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ABSTRACT  

 This paper described the mathematical basis and computational 

framework of a computer program developed for short circuit studies of 

electric power systems. The Short Circuit Analysis Program (SCAP) is to 

be used to assess the composite effects of unbalanced and balanced faults 

on the overall reliability of electric power system. 

 

 The program uses the symmetrical components method to compute all 

phase and sequence quantities for any bus or branch of a given power 

network resulting from the application of balanced and unbalanced faults 

at any location of the system. The Key to the efficient computer 

implementation of this program is the utilization of the triangular 

factorization of the positive and zero sequence admittance matrices, thus 

avoiding the time consuming direct formation of the sequence impedance 

matrices.  

 

INTRODUCTION  

 The purpose of short circuit 

analysis of power systems is to 

assess the vulnerability of the 

system to abnormal conditions 

resulting from a partial or 

complete breakdown of insulation 

at one or more points of the 

system. Specifically in short 

circuit studies, the power system 

network is subjected to postulated 

fault conditions and the resulting 

faulted network is solved to 

determine the phase (and sequence) 

voltages, currents and power of 

any bus or transmission line of 

the system. From this analysis, 

the power system engineer 

determines the maximum and minimum 

currents that are likely to result 

from any of the array of available 

fault conditions such as – single 

line to ground fault (S – L – G 

fault), double line to ground 

fault (L – L – G fault), line – to 

– line fault (L – l fault), or a 

three – phase fault. 

 It is pertinent to state 

that the information obtained from 

short circuit analysis is an 

effective tool for use in areas of 

power system work such as system 

design, relaying design and 

disturbance review analysis.  A 

typical application of the 

information obtainable from short 

circuit analysis is in the 

selection of circuit breakers of 

appropriate interrupting capacity 

to be installed in the protective 

relay scheme for the power system. 

Such power system protective 

schemes in operation, are designed 

to monitor the existence of a 

fault in the system and promptly 

initiate circuit breaker operation 

to isolate the faulted part of the 

power system from the rest of the 

system. Thus a well deigned 

protective scheme guarantees the 

reliability and continuity of 

supply in the remainder of the 

power system in the event of 

severe fault in one part of the 

system. Another feasible 

application of short circuit 

analysis is in the realm of 

disturbance review analysis in 

which the calculation of the 

actual phase currents and voltages 

seen by the relays is needed to 

determine whether they operated 

correctly or in error in the event 

of a major substation fault.  From 
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the foregoing, it is obvious that 

the need for a reliable short 

circuit analysis of the power 

system cannot be over-emphasized.  

 While many conventional 

fault programs are limited to 

output of phase quantities in the 

close neighbourhood of the fault 

point, the program presented here 

provides for computation of 

sequence and phase voltages and 

currents at all points in the 

power network. The mathematical 

basis, program framework and 

computational procedure as well as 

an example of its application are 

presented.  

 

GENERAL PROGRAM DESCRIPTION  

As it is usual in most short 

circuit studies, some basic 

assumptions are made to facilitate 

the computational task of fault 

analysis. These basic assumptions 

are as follows [1]  

(i) All load currents are 

negligible.  

(ii) All generated voltages are 

equal in phase and magnitude 

to the positive sequence 

pre-fault voltage.  

(iii) The networks are balanced 

except at the fault points.  

(iv) All shunt admittances (line 

charging susceptance, etc.) 

are negligible.  

 

These basic simplifications have 

not been made in developing the 

program. Specifically the program 

developed includes explicit 

treatment of:  

(a) Resistance, reactance and 

charging susceptance of all 

transmission branches.  

(b) Loads represented as shunt 

admittances to ground.  

(c) Generator internal voltage are 
set at actual magnitudes and 

phases as computed by a base 

case load flow.  

 In order to save computer 

storage, the program assumes that 

the positive and negative sequence 

networks are identical, and hence 

only one is stored.  

The solution of power system 

networks under fault conditions 

requires the elements of the 

driving point impedance matrix Z. 

Presently, two approaches [2] have 

been developed for obtaining the 

driving point impedance (or short 

circuit impedance) matriz Z. The 

first approach employs a building 

algorithm [2] for the direct 

formation of the impedance matrix. 

However this method has been found 

to be more difficult and time 

consuming. The second approach 

first forms the power system bus 

admittance matrix Y and then 

inverts this matrix to obtain the 

driving point impedance matrix Z. 

Conventionally to obtain the 

inverse of the admittance matrix, 

Gaussian elimination or Crout's 

method [3] are used. However these 

techniques require all elements of 

the admittance matrix throughout 

the execution. The program 

described here, makes use of 

matrix triangular factorization 

which today is widely applied as 

one of the powerful analytical 

tools, especially to load flow 

problems [4]. In this method, the 

admittance matrix is first formed 

and stored in a sparse triangular 

factored form, from which the 

short circuit impedance matrix is 

obtained by backward substitution. 

  

PROGRAM DEVELOPMENT 

 The short circuit analysis 

program SCAP uses the symmetrical  

component representation of the 

power transmission network. The 

effect of unbalanced faults is to 

produce interconnections between 

the three sequence networks - the 

positive sequence, negative 

sequence and zero sequence 

networks, thus creating a new 

composite network which contains 

as many modes as the positive 

sequence network. The 

interconnections of sequence 

networks for a wide range of 

faults have been well documented 

[5,1]. The short circuit analysis 

program must solve this composite 

network for the bus voltage, given 

the base case load flow generator 

voltages. The mathematical 

formulation and solution of two 

common unbalanced faults are shown 

in the Appendix. The program takes 
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each fault condition and develops 

a single set of simultaneous 

equations using the Thevenin 

Equivalent of the sequence 

networks as seen from the fault 

point as shown in figure 1. 

 
Fig. 1. Sequence Networks.  

 

The solution of these equations 

for the sequence voltages is  

achieved in terms of the impedance 

matrices of the sequence networks  

as shown in the Appendix. The 

impedance matrices Z11 ,Z22 and z00 

are fully populated, and hence for 

a large system, they would require 

considerable amount of computer 

storage, and as stated earlier 

their direct formation is 

inefficient in terms of computer 

time. To save computer storage, 

this program assumes that the 

positive sequence impedances Z11 

and the negative sequence 

Impedance z22 are equal and 

provides only one set of positive 

sequence data. Furthermore the 

development of the short circuit 

analysis program, SCAP, recognizes 

that the impedance matrices Z11 

and z00 are the inverses at the 

conventional bus admittance 

matrices Y22 and Y00. These 

admittance matrices are sparsely 

populated and are easily formed 

and handled with excellent storage 

and time efficiency, using optimal 

ordering to preserve sparsity /4/ 

during manipulations. To obtain 

elements of the sequence impedance 

matrices for fault analysis, 

triangular factorization of the 

admittance matrices is carried 

out.  

  

 

FACTORIZATION OF THE ADMITTANCE 

MATRIX 

The admittance matrix Y of the 

power system network is a non- 

singular matrix, which can be 

uniquely factored into the 

following three matrices [8]: 

 

Y  = L  D  U 

 

Where 

L is a unit lower triangular 

matrix 

 

D is a diagonal matrix 

 

U is a unit upper triangular 

matrix 

 

 In fact, for a power system 

without phase shifting 

transformers, the Y matrix will be 

symmetric and hence there is no 

need to store the U matrix, since 

U will be the transpose of the L 

matrix. Thus, for a 4-bus system, 

the matrices become:  

  [

  
    

  
  

      

      

  
    

]   

 [

    
    

  
  

  
  

    
    

] 

 

Each term of the factored matrices 

can be successively determined as 

follows: 

 

diagonal matrix:  

dii = yii – ∑    
 

          (2) 

for i=1,2,…,n 

lower triangular matrix: 

     (    ∑    
 

      )     (3) 

for i = 2,3 … n and j = 1.2 … (i - 

1) 

 

where yij, yii are elements of the 

admittance matrix  

 

FORMATION OF SHORT CIRCUIT 

IMPEDANCE MATRIX Z 

The driving point impedance (or 

short circuit impedance matrix Z 

is 

derived from the equation: 

 

Y Z = I   (4) 

 

where I is a unit diagonal matrix. 
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Replacing the admittance matrix by 

its factors we have: 

 

L D L
t
 Z  = I  (5) 

 

If we define a transition matrix G 

by  

 

G  = [L D]
-1
 =         (6) 

 

then since L
-1
 is a lower 

triangular matrix and. D
-1
 is a 

diagonal matrix, the transition 

matrix G is also a lower 

triangular matrix with its 

diagonal terms given by: 

 

    
 

   
; i=1, 2, …, n (7) 

 

Furthermore we define a transfer 

matrix, 

 

T = I - L
t
   (8) 

 

which is a strictly upper 

triangular matrix with zero 

diagonal terms. 

 

 Substituting equations (8) 

and (6) into (5), a simplified 

expression for the impedance 

matrix Z results as follows: 

 

Z = G + T Z  (9) 

The simplification is now briefly 

illustrated by a 4-bus system, 

recalling that Z is symmetric we 

note that 

  [

    
      

  
  

      

      

    
      

]        

 [

    
  

      
      

  
  

    
  

] 

 

 

applying equation (9) we obtain 

successively: 

Z44 = g44 

Z34 = t34 Z44 
Z33 = g33 + t34Z43  
Z24 = t23z33 + t24Z43 
Z23 = t23Z33 + t24Z43 

Z22 = g22 + t23Z32 + t24Z42 

 (10)  

Z14 = t12Z24 + t13Z34 + t14Z44 

Z13 = t12Z23 + t13Z23  + t14Z43 

 

Z12 = t12Z22 + t13Z22 + t13Z32 + t14Z43 

Z11 = g11 + t12Z21 + t13Z31 + t14Z41 

 

 The expressions of equation 

(10) indicate that the elements of 

the impedance matrix Z can be 

obtained by backward substitution. 

It is to be noted that only the 

diagonal terms of the transition 

matrix G which are the reciprocal 

of the corresponding terms of the 

diagonal matrix factor D of the 

admittance matrix are needed from 

the transition matrix.  

 

COMPUTATIONAL PROCEDURE 

 The computational procedure 

is accomplished in a finite number 

of steps as shown in the flaw 

chart in fig. 2: 
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Step 1: Base Case Load Flow 

 Prior to the short circuit 

solution, a base case ac load flow 

of the system is performed. In the 

SCAP routine developed, the base 

ac  

load flow may be executed by any 

of the Gauss-Seidel, Newton-

Raphson or the Stott's Fast 

Decoupled load flow methods (2) at 

the option of the user. The 

program first reorders the bus 

numbering to facilitate the 

formation of both the sparse 

positive sequence and the sparse 

zero sequence admittance matrices. 

 

Step 2: Formation of Sequence 

Admittance Matrices.  

The positive sequence admittance 

matrix Y11 is formed during the 

base case load flow solution and 

is available at this point. Hence 

only the zero sequence admittance 

matrix Yoo is formed here. 

 

Step 3: Triangular Factorization 

of Sequence Admittance Matrices 

 First the positive sequence 

admittance matrix Y11 is 

decomposed into its lower and 

diagonal factors L11 and D11 using 

the expressions of equations (3) 

and (2). Then the zero sequence 

admittance matrix Yoo is 

factorized and stored. Since the 

admittance matrices are 

symmetrical, only the diagonal 

factors and the lower off – 

diagonal Clements are stored. 

  

Step 4: construction of Sequence 

Impendence Matrices. 

 The elements of the positive 

sequence impendence matrix Z11 and 

the zero sequence Zoo are now 

formed from the factors of step 3 

according to equation (9) 

 

Step 5: Selection of fault type 

and location. 

  The specified fault type and 

location is now applied to the 

system and thereby the inter 

sequence connection selection 

selected. The program used has the 

option of specifying any of four 

common fault types S – LG, L – L, 

L – L – G and three phase fault at 

any bus location of the system. 

 

Step 6: Calculation and output of 

Post Fault Quantities. 

 Using the appropriate inter 

sequence connection for the 

specified fault type at the 

specified bus location, the 

INPUT SYSTEM DATA 

START 

SOLVE BASE CASE LOAD 

FLOW 

FACTORIZE 

Zii AND Yoo 

CONSTRUCT 

IMPEDANCE MATRICE 

ZII & ZOO 

CALCULATE AND 

OUTPUT RESULTS 

  SELECT FAULT TYPE AND 

LOCATION 

STOP 

Fig. 2. Flow chart of computational procedure. 

FORM ZERO 

SEQUENCE 

ADMITTANCE  YOO 
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program solves and computes the 

output conditions at the fault 

buses. At the option of the user, 

the program can also output any 

bus voltages in phase or sequence 

coordinates, transmission line 

currents, and transmission line 

complex power for the entire 

system. 

 

EXAMPLE APPLICAION 

For an example of the program's 

application the 6-bus system of 

Ward and Hale [7] shown in Fig.3 

is considered for two common 

faults; a S-L-G, and a three-phase 

fault at different buses of the 

system. The system data includes 

load data, and line shunt 

susceptance in addition to the 

line, transformer and generator 

impedances. The line impedance 

data is given in per unit on a 

system base of 100 MVA in Table 1. 

The bus load data with bas case 

load flow voltages are given in 

Table 2.  

 

The computer results of the fault 

study in terms of the post fault 

bus voltages and transmission 

circuit flows are compared against 

the corresponding prefault 

quantities for the S-L-G and 

three- phase faults at buses 3 and 

5 are shown in Tables 3 and 4 and 

5 and 6 respectively. 
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Also shown are the fault current to ground of the faulted buses. Fig. 4 

shows a sample of the computer printout showing the sequence components 

of bus voltages and line currents for a S-L-G fault at buses  

 

 

 

 

 

 

 

      

  SEQUENCE  IMPEDANCE  ZERO  SEQUENCE  

-

  FROM   TO   POSITIVE   

BUS   BUS   RI (p.u.)    X1(p.u.)  B(p.u.)  RO(p·u.)  XO(p·u.)   

1 4   0.160   0.740  0.014  0.00  0.266   

1 6   0.246   1.036  0.0198  0.00  0.600   

2  3   1.446   2.100  0.000  0.800  1.850   

2  5   0.564   1.280  0.000  0.984  2.084   

3  4   0.000   0.266  0.000  3.780  5.260   

4  6   0.194   0.814  0.0152  2.820  3.840   

5  6   0.000   0.600  0.000  0.900  2.060   

1 
Gene- 

rator 1 
 0.020  0.240 0.000 0.000 0.0320  

 

2 

 

Gene- 

rator 2 

 0.030  0.480 0.000 0.000 0.000  
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TABLE 2l Bus Data: 

 

BUS  

NUMBER  

VOLTAGE  

MAGNITUDE  

VOLTAGE  

ANGLE  

(DEGREES)  

P LOAD  

(p.u.)  

Q LOAD  

(p.u.)  

P GEN  

(p u.)  

Q GEN  

(p.u.)  

1 1.050  0.00  0.00  0.00  0.476  0.218  

2  1.100  -3.38  0.00  0.00  .0.250  0.093  

3  1.001  -12.78  0.275  0.065  0.00  0.00  

4  0.930  -9.80  0.00  0.00  0.00  0.00  

5  0.919  -12.32  0.150  0.090  0.00  0.00  

6  0.919  -12.20  0.250  0.025  0.00  0.00  
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Table 3: Bus Voltages for Fault at Bus 3: 

 

 

 

 

 

 

 

TABLE 4: transmission Branch Flows for Faults at Bus 3 

 

    POST FAULT VCLTAGES   

BUS  PREFAULT VOLTAGES  
THREE· 

PHASE  
FAULT  S--L-G FAULT  

NUMBER  Magnitude  Angle  Magnitude  Angle  Magnitude  Angle  

 (p. u.)  (Deg.)  (p. u.)  (Deg.)  (p, u.)  (Deg.)  

      -   

1 1.050  0.00  0.856  2.97  0•712  3.59  

2  1.100  -3.38  0.908  -4.50  1.006  -3.89  

3  1.001  -12.78  0.000  0.00  0.000  0.00  

4  0.930  -9.80  0.253  8.07  0.359  -7.24  

5  .0.919  -12.32  0.622  -6.19  0.687  -18.01  

6  0.9191  12.20  0.541  -5.59  0.518  -11.04  

Fault current to Ground at 

Bus 3 
1 .51,  -65.4  0.98  -65.8  

From  To  
Prefault Flows  

       

Bus  Bus   PostFaultFlows     

  (Base case)  Three Phase Faults  S-L-G  Fault   

  MW MVAR,  MW  MVAR  

  
MW  MVAR   

       -  ,

  
1  4  25.46  12.74  11 .93  66.69  13.34  31.34   

1  6  22.15  9.02  12.25  22.88  11.77  11.20   

2  3  8.58  0.00  18.34  26.63  22.51  32.69   

2  5  16.42  9.28  8.59  16.54  20.88  17.50   

3  4  -19.79  -7.78  0.00  -29.21  0.00  -48.45   

4  6  4.46  -0.43  1.85  -8.96  0.14  6.83   

5  6  -0.24  -3.48  -0.60  7.01  -7.21  19.80   
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Table 5: Bus Voltages for Fault at Bus 5: 

 

  Prefault Voltage    POST.FAULT VOLTAGES   
BUS  (Base Case)  THREE. 

PHASE  
FAULT  

 
S-L-G FAULT  

NUMBE

R  

     
  Magnitude  Angle  Magnitude  Angle  Magnitude  Angle 

  (p.u.)  (Deg.)  (p.u.)  (Deg.)  (p.u.)  (Deg.) 

 1 1.050  0.00  0.924  2.72  0.616  12.49 

 2  1.100  -3.38  0.853  -4.06  0.992  -4.01 

 3  1.001  -12.78  0.972  -0.62  0.773  -3.99 

 4  0.930  -9.80  0.662  -0.33  0.421  0.93 

 5  0.919  -12.32  0.000  0.00  0.000  0.00 

 6  0.919  -12.20  0.422  1.66  0.278  4.12 

Fault Current to Ground at 

Bus 5 
 1.44  -68.0

0
  0.90  -65.9

0
 

 

 

 

 

 

 

TABLE 6: transmission Branch Flows for Faults at Bus 5 

 

   POST FAULT FLOWS 

FROM  TO  
Prefault Flows 

(Base Case)  
THREE  PHASE FAULT  

 

S-L-G  FAULT  

BUS   BUS  

   MW  MVAR  MW  MVAR  MW  MWAR  

1   4 25.46 12.74 15.05 29.26  10.21 14.48 

1   6 22.15 9.02 10.70 41.29  6.83 18.30 

2   3 8.58 0.00 3.37 2.99  4.82 7.03 

2   5 16.42 9.28 20.97 47.59  28.37 64.39 

3   4 -19.79 -7.78 -11.62 -1.03  24.36 100.37 

4   6 4.46 -0.43 1.64 18.87  0.91 7.06 

5   6 -0.24 -3.48 0.0 -31.22  0.00 -12.88 
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CONCLUSIONS  

The mathematical development and 

computational procedure for a 

computer program for short circuit 

analysis of power systems has been 

described. The efficient 

computational implementation of 

the procedure is based on 

triangular factorization of the 

sequence admittance matrices of 

the power network and the 

construction there-from of the 

sequence impedance matrices. The 

program employs the symmetrical 

component inter sequence 

connections to model any of the 

four common types of faults; and 

solves to compute phase or 

sequence quantities of any bus or 

transmission circuit of a given 

power network.  

The program as presently 

implemented can only handle any of 

the  

four common faults applied singly 

at any bus of the system. Further  

work is continuing to enhance the 

program to handle simultaneous  

application of at least any two of 

these faults at, any combination 

of system buses, bearing in mind 

that simultaneous faults may be  

represented by applying their 

appropriate inter sequence 

connections  

simultaneously.  

 

APPENDIX 

MATHEMATICAL REPRESENTATION OF TWO 

COMMON FAULTS 

 

A.1 Single Line-to Group (S-L-G) 

Fault.  

To illustrate the mathematical 

formulation and solution of the  

common faults, a four bus system 

in which the short circuit 

matrices  

for each of the positive sequence, 

negative sequence and zero 

sequence networks have been 

obtained is used. The notation 

used is as follows:  

 

 

NOTATION: 

 

Vk
+
 = positive sequence voltage at 

bus k 

Vk
-
 = negative sequence voltage at 

bus k 

Vk
o
 = zero sequence voltage at bus 

k 

Zkk
+
 = K-th diagonal element of 

positive sequence impedance  

  matrix. 

Zki
+
 = k-i off-diagonal element of 

positive sequence impedance  

  matrix.  

Zkk
0
 = K-th diagonal element of 

zero sequence impedance matrix. 

Zki
0
 = k-i off-diagonal element of 

zero sequence impedance matrix. 

Vko = Prefault (base case ) bus 

voltage at bus k (for phase “a”) 

Vk = post fault bus voltage at bus 

k 

Iaf = fault current in phase “a” 

to ground 

 

The intersequence network for the 

S-L-G fault is solved for the  

sequence voltages and currents.  

For any bus k, the sequence 

voltages are Obtained for the case  

where bus I is faulted to ground 

from the equations:  

 

  
      

   
       

   
     

     
   (A1) 

  
   

   
       

   
     

     
   (A2) 

  
   

   
        

   
     

     
   (A3) 

The Phase “a” voltage at bus K is 

obtained from the equation: 

 

Vk = Vk
+
 + Vk

-
 + Vk

0
 (A4) 

Hence substituting (A1), (A2) and 

A (A3) into (A4)yields, 

       
    

     
     

  

   
     

     
  (A5) 

 

The fault current to ground of 

phase “a” at bus 1 is given by: 

 

    
   

   
     

     
   (A6) 

 

The single-line-to ground (S-L-G) 

procedure requires that positive, 

negative and zero sequence 

networks for phase "a" (faulted 

phase) be placed in series. The 

theoretical derivation of this is 

available in Reference [5]. The S-

L-G condition, for a ground fault 

placed on phase "a" of bus 1 is 

shown in Fig. AI. 
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A. 2: LINE-TO-LINE (L-L) FAULT 

Fig. A2 shows the inter sequence 

connection for a line-to-line 

fault  

at bus I; in which only the 

positive sequence and negative 

sequence net- works are connected 

in series. 

 
 

 

Fig.A2. Intersequence network for 

L-L fault at Bus 1 

 

 

Sequence voltages are given at bus 

k by:  

 

  
      

   
     

   
     

  (A7) 

 

  
   

   
     

   
     

   (A8) 

 

Using the synthesis equation of 

(A4) the phase “a” voltage at bus 

k is given by:  

 

       
    

     
      

   
     

  (A9) 
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