3 MPa at the 

same parametric combination of X2Y2Z3. The 

maximum settings predicted from the quadratic 

second-order polynomial equation were X3Y3Z3 

corresponding to the maximum Tensile strength of 

403.97 MPa.  The RSM quadratic model recorded a 

maximum of 12.3 % error and a minimum of 0.72 % 

error respectively. 90 % of the RSM data exhibited a 

percentage error of less than 10 %, demonstrating that 

it is a robust and reliable predictive model. 

 

Apart from Taguchi, whose optimal combination of 

X2Y2Z3 welding parameters did not occur in the 20 

experimental runs, fuzzy logic with an optimal 

combination that occurs in run 3 estimated a higher 

tensile strength of 452 MPa compared to RSM with an 

optimal combination of X3Y3Z3 that did not occur in 

the 20 experimental runs with an estimated tensile 

strength of 403.97 MPa. 

 

Table 4: Design of experiment using central composite design of RSM 

 

Table 5: Tensile test results and their predicted values 

Run 

order 

Levels of Parameters Test 

Tensile strength 

(MPa) 

Predicted 

Taguchi 

(MPa) 

Predicted 

RSM 

(MPa) 

Predicted 

Fuzzy logic 

(MPa) 
Current 

(A) 

Voltage 

(V) 

Gas flowrate 

(L/min.) 

1 95 23 20 368.9 351.1 361.9 385 

2 100 23 15 336.8 370.4 353.3 354 

3 100 25 20 460.3 387.8 457.0 452 

4 105 23 20 347.0 389.9 382.7 365 

5 105 27 20 395.9 334.8 390.2 408 

6 100 25 15 357.7 385.6 382.7 377 

7 100 25 15 360.0 385.6 377.5 377 

8 100 27 15 238.2 318.1 245.6 247 

9 100 25 15 415.1 385.6 401.7 428 

10 95 27 20 264.3 301.5 260.3 273 

Std. order Run order Current (A) Voltage (V) Gas flowrate (L/min.) Tensile Strength (MPa) S/N MRPI 

11 1 0 -1 0 368.9 51.34 0.660 

6 2 1 -1 1 336.8 50.55 0.500 

1 3 -1 -1 -1 460.3 53.26 0.927 

17 4 0 0 0 347.0 50.81 0.559 

10 5 1 0 0 395.9 51.95 0.750 

20 6 0 0 0 357.7 51.07 0.610 

7 7 -1 1 1 360.0 51.13 0.621 

5 8 -1 -1 1 238.2 47.54 0.0728 

3 9 -1 1 -1 415.1 52.36 0.768 

4 10 1 1 -1 264.3 48.44 0.230 

12 11 0 1 0 366.3 51.28 0.649 

19 12 0 0 0 392.0 51.87 0.750 

18 13 0 0 0 354.4 50.99 0.596 

13 14 0 0 -1 350.8 50.90 0.578 

9 15 -1 0 0 415.0 52.36 0.768 

16 16 0 0 0 401.9 52.08 0.752 

14 17 0 0 1 400.0 52.04 0.751 

15 18 0 0 0 415.1 52.36 0.768 

2 19 1 -1 -1 411.3 52.28 0.763 

8 20 1 1 1 397.2 51.98 0.750 
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11 95 25 15 366.3 363.4 359.4 383 

12 100 25 15 392.0 385.6 382.7 405 

13 100 25 15 354.4 385.6 382.7 374 

14 95 27 10 350.8 329.7 385.4 369 

15 95 23 10 415.0 383.9 406.8 426 

16 100 25 10 401.9 424.0 382.7 414 

17 100 25 15 400.0 385.6 351.5 413 

18 105 23 10 415.1 426.3 382.7 426 

19 100 25 15 411.3 385.6 397.3 422 

20 105 27 10 366.1 322.7 404.0 410 

 

Table 6: Tensile test results and their deviations 

Run order 

Test 

Tensile strength 

(MPa) 

Taguchi 

Predicted 

(MPa) 

% Error 

Fuzzy logic 

Predicted 

(MPa) 

% Error 
RSM Predicted 

(MPa) 
% Error 

1 368.9 351.1 4.83 385 4.36 361.9 1.90 

2 336.8 370.4 9.98 354 5.12 353.3 4.90 

3 460.3 387.8 15.75 452 1.80 457.0 0.72 

4 347.0 389.9 12.36 365 5.19 382.7 10.29 

5 395.9 334.8 15.43 408 3.06 390.2 1.44 

6 357.7 385.6 7.80 377 5.40 382.7 6.99 

7 360.0 385.6 7.11 377 4.72 377.5 4.86 

8 238.2 318.1 33.54 247 3.69 245.6 3.11 

9 415.1 385.6 7.11 428 3.11 401.7 3.23 

10 264.3 301.5 14.07 273 3.29 260.3 1.51 

11 366.3 363.4 0.79 383 4.56 359.4 1.88 

12 392.0 385.6 1.63 405 3.32 382.7 2.37 

13 354.4 385.6 8.80 374 5.53 382.7 7.99 

14 350.8 329.7 6.01 369 5.19 385.4 9.86 

15 415.0 383.9 7.49 426 2.65 406.8 1.98 

16 401.9 424.0 5.50 414 3.01 382.7 4.78 

17 400.0 385.6 3.60 413 3.25 351.5 12.13 

18 415.1 426.3 2.70 426 2.63 382.7 7.81 

19 411.3 385.6 6.25 422 2.60 397.3 3.40 

20 397.2 322.7 18.76 410 3.22 404.0 1.71 

 

 
Figure 6:  Plot of current, voltage vs TS 

 

 
Figure 7:  Plot of current, gas flowrate vs TS 

 

Table 7: ANOVA for quadratic model 
Source Sum of 

Squares 

DF Mean 

Square 

F-

value 

p-

value 

 

Model 41655.14 9 4628.35 5.12 0.0088 Significant 

X-Current 690.56 1 690.56 0.7633 0.4028  

Y-Voltage 15.88 1 15.88 0.0175 0.8972  

Z-Gas 

flowrate 

2876.42 1 2876.42 3.18 0.1049  

XY 3329.28 1 3329.28 3.68 0.0840  

XZ 14078.42 1 14078.42 15.56 0.0028  

YZ 17521.92 1 17521.92 19.37 0.0013  

X² 685.72 1 685.72 0.7580 0.4044  

Y² 1338.16 1 1338.16 1.48 0.2518  

Z² 559.13 1 559.13 0.6180 0.4500  

Residual 9046.92 10 904.69    

Lack of Fit 4973.25 5 994.65 1.22 0.4160 not 

significant 

Pure Error 4073.67 5 814.73    

Cor Total 50702.06 19     

 

Table 8: Fit statistics 
Std. Dev. 30.08 

R² 0.8216 

Adjusted R² 0.6610 

Adequate Precision 9.9406 

 

Table 9: Signal-to-noise ratio mean response values 

(higher is better) 

Parameter 
Mean S/N 

Maximum 
Level 1 Level 2 Level 3 

Current 50.864 51.379 51.775 51.775 

Voltage 51.484 51.833 50.162 51.833 

Gas flowrate 51.936 51.111 51.160 51.936 

Mean of the total of S/N = 51.300 dB 
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Table 10: MRPI mean response values 

Parameter 
MRPI Mean 

Maximum 
Level 1 Level 2 Level 3 

Current 0.577 0.646 0.707 0.707 

Voltage 0.650 0.719 0.476 0.719 

Gas flowrate 0.723 0.608 0.625 0.723 

Mean of the total of MRPIs = 0.637 

 

 
Figure 8:  Plot of voltage, gas flowrate vs TS 

 

 
Figure 9:  Plot of predicted vs actual TS values 

 

3.4  Validation Evaluation  

An experimental validation of the various predictive 

modelling of welding process parameters for mild 

steel was carried out. The value of the calculated or 

predicted single MRPI as per tensile strength for 

Taguchi method, using the maximum levels of the 

welding process parameters is derived from Equation 

(2) 

 

Table 11: Validation experiment results 
Run 

order 

Test  

Tensile strength (MPa) 

Predicted 

Taguchi 
% Error 

Predicted 

Fuzzy logic 
% Error 

Predicted 

RSM 
% Error 

1 389.9 443.8 13.8 404 3.62 361.9 7.18 

 

A validation experiment was performed based on the 

optimal levels of the TIG welding parameters obtained 

and from Equation (2), the tensile strength was 

calculated or predicted, to verify and validate the 

comparative performances of the selected modelling 

techniques employed in this study.  Results obtained 

from the validation experiment are displayed in Table 

11 showing the predicted and actual tensile strength 

values, as well as the percentage error for each 

modelling technique used. From the results, it is clear 

that from the three modelling techniques utilised in 

this study, fuzzy logic optimisation technique, with a 

percentage error of 3.26 % is the preferred modelling 

technique for welding process parameters for 

structural steel. 

 

4.0  CONCLUSIONS 

This study focused on the comparative analyses of the 

output responses of tensile strength from the input of 

welding parameters using the Taguchi, Fuzzy logic, 

and regression analysis of RSM. The study’s findings 

show that the three methods are reliable, but fuzzy 

logic (with a % error range of 1.8 – 5.4) as against 

RSM (with a % error range of 0.72 – 12.3) and 

Taguchi (with a % error range of 0.79 – 33.54), is 

more reliable and robust model than the other two 

models as its results are much closer to the actual 

experimental results. However, it must be noted, that 

the use of different software in this study may raise 

fair comparison, result interpretation and consistency 

concerns. This perhaps may form a basis for future 

research.  
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