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ABSTRACT 

The stator mmf over a segment of the 

segmental rotor reluctance machine is 

treated as an infinite array of generators 

feeding a common busbar, and the magnetic 

potential of the rotor segment is obtained 

as the potential of the equivalent busbar. 

The rotor potential for any airgap profile 

is readily obtained and it is shown how 

the method may be extended to axially 

laminated machines and those of the flux 

barrier type. This approach is derived 

from considering the flux due to a single 

stator conductor carrying current. 

 

1.  INTRODUCTION 

A feature of the analysis of segmental 

rotor reluctance machines is the necessity 

to determine the magnetic potential as 

zero, because the rotor,   unlike that of 

the segmental machine is one integral 

piece. The magnetic potential manifests 

itself in the reversal of flux in the air 

gap. In reference [1] the quadrature axis 

potential was evaluated by using the fact 

that flux cannot accumulate on the pole, 

and noting that at the point of reversal, 

the rotor potential must equal the stator 

applied magnetic potential. The method was 

further extended in reference [2] to 

include a rotor with channels cut over the 

central part of each segment.   

     The rotor potential is calculated in 

this paper by considering the stator mmf 

as an infinite array of parallel 

generators feeding a common busbar (the 

rotor segment) and the internal impedance 

of each generator represents the 

reluctance of the airgap at the point of 

action of each of these generators. The 

parallel generator approach adopted here 

leads to the same basic expression for 

rotor potential as in ref. [1] and [3]. 

The determination of the rotor potential 

is however extended to include any rotor 

air gap configuration and shows how 

harmonicas of stator mmf are taken into 

account. 

 

2. FLUX DUE TO A SINGLE STATOR 

CONDUCTOR 

 In fig. 1(a) is shown a rolled-out 

segmental-rotor machine, and also shown 

are flux paths of a single stator 

conductor which lies over one of the rotor 

segments. Most of the flux will follow the 

path AA shown in the diagram. No serious 

error will result if all the flux is 

regarded as confined to that path. This 

means that all fringing flux using paths 

like BB and flux between adjacent segment, 

i.e. using paths such as CC and DD are 

ignored. The flux density distribution due 

to current in the single stator conductor 

will have the form show in fig. 1(b). If 

RX and RY represent the magnetic 

reluctances of the airgap between the 

section of segment of width X and the 

complementary section of width Y 

respectively, then the amplitude B1 and B2 

of the rectangular wave of flux density 

distribution are given by    
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3.  FLUX DUE TO A SYMMETRICALLY WOUND 

STATOR WITH FULL PITCH COILS 

     Consider the same segmental rotor 

machine which has a single stator slot per 

pole in a symmetrical arrangement. Let 

each slot machine contain a conductor 

carrying current i amps with directions as 

indicated in Fig. 2(a). The flux density 

distribution over two pole pitches will be 

as shown in Fig. 2(b). The values of B1 and 

B2 are the same as obtained for Fig.1(b). 

     If the airgap flux density was 

calculated using the product of mmf 

distribution. Fig. 3(c) and the permeance 

distribution Fig. 3(d) of the air gap b 

between rotor segment and stator, the 

result will be as shown in Fig. 3(a). The 

height of the graph of Fig. 3(a) is 1/2g. 

This graph clearly differs from that of 

Fig. 2(b). In fact the algebraic 

difference between the two graphs is the 

graph of   Fig. 4. The height of the graph 

of Fig. 4 is 

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 It represents a flux density distribution 

acting in opposition to the flux density 

distribution of Fig. 3(a). It is as if the rotor 

segments acquire potentials and become sources 

of mmf directing flux into the stator.  
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Therefore, if the mmf method used in normal 

machine analysis is to apply to segmental 

rotor machines, the effect of this rotor 

potential must be taken into account.  

The net flux density will be the 

difference between what it would have been  

if the rotor potential were zero minus the flux 

density produced by the difference between the 

potential of the rotor and that of the stator 

(assumed zero).  

 

4.  CALCULATION OF ROTOR SEGMENT 

POTENTIAL  

The polarity of the rotor potential 

alternates between adjacent segments. It follows 

that the zero potential will coincide with the 

dotted lines as shown in Fig.5. Let the 

effective reluctance of the flux paths between 

segment and the zero potential be Ro, the 

Parallel- Generator Theorem can be used to 

determine the rotor potential. The mmf acting at 

the airgap over the rotor in Fig. 5 is
2

i
, this 

acts downwards over the section x of reluctance 

RX and downwards over the section y of 

reluctance R y. The potential M of the rotor is 

given by the equation: 
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The expression is 
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Where )(1  F  is the mmf distribution and 

)(  the permeance distribution expressed 

as Fourier series. 
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permeance of the airgap over the segment 

is also given by 
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4.1. FLUX DENSITY OF A NUMBER OF COILS   

 The flux density distribution due to any 

other group of symmetrical conductors can be 

similarly obtained. Provided there is no 

saturation in the magnetic circuit, the total 

flux density distribution will be the sum of the 

separate flux density distributions. The flux 

density distribution of a representative coil 

can be expressed as  

  )()()(  fMxF nnn   

Where xF nn )(   in the mmf distribution of the 

coil, M is the rotor potential due to that coil 

and )(f  is a function in Fourier Series, that 
takes into account the area occupied by the 

rotor segments and also their polarity.     

     The flux density distribution due to all 

coils of the stator will be 
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Where )(  F in the resultant mmf due to all 

coils expressed as a Fourier series 
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Where T is the total permeance 
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The total flux density distribution may 

therefore be written 
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5. ROTOR WITH CENTRAL CHANNEL 

 

 Using the methods outlined above, the 

rotor potential and the flux density distribution 

were calculated for a rotor with a central 

channel. The results are exactly as given in ref. 

[2]. 

 

 

6. INTERLEAVED ROTOR MACHINE 

 

 This method can be applied very readily to 

the analysis of an interleaved segmental [3] 

rotor machine (Fig. 6). Let MA and MB be the 

potentials of the outer and inner rotor sleeves 

respectively. These can be computed from the 

following expressions 
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The flux density in the stator airgap will 

be given by 
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where )( A  and )(Af  are  respectively the 

permeance  and potential functions when the inner 

sphere is removed,  SB(θ) and f (θ) are 

respectively the performance and potential 

functions when the outer sphere is removed, 

)(B  and )(Bf  are respectively the permeance 

and potential functions when the outer sleeve is 

removed and the centre channel that is left is 

regarded as having infinite reluctance, TA is the 

total  

reluctance of the airgap between the outer sleeve 

and the stator and TB is the total reluctance of 

the airgap between the inner sleeve and the 

stator. The calculation of the flux density 

distribution in a machine with an axially 

laminated rotor will follow much the same line of 

reasoning, only that more sleeves are to be 

considered [4]. The flux-barrier machine is only 

a special case of the multilevel rotor machine 

[5]. 

 

 

7. CONCLUSION 

 

The method described above yields the same result 

for rotor potential and is equivalent to the 

other method in which the rotor potential is 

calculated by determining the point of flux 

reversal. However it has the important advantage 

that the single expression that results, gives 

the flux density distribution as a function of 

the position of the rotor relative to the stator 

mmf axis. This is important when considering the 

field of reluctance frequency changers where it 

is desirable that the output emf  

be known as a continuous function of the rotor 

displacement. Effects of stator harmonics and 

their relationship with harmonics of rotor 

permeance distribution for production of 

synchronous torque at different field synchronous 

speeds are easily established. This is useful for 

dealing with multispeed [6] and charge pole [7] 

machines. 
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