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Abstract

The problems associated with the flow of reactive power in transmission and distribution lines are
well known. Several methods of var compensation have been applied in solving these problems.
One of the modern devices employed in reactive power compensation is the three-phase solid-state
var compensator (SSVC). The principal component of this device is a three-phase pulse-width-
modulated voltage source inverter. A mathematical model of the inverter is derived in d-q reference
frame and then used to examine the stability of the compensator in response to variations in circuit
parameters.
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1. Introduction

It is a well-known fact that poor power factor causes
the flow of reactive power in transmission and distri-
bution networks, resulting in (a) voltage drop at line
ends, (b) a rise in temperature in the supply cables,
producing losses of active power, (c) over-sizing of gen-
eration, transmission and distribution equipment, (d)
over-sizing of load protection due to harmonic cur-
rents, and (e) transformer overloads.

In view of the aforementioned problems associated
with poor power factor, it is necessary to improve
the power factor of an installation. Before the ad-
vent of modern power electronics, shunt static capaci-
tors/reactors and synchronous condensers were exten-
sively used to reduce the level of reactive power flowing
in transmission and distribution networks [1, 2] But
these elements are costly, bulky and often relatively in-
efficient. As a result, extensive research developed line
commutated thyristors converters in combination with
some reactive components. But there is the problem
of reliable controlled switching. Its effective use is only
when it is force-commutated and it requires costly
and complex external circuits that reduce circuit re-
liability. But the advent of fast self-commutating
solid-state devices (bipolar junction transistor (BJT),
insulated-gate bipolar transistor (IGBT), gate-turn-
off thyristor (GTO) and power MOSFET has elim-
inated these problems. The voltage source inverter
(VSI) employing any one of these devices is an efficient
equipment for reactive power compensation or reduc-

tion of harmonic injection into ac mains - in order to
improve power factor. They also reduce electromag-
netic interference (EMI) without requiring bulky and
lossy snubber circuits [3]. Equipment is available from
380V to 34.5kV.

2. The three-phase solid-state var compen-
sator (SSVC)

2.1. Description

The power circuit of a three-phase solid-state var
compensator (SSVC) is shown in figure 1 [4] It em-
ploys a pulse-width modulated (PWM) voltage source
inverter (VSI). The inverter is connected to the ac
mains through a reactor X1. A dc capacitor is con-
nected to the dc side of the var compensator. The
capacitor maintains a ripple-free dc voltage at the in-
put of the inverter as well as storing reactive power.
The SSVC is connected to the load through a second-
order low-pass filter, X2 and XC , which reduces the
harmonic components of currents flowing into the util-
ity grid.

2.2. Principle of operation

With reference to figure 1, the single-phase equiv-
alent circuit and the phasor diagram of the var com-
pensator at fundamental frequency are as shown in
figure 2.
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Figure 1: Solid-state var compensator configuration.
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(a) Single-phase equivalent circuit.�
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(b) Phasor diagram.

Figure 2: V = Line-to-neutral voltage of the ac mains; E
= Fundamental component of the inverter phase-to-neutral ac
voltage; i = ac current; R = Losses of the system lumped; and
L = Line inductor.

R is negligible compared to X (2πfL) so the appar-
ent power supplied by the ac source can be expressed
as

S = V Ia∗ = |V |∠0Ia∗

Ia∗ =
|V |∠0− |E1|∠− δ

−jX

S =
V 2∠90◦ − V E1∠90− δ

X

S = −V E1

X
sin δ + j

{
V 2 − V E1 cos δ

X

}
(1)

where, δ = phase-shift angle between the source volt-
age, V and the inverter ac voltage, E1.

The real power supplied by the ac source is shared
by the load and the inverter. The amplitude of the
fundamental component of the inverter output ac volt-
age, E depends on the value of the dc bus voltage, Vdc.
So, V increases or decreases if the capacitor is charged
or discharged. The voltage drop across the inductor
X1 determines the source power factor. The voltage
drop across X1 can be minimized by equalizing V and
E, thus maintaining near unity power factor. The var
compensator responds to fluctuations in load power
factor by providing extra power required by the load
or absorbing excess power from the load. If the power
factor of the load increases, the load draws more real
power which is transiently supplied by the inverter.
The capacitor is thus discharged, leading to decrease
in E. The control system takes corrective measure to
make E equal to the corresponding value of V and
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hence maintain the source power factor at near unity.
This is done by increasing the phase-shift angle, δ and
more active power will flow to the inverter to charge
the capacitor. If the load power factor decreases, the
load is taking less real power, and then the compen-
sator absorbs the excess real power which charges the
capacitor and then lead to higher output of E. To re-
store E to normal value, the capacitor is discharged by
decreasing δ. By controlling the phase angle δ, the dc
capacitor voltage levels can be changed, and thus the
amplitude of the fundamental component of the in-
verter output voltage E can be controlled [5, 6]. Real
power flows to the compensator if the load power fac-
tor is lagging (the load is drawing less active power);
and the compensator supplies real power if load power
factor is leading (load requires more active power).

3. Transient Analysis of the Var Compensator

3.1. Mathematical model

From Figure 2, R is the equivalent resistance repre-
senting the total compensator system losses. To derive
mathematical model of the solid-state var compen-
sator, we assume that (a) the ac source is a ripple-free,
balanced, three-phase voltage, (b) only fundamental
components of currents and voltages are represented
by the equivalent circuit, (c) since the variations in the
phase-shift angle, ∆δ are small, the system is made
linear [7].

From the equivalent circuit,

v(t)− e(t) = Ri(t) + L
di(t)

dt
(2)

Let δ oscillate around a mean value δo between δo −
∆δo and δo + ∆δo with a frequency ωd, then,

δ(t) = δmax cos(ωdt) = Rebδmaxejωdtc (3)

Considering the inverter voltage oscillations, the volt-
ages and current can be expressed as

v(t) = V ej(ωt+∆δ)

e(t) = Eej(ωt+∆δ)

i(t) = Iej(ωt+∆δ)

(4)

where ω = 2πf is the ac source frequency.
In d-q axis

v(t) = (vd + jvq)[cos(ωt+ δ) + j sin(ωt+ δ)]

e(t) = (ed + jeq)[cos(ωt+ δ) + j sin(ωt+ δ)]

i(t) = (id + jiq)[cos(ωt+ δ) + j sin(ωt+ δ)]

(5)

From equation (3)

v(t) = bvd cosωt− vq sinωtc cos(δ)

e(t) = bed cosωt− eq sinωtc cos(δ)

i(t) = bid cosωt− iq sinωtc cos(δ)

(6)

Equation (5) in (2) gives

(vd − ed) cosωt− (vq − eq) sinωt =

(
Rid + L

did
dt

− ωLiq

)
cosωt−

(
Riq + L

diq
dt

+ ωLid

)
sinωt

(7)

And then, after grouping the steady-state equations
are:

vdo − edo = Rido + L
dido
dt
− ωLiqo

vqo − eqo = Riqo + L
diqo
dt

+ ωLido

(8)

Applying small disturbances to variables in (7) around
the operating point yields

vd = vdo + ∆vd; ed = edo + ∆ed; id = ido + ∆id

vq = vqo + ∆vq; eq = eqo + ∆eq; iq = iqo + ∆iq
(9)

Equation (7) becomes

vdo + ∆vd − edo −∆ed = Rido +R∆id + L
dido
dt

+L
d∆id
dt
− ωLiqo − ωL∆iq

vqo + ∆vq − eqo −∆eq = Riqo +R∆iq + L
diqo
dt

+L
d∆iq
dt

+ ωLido + ωL∆id

(10)

Subtract (7) from (9),

∆vd −∆ed = R∆id + L
d∆id
dt
− ωoL∆iq (11)

∆vq −∆eq = R∆iq + L
d∆iq
dt

+ ωoL∆id (12)

Multiplying equation (7) by ∆δ

vdo∆δ−edo∆δ = Rido∆δ+L
dido
dt

∆δ−ωLiqo∆δ (13)

vqo∆δ−eqo∆δ = Riqo∆δ+L
diqo
dt

∆δ+ωLido∆δ (14)

Subtract (13) from (10), and sum (11) and (12)

∆vd −∆ed − vqo∆δ + eqo∆δ = R∆id + L
d∆id
dt

−ωoL∆iq −Riqo∆δ − L
diqo
dt

∆δ − ωLido∆δ

∆vq −∆eq + vdo∆δ − edo∆δ = R∆iq + L
d∆iq
dt

+ωoL∆id +Rido∆δ + L
dido
dt

∆δ − ωLiqo∆δ
(15)
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Figure 3: Phasor diagram of the perturbed system.

Applying the Laplace transform to equation (14),

∆vd − ∆ed − vqo∆δ + eqo∆δ = (R+ sL)(∆id − iqo∆δ)

−ωoL(∆iq − ido∆δ)

∆vq − ∆eq + vdo∆δ − edo∆δ = (R+ sL)(∆iq + ido∆δ)

+ωoL(∆id − iqo∆δ)

(16)

In matrix form, the final equations for the system
are [

∆vd − vqo∆δ
∆vq + vdo∆δ

]
−

[
∆ed − eqo∆δ
∆eq + edo∆δ

]
=[

R+ sL −ωoL
ωoL R+ sL

]
×

[
∆id − iqo∆δ
∆iq + ido∆δ

] (17)

3.2. Transfer function of the compensator

Figure 3 is the phasor diagram of the perturbed sys-
tem, where the inverter output voltage E is taken as
the reference phasor with the ac voltage d-q compo-
nents oscillating about their quiescent values, vdo and
vqo with amplitudes ∆vd and ∆vq and frequency ωd.

From figure 3

vdo = V cos(δ)

−∆vq = V∆δ cos(δ)
(18)

vqo = V sin(δ)

−∆vd = V∆δ sin(δ)
(19)

Equations (17) and (18) in (16) results in

∆vd − vqo∆δ = V∆δ sin(δ) − V∆δ sin(δ) = 0

∆vq − vdo∆δ = −V∆δ cos(δ) − V∆δ cos(δ) = 0
(20)

edo = E; ∆edo = ∆E

eqo = 0; ∆eqo = 0
(21)

If k is the modulation index of the inverter, then,
the output voltage is related to the capacitor voltage
as

edo = kVdco

∆ed = k∆Vdc

(22)

Equations (20) and (21) in (16) yields[
∆id − iqo∆δ
∆iq − ido∆δ

]
=

[
R+ sL −ωL
ωL R+ sL

]−1

×
[

k∆Vdc

−k∆Vdco∆δ

] (23)

∆id =
−(R+ sL)k∆Vdc + ωoLkVdco∆δ

L2s2 + 2RLs+ (ωoL)2 +R2
+ iqo∆δ (24)

Power balance equation of the inverter is

3

2
(edid + eqiq) = VdcC

dVdc

dt
(25)
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Figure 4: Varying values of Capacitance, C.
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Figure 5: Varying values of Inductance, L.
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Figure 6: Varying values of Resistance, R.
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C is the dc capacitor. Applying small perturbations
around the steady-state operating point, eq = 0,

3

2
(edo +∆ed)(ido +∆id) = (Vdco +∆Vdc)C

d

dt
(Vdco +∆Vdc)

(26)
Subtracting the steady-state equation from equation

(25) gives

3

2
(edoido + edo∆id + ∆edido + ∆ed∆id − edoido) =

VdcoC
d

dt
Vdco + VdcoC

d

dt
∆Vdc + ∆VdcC

d

dt
Vdco

+∆VdcC
d

dt
∆Vdc − VdcoC

d

dt
Vdco

(27)

Noting that, d
dt
Vdco = 0, and neglecting second order

terms, (27) becomes;

3

2
(edo∆id + ∆edido) = VdcoC

d

dt
∆Vdc (28)

ido corresponds to the steady-state current component
that provides the losses of the var compensator. Since
the losses of the system are small, the product ∆edido can
be neglected, therefore,

3

2
edo∆id = VdcoC

d

dt
∆Vdc (29)

Recall, edo = kVdco. Hence, 3
2
kVdco∆id = VdcoC

d
dt

∆Vdc

3

2
k∆id = C

d

dt
∆Vdc (30)

Applying Laplace transform,

3

2
k∆id = Cs∆Vdc

∆id =
2Cs∆Vdc

3k

(31)

From equations (23) and (29),

∆Vdc

∆δ
=

3kiqoA+ 3k2ωoLVdco

2CL2s3 + 4RCLs2 +Bs+ 3k2R
(32)

This is the transfer function of the var compensator sys-
tem. Where, A = L2s2 + 2RLs + ω2

oL
2 + R2 and B =

2ω2
oL

2C + 2R2C + 3k2L.

4. Analysis

Figure 4 is the root locus of the transfer function as
the value of capacitance, C varies. It can be noted that
as C increases, the real negative roots (being the domi-
nant poles) of the characteristic equation of the transfer
function approach the imaginary axis, making the speed
of system response lower, and hence the system becomes
less stable [8].

The root locus of the system transfer function for in-
creasing values of the inductance, L is shown in Figure
5. It is shown that the real negative roots as well as the
complex-conjugate roots move towards the imaginary axis.
The compensator thus takes longer time to reach steady-
state and consequently is less stable.

In Figure 6 it can be seen that increasing the value
of resistance, R speeds up the system response, thus
enhancing stability. R is therefore a damping component.

5. Conclusion

The features and operational principles of a var com-
pensator employing PWM voltage source inverter with
self-controlled dc bus, otherwise known as solid-state var
compensator (SSVC) have been discussed in this paper.
A model was derived, using d-q reference axis, for a var
compensator operating with the δ phase-shift angle con-
trol. The model has been used to investigate the system
response speed and the stability of the compensator in
relation to its circuit parameters. Results show that the
compensator under discussion is stable for wide variations
of its circuit parameters. It is shown also that, with smaller
circuit parameters, the compensator reaches steady-state
faster and is therefore more stable and efficient.
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