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ABSTRACT  

Using multiple time and spatial scales it is shown that for the wave 

equation with a small Van-der-Pol nonlinearity on the infinite line, 

initially oscillatory waves (with or without slowly-varying amplitudes) 

leading to saw-tooth waves. If the initial conditions are localised, non- 

oscillatory, and decay fast enough to zero at infinity then the leading 

asymptotically valid solution becomes unbounded at large times. But if 

the initial disturbance vanishes outside a finite interval the leading 

approximation approaches finite saw-tooth waves at large times.  

 

INTRODUCTION  

This paper is concerned with the initial-value problem on the infinite 

line for the wave equation with a small Van-der-Pol nonlinearity,  

           (
 

 
   

     )                                                      

                      u(x,0; ) =                                                                                                                   
                   .                                   (1.2b) 

 
Using multiple time scales, Chikwendu and Kevorkian3 sought the solution 

of this problem in the form of a uniformly valid asymptotic expansion in 

powers of E, and for some initial conditions, obtained a leading solution 

that approached saw-tooth wave at large times. However, Eckhaus
4
 has 

proved rigorously that their method is valid for periodic initial 

conditions. In the attempt to overcome this periodicity restriction 

Chikwendu
2
 used a Fourier transform perturbation method which turned out 

to be useful for some other nonlinear wave equations but did not remove 

the periodicity restriction for the Van-der-Pol nonlinearity.  

Further, on a finite interval 0,. eq. (1.1) with fixed-end boundary 

conditions u(0,t) = u(,t) = 0 has been used by Myerscough6 to model the 

wind-induced oscillations of overhead powerlines. And Lardner
5
 has proved 

that for this boundary-value problem any initial disturbance approaches a 

saw-tooth wave of slope ±(3/4)
 

 
 at large times. This boundary-value case 

is equivalent to the case of periodic standing waves on the infinite 

line.  

In this paper eq. (1.1) is studied on the infinite line for non-periodic 

initial conditions and may be said to model the oscillations of 
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infinitely long overhead power lines. Using multiple time scales as in 

reference we first consider the case when the initial conditions are 

oscillatory with slowly-varying amplitude. It is shown in section 2 that 

even though the waves are not periodic, the method of reference can be 

used in this case. In section 3 it is shown that for certain localised 

(non periodic) initial conditions the wave becomes unbounded at large 

times. Finally it is shown that if the initial conditions vanish outside 

a finite interval of order unity (i.e. have compact support) then the 

solution is bounded, there is no interaction between the righ-travelling 

and left- travelling waves (to 0 (1)) and the leading approximation 

approaches saw- tooth waves.  
 

2. SLOWLY-VARYING WAVES 

Consider eq. (1.1) subject to initial conditions (1.2) which can be 

written in the form. 

u(X,0;) = C1 (X) 1 (X)   (2.1a) 

ut(X,O;) = C2 (X) 2 (X)   (2.1b) 

where l (x) and 2(x) are periodic functions of x (with a period of order 

unity) and cl (X) and c2(X) are slowly-varying functions of x. Thus the 

initial conditions here are periodic in the fast space variable but with 

slowly-varying amplitudes. We assume that u and its derivatives are 

bounded.  

Since the slow variable (X) appears explicitly in the initial conditions, 

we scale both x and t by introducing the fast variables 
 

  = t, X = x       (2.2a) 

and the slow variables  

T  = t, X = X      (2.2b) 

The derivatives now become ut = u   + uT and ux = ux + uX and the solution 

of the nonlinear wave equation (1.1) is sought in the form of a uniformly 

valid asymptotic expansion in powers of  

 

 

)1NO(εT)X,τ,(X,nunε
N

on

ε)t;(X,u 





    (2.3)  

Substituting (2.3) in (1.1), we obtain a sequence of equations for the Un 

by setting the coefficient of £n equal to zero. The first two equations 

are,  

OUU OXXOττ        (2.4a) 

u3
τ03

1
0τuτT2uOXX1U1ττU 

   (2.4b) 

with the initial conditions  

uO (X,O,X,O) = C1 (X) 1 (X)     (2.5a) 

uO (X,O,X,O) = C2 (X) 2 (X)     (2.5b) 

u1 (X,O,X,O) = O       (2.6a) 

u1  (X,O,X,O) = uOT (X,O,X,O).    (2.6b) 

The general solution of the linear wave equation(2.4a) for the leading 

approximation is 
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uo = f(,X,T) + g(;X,T),      (2.7) 

where  = X -   and - X +   are the characteristics of the wave equation. 

The O() approximation ul is governed by eq. (2.4b) which can be written 

in characteristic variables as 

(2.8))f 3
σσfg2

ξ
3σfg2

ξ
3g3

ξ
(

3

1

ξxσxf2ξXT2f14 g22gσξ



  gfu

 

The slow variable variation of f and g are determined through the 

elimination of those terms in e.g. (2.8) that would lead to non-

uniformities or inconsistencies in the asymptotic expansion. Thus we 

integrate (2.8) with respect to  from = -M to = M, divide by 2M and 

take the limit as M  . The left hand side of (2.8) vanishes in this' 

limit since ul and its derivatives are bounded and the resulting equation 

is  

(2.9)3
ξ

g
3

13
σ

f
3

1

σ
f1)g2

ξ
(

σX
2f

σT
2f   

where 

 
 (X,T)= 

 
          

                                 

 

  
 ∫  

          

 

  

                                     

and  

(2.10b)dT)X,,(f n
M

M2M

1

M
1imT)(X,gn

ξ










 

are average values.  

By integrating (2.8) with respect to  from  -M to  = M, dividing by 2M 

and taking the limit as M  , we obtain the equation for g,  

(2.11)f 3
σ

3

1
g3
ξ3

1
1)gξf 2

σ(
ξX

2g
ξT

2g







  

Thus (2.9) and (2.11) are quasilinear first order partial differential 

equations for f and g in the slow variables X and T. Similar ordinary 

differential equations (in T) were derived by Lardner5 for the fixed-ends 

boundary value problem, and by Chikwendu
2
 on the infinite line (using 

Fourier transform perturbation). But here, since x is also scaled we have 

partial differential equations. 

Eq. (2.9) can be solved by standard methods. Thus on the sub-

characteristics, 

(2.12)]g3
ξ3

1
f 3
σ

3

1
σf}1g2

ξ
[{/σdfdX/2dT/2








 

On one set of sub-characteristics, X - T =  is constant while on the 
other set the following ordinary differential equation must be satisfied.  
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(2.13a)g3
ξ3

1
f 3
σ

3

1
σf}1g2

ξ
{σT2f








 

Similarly, for eg. (2.11), on one set of sub-characteristics X + T =  is 

constant and on the other set, g satisfies  

 (2.13b)]f 3
ξ3

1
g3
σ3

1
g}1f 2

ξ
{2g T







   

If the initial conditions (2.1) are such that f(,,O) and g (,,0) are 

odd functions of their fast variables then O.

.σ

g3
ξf 3

σ   Equations (2.9) and 

(2.11) then become homogeneous and their solutions can be written as 2, 5  

                        (T) / [1 +       
 (     )]}

 

 
   (2.14a) 

 

(2.14b)
2

1
}O)],,(g2(T)[1(T)/{3O),,(gT),,(g  

 

 

Where  

 

(2.15b)1/3
T

O

(O),'dT)]'T,(f 2
σ[1exp(T)'3

(2.15a)1/3
T

O

(O),dTT)],(βg2
ξ

[1exp(T)3

 

 





 

 

and  β are regarded as constants in eqs. (2.15). 

Using (2.14b)in (2.15a) the equation for (T) can be written as  

(2.16)
M

M O)β,,(g2
ξ

(T)1

dξO)β,(ξξg2
ξ

)' (T'3T

O

'dT
2M

11im
M

T(T)'3log 
 









 

and integrating with respect to T’ we get 

 

(2.17)dξ
M

M-

]O)β,(ξξg2
ξ

(T)''1log3
2M

11im
M

T(T)3υυlog  


   

 

Thus at large times 

(2.18)(T),3/Te(T)'3  
 

 

And if eqn. (2.15b) is similarly treated it is se that at large times 

 

(2.19)(T/4)exp
2

1
(4/3)(T)(T) 

 

 

When (2.19) is use in (2.14a,b) it is seen that at large times  

 

(2.20a),0),(σfsgn
2

1
(3/4)T),,(σf  
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(2.20b)O),,(gsgn2

1

(3/4)T),,(g 



 

 

Both the right and left-travelling waves thus approach saw-tooth waves at 

large times. This is very similar to the result obtained by Lardner5 for 

the boundary-value problem but here partial differential equations have 

been solved and the saw-tooth waves are slowly-varying. It was also shown 

in reference that even when  3
 and  3

 do not vanish the waves still 

approach constant slopes. We suggest that this will also be true for this 

slowly-varying case.  

Finally, this approach of scaling both x and t can be used when the wave 

propagates through a weakly inhomogeneous medium with a slowly-varying 

wave speed c(X). The non-linear wave equation (1.1) then becomes  
 

O,)u
3

1
(εu(X)cu t

3

txx

2

tt u   

and a new fast spatial variable x* would be required defined by  

dx*/dx = c(X)  

 

3. LOCALISED WAVES 

We now consider the case when the initial conditions (1.2) are bounded 

and localised such that /u/  O and /ut/  O as /X/ . Equations (2.9)- 
(2.11) will remain valid for the Leading approximation but there will be 

no dependence on X since the initial conditions we are considering here 

are not slowly varying. If the derivatives of u decay fast enough (faster 

than /x/
-1
, as /x/  , then their average values will be zero, 

 (3.1)Ogn
ξf n

σ 







   

 

For such localised waves eqns. (2.9) and (2.11) become  

(3.2b)Og3
ξ3

1

ξ
g

ξT
2g

(3.2a)Of 3
σ

3

1

σ
f

σT
2f





 

Thus there is no interaction between f and g and in the 0(1) 

approximation the  and  waves propagate independently.  
The solutions of eqs (3.2) are  

)3.3(
2

1
},(g21)T(e,3/T{3eO),(gT),(g

)3.3(
2

1
},(σf 2

σ1)T(e3/T{3e,0)(σf),(σf

bO

aOT










 

where f (,O) and g('O) are obtained from the initial conditions (1.2),  
and it is evident that at large times  

 

f  (,T) 3 sgn f(,O)       (3.4a) 

 

g  (,T) 3 sgn g  (  ,O)      (3.4b) 

 

Thus at large times the slopes of the  and  waves approach one of the 

two constant values ± √  the particular value depending on the signs of 

the initial conditions f (,O) and g('O)Specific initial conditions  
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In order to appreciate the significance of this asymptotic approach to 

constant slopes let us consider the specific localised initial conditions  

 

u (X,O) = 2 sech X     (3.5a) 

 

ut (X,O) = O       (3.5a) 

 

we thus have  

fX X,O( = gX (X,O) = - sech 3XC tanh X  (3.6) 

 

and (3.3a) becomes 

 

(3.7).
2

1
σ}Sech1)(e/3{3eσtanhsechσT),(fσ 2TT 

 

 

it can be seen that larg times the asymptotic behavior of f is  

f ( , T)   3 sgn ()      (3.8) 

 

With the change of variable v = sech  eq. (3.7) can be integrated with 
respect to 0 to give 

dv2

-1

]4(T)vB2(T)vB[1T/2ef  
    (3.9) 

where B(T) = (e
T
 – 1) /3.       

 

with  /2]
2

1
4B)(B[B2, 21(T)

1    as the two roots of the quadratic in the 

integrand, eq. (3.9) can be written as 

 

dv
2

1
v2)]( v2)-[(

T/2
ef 11

2

1

 


B  

 

and this is an elliptic integral which can be evaluated to give (Byrd and 

Friedman, p. 50),  

 

(3.10)]v,}])2
2( / )21(2{[

1
2

-1

)]21([T/2df  


 vvsB n  

where the modulus () of the inverse elliptic function is given by  
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)
21

/(
1

(T)2v                                             (3.11)  

 

If A(T) =                
 

 ,then (3.10) can be written as  

(3.12)v],}
2

1
σ]2Sech(T)2A(B(T)12[1/σ]sech(T)[{[A1Sn(T)}/AT/2{eT),(f 

 

with  

(3.13)/2.}2

1

4)][B(T)/B(T){1(T)
2

v     

From (3.3b) and (3.6) we see that g(,T) = f(,T).  

It is clear from (3.13) that for large T,  l; and from (3.12) the  

behavior of the maximum value of f(,T) (at  = O) is given at large T by  
(Byrd and Friedman

l
).  

f(O,T)3 sn-l{[1-(1/2B2)] ,l} = {√  tanh-l[1-(1/2B2)]  (3.14)  

But tanh
-l
z = 

2

1
1og[(1+z)/(1-z)] , so eq. (3.14) can finally be written  

as  

f(O,T)  T3  (3.15)  

Thus f(,T) becomes unbounded at large times. Indeed this must be so 

since from eq. (3.8) the slope f approaches -3 for all positive and 3 

for all negative . The nature of this approach to an unbounded wave is 
shown in Fig. 1 where the first order perturbation solution f is compared 

with numerically (finite difference) computed solutions of the same 

nonlinear equation (1.1) for  = 0.1 and initial conditions (3.5).  

The numerical computations were done only to times of order 1/ and it is 

seen that up to these times the perturbation solution remains within O() 
of the exact numerical solutions, as is demanded by the theory. The left-

travelling wave g(,T) also has the same behavior and the leading 

approximation UO(x,,T) consists of right and left-travelling waves both 
becoming unbounded at large times. This is similar to the unbounded 

behavior obtained for the wave equation with a Van-der-Pol convolution 

nonlinearity
2
. It can be seen from Fig. 1 that the solution f becomes 

unbounded because slopes (at large , which were initially small but 

finite, become 0(1) at large times. Thus the solution will blow up at 

large times whenever (at large x or -x) the initial conditions decay 

asymptotically to zero (fast enough) in a non-oscillatory manner. 

However, since in this case uo becomes unbounded it follows that the 

assumed asymptotic expansion (2.3) will not be uniformly valid and the 

perturbation solution will not be a good approximation of the exact 

solution at large times. It is not clear whether (like the perturbation 

solution) the actual exact solution becomes unbounded at large times, or 

whether it approaches a finite limit as in the case of periodic initial 

conditions. In this respect it should be pointed out that as f and g 

approach constant values the averages   

 
 and  



 
 which were ignored In 

(2.9) and (2.11) will become more and more important. However, we think 

that since the slopes will approach constant values, the exact solution 

will become unbounded at large times.  
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Cubic damping 

 

In contrast with the Van-der-Pol nonlinearity the wave equation with a 

small cubic damping nonlinearity has solutions which decay to zero at 

large times even in the case of localised initial conditions considered 

in this section. Thus for the equation  

utt + uxx +   
    

Eq. (3.2a) becomes 

2fT +   
  = 0, 

 

which has the solution 

)18.3(),(1/),(),( 2

1

OfOfTf     

 

and a similar solution can be obtained for g (,T). In the case of the 
initial condition (3.6) eq. (3.18) can be integrated to give  

f(,T) = {1/Al (T)}sn-
l
 [{ Al(T)sech ]/ [1+2-

1
(T+A

2
(T) sech

2]}1/2 v1] 

(3.19) 

where Al(T) = (T
2
 + 4T)

1/4
 and V1

2
(T) = 1 + T/(T+4)

1/2
/2. In this case there 

is no difficulty at large time since the waves decay to zero. Indeed it 

can be shown from (3.19) that at large T,  

).2(Tlog
T

1
T)(O,f   

 

4. LOCALISED WAVES WITH CAMPACT SUPPORT 

It was pointed out in Section 3 that for the wave equation with a Van-

der-Pol non-linearity (1.1) localised non-oscillatory initial conditions 

which decay (fast enough) to zero at large /x/ lead to unbounded 

solutions. This occurs because initially small but finite slopes become 

0(1) at large times.  

Therefore the leading approximation uO will remain bounded and uniformly 

valid if the initial conditions have slopes f( ,0) and g('O) which 
vanish outside a finite region of order one (i.e. if the slopes have 

compact (0(1) so that the resulting wave will have 0(1) height. Thus an 

initial disturbance which occurs on a finite interval 0,l where l is 

0(1), and vanishes outside this interval, will lead to bounded waves. For 

example the initially standing wave  
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       {
    

        
    

   
   

      
    

    (4.1a) 

 

u (X, O) = ut (X,O)  = O     (4.1b) 

 

will, as can be seen from (3.3), lead to two waves both of finite extent 

one travelling to the left and one to the right. At large times both of 

these waves will approach a saw-tooth shape as indicated in Fig. 2.  

 

For these waves there is no interaction between the left-and right-

travelling waves in the first approximation. Any interaction will be O 

().  
 

 
Fig. 2. 
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