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ABSTRACT 
Xiao has proposed a new graphical method suitable for the mininisation of logical functions of five 
or more variable. In this paper, we present a set of rules that simplify minimization using the Xiao 
map. We also show that the Xiao map technique compares favourable with the Quine -McCluskey 
algorithmic method. 
 
1. INTRODUCTION  
A basic problem in logic design is the 
minimisation of a given Boolean expression such 
that the resulting logical function can be 
implemented using a minimum number of 
universal gates (example NAND or NOR gates). 
The objective is to minimise cost and increase 
reliability by minimizing the gate count. However, 
the tremendous improvement in integrated circuit 
technology has made gate cost almost 
insignificant thereby changing the focus of digital 
design from gate minimization to package or chip 
minmisation [1]. 
Gate level minimization still remains relevant 
despite the advent of large scale integrated 
circuit (LSI) and very large scale integrated circuit 
(VLSI). For example, map entered variable 
methods are used to reduce the number of 
multiplexer packages used in the synthesis of 
logic circuits with multiplelexer [2]. LSI devices 
like programmable logic arrays (PLA) require 
minimization of Boolean function if  they are to be 
used efficiently. Gate level minimization is 
extensively applied in the design of LSI and VLSI 
circuitry since a saving of one or more gates 
could translate to substantial savings in silicon 
real estate. Finally, gate level minimization 
techniques are irreplaceable vehicles for 
teaching a systematic approach to logic design. It 
must be recognized that minimization destroys 
the regular structure of a logical network and 
makes it difficult to understand what the system 
actually does. This is a limitation particularly in 
the design of large digital systems. The 
Karnaugh map and the Quine-McCluskey 
technique [3] are the most widely used gate level 
minimization procedures. The Karnaugh map 
exploits the pattern recognition abilities of the 
designer to achieve fast identification of essential 
prime implicants. For four variables or less, the  
Karnaugh map can be used easily and efficiently. 
However for five or more variables it becomes 
more difficult to use.  
A number of algorithmic techniques, including the 

Quine MeCluskey method, have been developed 
for the minimization of functions of five more 
variables [4]. The Quine McCluskey technique 
can be computerized. When used manually, the 
complexity increases rapidly for functions of six 
or more variables because of the exhaustive 
search for adjacencies involved in the use of the 
technique. The technique ultimately guarantees a 
minimal solution although many redundant terms 
are generated in the process.  
Xiao [5] has proposed a new graphical method 
for the minimisation of logic functions of five or 
more variables. In this paper, we evaluate this 
new technique and present a set of rules which 
aid minimisation of logic functions using the Xiao 
map.  
 
2. XIAO MAP  
A boolean function consisting of M minterms, 
where each minterm has n variables is denoted 
by  

 (         )   ∑  

 

 

                             ( ) 

  
This function is mapped into a Xiao map 
consisting of 2n rows and M columns as shown 
in figure 1. Each column represents a minterm Ki 
and the minterms are arranged in the ascending 
order of magnitude. The map variables (X1, …Xn) 
are partition into groups of two variables 
X1X2;X3X4; …, Xn-1 Xn starting with the most 
signidicant variable. Each group of two variables 
is represented uniquely on the map by four rows 
where each row represents a possible binary 
combination of the two variables. The rows are 
arranged such that adjacent rows are logically 
adjacent (00, 01, 11, 10). Thus for n variables 
there will be 2n rows, We shall refer to each 
group of four rows as a partition.  
The i-th minterm is plotted on the Xiao map by 
placing dots at the intersection of the i-th column 
with the rows (one in each partition) that together 
correspond to the binary representation of 
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minterm. These intersections are called 
keypoints. An example will help illustrate the 
mapping of minterms on a Xiao map.  

Consider the four variable function  

F(A, B,. C, D) =  m(6. 7, 13,.11, 14, 9,) (2) 

 

 
 
The number of rows required is 2n, which is 8 
in this case. The eight rows are arranged as 
two partitions AB and CD. The minterms are 
arranged in ascending order of magnitude (6, 
7, 9, 11, 13, 14) as shown in figure 2. The 
binary representation of minterm 6 is 0110. In 
terms of the two partitions, minterm 6 is AB = 
01 and CD = 10. To plot this minterm, dots are 
placed at the intersection of rows AB = 01 and 
CD = 10 with the first column as shown in 
figure 2. In the same way, the other minterms 
are plotted on the Xiao map. 

 
3. MINIMIZATION ON THE XIAO – MAP 
All minimisaiton is based on the concept of 
adjacency. 

AB +A ̅ = A    (3) 
Therefore, if two minterms are adjacent, a 
variable (literal) is eliminated. For two 
minterms to be adjacent on the Xiao map, the 
following condition must be satisfied 
simultaneously: 
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i. Their keypoints must lie on the same 
row within all the partitions except one. 

ii. In the partition in which the positrons 
of the keypoints differ, the key points must lie 
on logically adjacent rows. 
In the Xiao map of figure 2, for example, 
minterms 6 and 7 are adjacent because their 
keypoints lies on the same row in the AB 
partition while in the CD partition, their 
keyp[oints lie on logically adjacent rows (11, 
10). Minterms 13 and 14 are not adjacent 
because in the CD partition in which the 
position of their keypoint differ, the keypoints 
do not lie not satisfy the conditions for 
adjacency because their keypoints differ in 
both the AB and CD partitions.  
When two adjacent minterms in a Xiao map 
are combined, a variable is eliminated in the 
partition in which the positions of their 
keypoints differ. The variable remaining is 
indicated with a line segment joining the two 
rows on which the keypoints lie. This line 
segment is called a keyline.  
In figure 3, when minterms 6 and 7 are 
combined, the variable D is eliminated. This 
is denoted by the keyline joining rows 11 and 
10 in the CD partition resulting in term 11 in 
the first class. The first class consists of 
terms in which one variable has been 
eliminated. The 0 – class consists of the 
minterm list. Unlike the Karnaugh map 
technique, minmisation on a Xiao map is not 
a one step procedure. Adjacent terms in the 
0 – class combine to form terms in the 

second class. (The second class consists of 
term in which two variables have been 
eliminated). In general, the procedure is 
repeated with adjacent terms in the i-th class 
combined to form terms in the (j + 1)th class.   
However, since the terms in this class may 
not cover the minterm list, a final class is 
formed form those terms in other classes 
which are needed to cover the minterm list. 
 
3.1 ADJACENCY OF TERMS IN FIRST 
AND HIGHER CLASSES 
Two terms in the first (or higher) class are 
adjacent if and only if 

i. They differ in only one partition 
ii. In the partition in which they differ 

a. Their keylines are adjacent or 
b. Their keypionts are adjacent. 
Adjacent keyline eliminate the same variable 
in a partition. For example, the keylines in 
columns 1and 2 of figure 4 (a) are adjacent 
because they both eliminate the variable A 
and when combined, eliminate variable B 

       ̅   . 
Similarly, the keyIines in figure 4(b) are 
adjacent and when combined, eliminate the 
variable A. Clearly then, the combination of 
two adjacent keyline results in the elimination 
of two variables. 
 
3.2  THEOREM 
If two terms have a keypoint and a keyline in 
the same partition, they cannot be adjacent. 
 



Nigerian Journal of Technology, Vol. 13, No. 1 September 1989,        Osuagwu, Anyanwu and Agada 54 
 
Proof: 
The presence of a keypoint and a keyline in 
one partition shows that the two terms have 

different variables eliminated hence they 
cannot be adjacent.  

 
 
 

 
Fig. 3: Generation of first class terms from 0-class minterms 
 
3.3· MINIMISATION PROCEDURE  
Minimisation of a logical function on the Xiao 
map uses the following three steps: 
STEP1: Generate all possible classes from 
the minterm list. 
STEP 2: Eliminate any redundant term using 
the frequency of occurrence of minterms as 
criteria. (Xiao calls this elimination step 
emergence of minterms). 
STEP 3: Obtain the reduced logical 
expression from the Xiao map 
We shall now apply the minimistion 
procedure to the following minterms lists: 
F1(A,B,C,D,E,F) = 

M(0,2,5,6,8,10,14,16,17,18,21,22,24,26,30,
34,37,38,42,46,49,50,53,54,58,62)  
      
                      (4) 
and 
F2(A,B,C,D,E) = 

m(0,6,8,10,12,14,17,19,20,22,25,27,28,30). 
In applying the procedure, we shall proposed 
rules designed to enhance the ease of use of 
the xiao map in minimization of logical 
functions. 
 
4.  FAST MINIMIZATION USING ROW 
GROUP STRUCTURE RULES 
 
Figures 5 and 6 show the Xiao map (STEP 1 
of procedure) for the minimization of F1 and 
F2 using the adjacency rule and theorems of 
sections 3.1 and 3.2 respectively and the 
following additional explanations and rules. 
 

4.1  ROW GROUP STRUCTURE 
  
The partition of the map variables into two or 
more sets imposes a row group structure on 
the most significant partition of the 0-class. 
The most significant partition contains the 
two most significant variables. Such a row 
group structure may also be evident in the 
first or higher classes. For example, in figure 
5 minterms (0,2,5,6,8,10,14) form a row 
group because they all have a keypoint lying 
on the same row in the most significant 
partition AB.  
Similarly minterms 16 - 30, 34- 46 and 49 -62 
form other row groups. Note the existence of 
a row group structure on the most, class 
consisting of four groups as follows:    
group 1(11 - 81); group 2(91 - 171); group 3 
(181 - 22 ) and group 4 (231 - 271). Using this 
row group structure, two types of 
combinations between adjacent terms may 
be identified: intra-group, where a term is 
combined with a term in the same row group; 
and inter-group, where a term is combined 
with a term from another group It is of interest 
to formulate rules that exploit this row group 
structure to achieve fast minimisation.  
When a row group structure is evident in the 
most significant partition of any class 
exhaustive intra-group combination of all 
adjacent terms; in the group should be 
carried out to generate terms in the next (or 
succeeding) class.  
Application of this rule to the 0-class of figure 
5 results in the 27 terms of the first class with 
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the exception of 51 and 201, Figure 7  of the 
appendix shows that exhaustive combination 
of the 0 – Cubes in the Quine-McCluskey 
method yields 48 term in the 1st cubes.  
Note that, minterms 5, 21, 37 and 53 do not 
have adjacent intra –group terms. We apply 
rule 2 in this case.  
 
4.3 RULE 2: 
If any term cannot be combined within its row 
group, then it should be combined with any 
adjacent out – of – group term if the minterm 
(s) covered by that term is not covered by 
second class terms in the succeeding class. 
 
Application of Rule 2 
Refering to figure 5 the 1st class terms 51 
and 201 
are generated from 0-class terms 5, 21 and 
37, 53 respectively since 5 and 37 have no 
adjacent intra-group terms. The first class 
term 91 is not adjacent to any other first class 
term but its component minterms are covered 
by second class  
terms 42 and 52.  

 
4.4. RULE 3:  
If a term cannot be combined within or 
outside its group and the minterm(s) it covers 
do not appear as components of any term in 
the next class, a search should be made in 
the preceding class to generate new terms 
that can combine with it or can combine with 
other terms so as to cover the component 
minterms of the original term.  
 
Application of Rule 3  
In minimising the function F2 (see figure 6), 
this rule is used to generate the first class 
term 11(22, 30) which can then be combined 
with 21(6,14) so as to generate the 2nd class 
term 12(21,111) = (6,14,22,30) needed to 
cover minterm 6.  
4.5  RULE 4:  
If the search of rules is unsuccessful, then 
the term is a prime implicant.  
For Instance 32 and 52 are prime implicants 
of F1; so also is 111 in figure 6. Prime 
implicants are indicated in figures 5 and 6 
with asterisks.  
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MINTERM 0 2 5 6 8 10 14 16 11 18 21 22 24 26 30 34 37 38 42 46 49 50 53 54 58 62 
EMERGENCE 1 3 1 2 1 2 1 1 1 4 2 .3 1 3 2 1 11 2 1 1 1 3 2 2 

 
Figure 8: Emergency Table for Function FI 

 
4.6  RULE 5  
If two or more combinations in one class yield the 
same pattern in the succeeding class, the second 
and subsequent combination are not draw on the 
Xiao map; but terms in the combinations are 
ticked off as all the minterms they cover (i e. the 
minterms which combine to yield these terms) 
would have been covered by the first 
combination.  
 
Application of Rule 5  
Such a situation arises in the generation of 12 of 
figure 5 where both (1

1
, 7

1
) and (2

1
, 4

1
) lead to the 

same pattern. It also arises in figure 6 where the 
combination of (3

1
.6

1
) and (4

1
, 5

1
) lead to the 

same pattern.  
 
4.7  RULE 6  
Where a row group structure cannot be identified, 
minimal combination of terms of that class that 
assures cover of the minterm list is carried out.  
Application of Rule 6  
This rule is applied in figure 5 where for example, 
in the generation of the 3rd class the combination 
(6

2
 8

2
) is not used. This is because 6

2
 and 8

2
 are 

already covered by 2
3
(2

2
,6

2
) and 3

3
 (7

2
 8

2
) 

respectively.  
It is clear that the generation of classes 
terminates after the 4th class for function Fl. 
Prime implicant 3

2
 5

2
 and 1

2
 are put into the 5th 

and final class.  
These and 1

4
 form a subset of the prime 

implicants containing all the essential prime 
implicants. For F2, the generation of classes 
terminates with the 2nd class with the prime 
implicants (1

3
, 1

2
, 2

2
, 3

2
, and 4

2
) being generated.  

 
4.8. STEP2  
For the function, F1 the identified prime implicants 
are:  
1

4
 (2, 6,10,14.18,22.26,30, 

34,38,42,46,50,54,5862)  
1

5
 (5,21,37,53)  

2
5
 (17, 21. 49,53)  

3
5
(0,2,8,10,16,18,24,26).  

Using this list, an emergence table is drawn for F1 
as follows  
(i) List all the minterms of the function  
(ii) Under each mintern, write the total prime 
impIicants in which the minterm appears. 
For instance minterm 53 appears in two prime 
implicants while minterm 17 occurs in only one.  
Figure 8 shows the resulting emergence table for 
F1 
Prime implicants which contain minterms with 
only one emergence, that is, they occur only in 
one prime implicant are essential prime 
implicants. From figure 8, the prime implicants 

mintertns 0, 5, 8, 14, 16, 17, 24. 17. 42, 46 and 49 
are essential prime implicants. Thus for the 
function of F1, all the prime implicant  are 
essential and together ensure a covering of the 
minterm list. 
 
4.9 STEP 3 
The minimised function can be read off from the 
Xiao map representation of the  
prime implicant as follows (see figure 5). 
To read 1

4
, we observe that the variable in the AB 

and CD partitions have been eliminated. The 

keypoint in the   ̅ partition corresponds to   ̅. 

Therefore the essential prime implicant  1
4
 =   ̅ . 

To read 2
5
 we note that in the AB partition A has 

been eliminated and B =. 1; in the CD partition. D 
has been eliminated and C = 0; while in the EF 

 ̅  partition, the keypoint corresponds to  ̅ . 

Thus the essential prime implicant 2
5
 =    ̅  ̅    

Similarly 1
5
 =    ̅  ̅   and 3

5
 =  ̅  ̅  ̅. 

The required minimised function is  

      ̅   ̅  ̅  ̅     ̅  ̅    ̅  ̅    
Similarly the minimised function from the  Xaio 
map of figure 6 is  .  

      ̅  ̅      ̅       ̅       ̅     ̅  ̅  ̅  ̅ . 
In the examples we have used, the essential 
implicants covered all the mintenns of the 
function. It should be noted that when the prime 
implicants is made from the non-essential prime 
implicant to cover the remaining minterms at 
minimal costs [6]. 
 
5   COMPARISON OF XIAO MAP AND 
QUINE McCLUSKEY METHOD 
Though essentially different methods (one 
graphical, the other algorithmic), some similarities 
exist between the Xiao map and Quine 
McCluskey techniques such as:  
(1) group structuring - classes in Xiao map and  
cubes in Quine McCluskey.  
(ii)Use of a selection mechanism to identify 
essential prime implicants - emergence table in 
the Xiao map and prime implicant table in the  
Quine McCluskey method.  
Infact, the Xiao map can be said to be an 
approximate graphical representation of the 
Quine McCluskey method.The fundamental 
difference between the two techniques is in the 
generation of intermediate product terms. While 
the Quine McCluskey method requires the 
formation of all possible product terms (48 1 - 
cube terms in the example of figure 7), the  Xiao 
map uses a reduced set of these terms to cover 
the function,(27 1

st
 class terms as shown in  figure 

5). This is a significant reduction. This trend 
continues in subsequent corresponding sees of 
product terms,  
This reduction in the number of intermediate 
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product terms makes the Xiao map faster to use 
than the Quine McCfusley method for functions of 
two or more variables. The Quine McCluskey 
method is algoritlimic and so can be easly 
automated whereas the Xiao map technique is 
essentially heuristic and therefore not easily 
automated. Consequently, the advantage the 
Xiao map has over the Quine McOuskey with 
respect to speed of minimisation and ease of use 
is valid only in the manual mode of minimisation. 
  
  
6.  CONCLUSION  
We have presented an adjacency theorem and a 
set of rules which exploit the row group structure 
of the Xiao map to effect fast minimisation of 
Boolean functions of five or more variables using 
the Xiao map . These rules make minimisation 
Xiao map more systematic. The Xiao map 
resembles in many ways, a graphical 
representation of the Quine McCIuskey 
technique.   
Our evaluation is that the Xiao map is a useful 
new graphical technique for the synthesis of logic 
circuit using gates. It should serve as a useful 
complement to the familiar Karnaugh map method 

for functions of five or more variables 
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