
Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 19 
 

A SIMPLE K-MAP BASED VARIABLE SELECTION SCHEME IN THE 

DIRECT SYNTHESIS OF LOGIC FUNCTIONS WITH 

MULTIPLEXERS 
 

by 

 

C.C. OSUAGWU 

Department of Electronic Engineering 

UNIVERSITY OF NIGERIA 

NSUKKA 

 

ABSTRACT  

A multiplexer with (n-l) data select inputs can realise directly a function of n variables. In this paper, 

a simple k-map based variable selection scheme is proposed such that an n variable logic function 

can be synthesised using a multiplexer with (n-q) data input variables and q data select variables. 

The procedure is based on the fact that if 2
X
 minterms (where x = 1, 2, 3) from a minterm list are 

adjacent on a k-map, the minimised function read from the map contains information on the variable 

or variables which form the map highest number of l-cubes. 2-cubes or 3-cubes of the function. Such 

variables have the lowest frequency of occurrence in the minimised function. The criterion for 

eliminating (n-q) variables from the data select input is to choose (n-q) variables with the lowest 

frequencies of occurrence in the minimised function and use them as the data input variables of the 

multiplexer. The data input values of the multiplexer are obtained by constructing a MEV -map using 

the (n-q) variables as map entered variables and the q data select variables as mapping variables. 

The procedure is illustrated with examples.  

 

1.0. INTRODUCTION  

The Karnaugh map (k-map) is an invaluable tool 

in the design of combinational logic circuits using 

the minimum number of gates. Although advances 

in integrated circuits have altered the way digital 

logic design is carried out - (from implementations 

using the minimum number of gates and external 

interconnections, to ones using the minimum 

number of powerful integrated circuit (IC) 

packages and maximum internal interconnections) 

- the k-map technique has remained a powerful 

and systematic tool in the teaching of digital 

design. The limitations of the k-map is obvious, 

however. Beyond five variables, the technique 

becomes very difficult to use and algorithmic 

approaches like the Quine McCluskey technique 

become preferable [1]. 

 

 However, there is no reason for carrying out the 

synthesis of logic functions of up to six variables 

using only the primitive AND-OR gates or the 

more universal NAND or NOR gates. 

Developments in the subject show that 

multiplexer-based implementations are ideal for 

the direct synthesis of such functions using for 

example, Shannon's expansion theorem (Boolean 

Algebra) [2] or the map-entered variable (MEV) 

approach [3, 4, 5]. What has hindered the teaching 

of multiplexer-based implementations alongside 

the traditional gate level implementations in the 

synthesis of combinational logic functions is 

probably the lack of a suitable simple manual 

selection scheme for solving the problem of 

partitioning the function variables into data select 

and data input variables. The solution of the 

partitioning problem is central to the efficient use 

of multiplexers and those published in the 

literature result in multiplexer structures with 

desirable attributes but understandably are 

designed for computer implementation [6, 7, 8].  

 

These sought for attributes in the synthesis of 

logic functions with multiplexers can be stated 

with the aid of fig 1 as follows:  

 

i) An optimum partitioning of the n variables 

into q data select and (n-q) data input 

variables such that the multiplexer input will 

have a maximum number of logic 1 and logic 

O connected to it. This minimum input 

loading criterion of Whitehead [6] implies 

that (m-2k) data inputs are not connected to 

logic a and logic 1 where m = umber of 

minterms in the function and k = number of 

l-cubes formed by the variable connected to 

the data input.  

ii)  A tree structure partition which results in 

multiplexer redundancies and hence ensures 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 20 
 

that the function is synthesised using the 

minimum number of multiplexers.  

iii)  A partitioning of the n variables into q data 

select and (n-q) data input variables where n 

> q + 1 which results in an implementation 

using a single multiplexer without using 

residue gates Domindo and Canto structure 

[7].  

 

Osuagwu [9] has shown that the Ashenhurst 

technique can be used to realise these objectives. 

But the Ashenhurst technique requires an 

exhaustive search for all the possible partitions of 

n variables into q data select variables and (n-q) 

data input variables in order to select partitions 

that result in the desired attributes.  

 

In this paper, a simple k-map based variable 

selection scheme is proposed such that an n 

variable function can be partitioned into (n-q) data 

input variables and q data select variables such 

that the stated attributes are achieved. The 

technique can be used for functions of up to six 

variables.  

 

The advantage of the proposed procedure over the 

algorithmic techniques is that it is a graphical 

procedure and therefore the exhaustive search for 

all the l-cubes and 2-cubes of the function is 

replaced by a simple search using a selection table 

for the variables with the lowest frequencies of 

occurrence in the minimised expression. The 

proposed k-map based variable partition criterion 

can be sumarised as follows:  

 

1. If the variable with the lowest frequency 

of occurrence in the minimised expression 

is used as the map entered variable and the 

remaining mapping variables used as the 

data select variables, the Whitehead 

structure results.  

2. If the two variables with the lowest 

frequency of occurrence in the minimised 

expression are used as map entered 

variables and the remaining mapping 

variables used as the data select variables, 

the Domindo and Canto structure results, 

if such a structure exists, otherwise the 

resulting structure uses residue gates.  

3. If the variable that forms the least number 

of l-cubes of the function is used as the 

data input variable and the variables with 

the lowest frequency of occurrence in the 

minimised function are used as the input 

multiplexer data select variables; and if 

the remaining variables are used as the 

output multiplexer data select variables, 

then a minimum tree structure realisation 

results where such a structure exists.  

The rest of the paper shows how the criterion was 

arrived at. Specifically, in section 2, the basis for 

the k-map variable selection scheme is 

systematically presented, while section 3 

illustrates the procedure with suitable examples.  

 

 2.0  K-MAP BASED VARIABLE 

SELECTION SCHEME  

In this section, we show how to use the k-map to 

partition the function variables into data select and 

data input variables so as to obtain the prototype 

multiplexer structures of section 1. We will use 

the k-map of fig 2 throughout the section to 

develop the needed theory and illustrate key 

concepts.  

 

2.1  Definitions  

O-cube 

A O-cube of a logic function consists of the 

minterm list of the function.  

 

1-cube 

Two a-cubes of a function form a l-cube if they 

differ in only one co-ordinate.  

 

This implies that if two minterms are adjacent on 

a k-map, they form a 1-cube of the function, for 

example minterms 9 and 13 in the k-map of fig 2 

form the l-cube  

   ̅       ̅̅ ̅̅     ̅  
 

2-cube.  

Four a-cubes of a function form a 2-cube of the 

function if their co-ordinates are the same except 

in two variables. From the k-map, the set of four 

minterms (0,2,8,10) forms the 2-cube  ̅ ̅ while 

(2,3,6,7) forms the 2-cube  ̅C.  

 

Bound Components.  

The variables of a l-cube or 2-cube for which the 

co-ordinates are the same are the bound 

components of the l-cube or 2-cube. For example, 

in the 2-cube formed by m(0,2,8,10), ̅ ̅ are the 

bound components.  

 

Free Components.  

The variable of a 1-cube or the variables of a 2- 

cube for which the co-ordinates differ constitute 

the free components of the 1-cube or 2-cube 

respectively. For example, the free components of 

the 2-cube m(0,2,8, 10) are AC (the variables that 

are eliminated).  

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 21 
 
Prime  Implicant.  

A prime implicant is any cube of the function that 

is not totally covered by some larger cube of the 

function.  

 

2.2 Minimum sum of products (SOP) 

expression.  

 

The minimum sum of products expression for 

F(A,B,C,D) from the k-map is  

     ̅     ̅  ̅     ̅   
 

The following observations can now be made 

using the terminologies of section 2.1.:  

 

1. The minimum SOP consists of the essential 

prime implicants of the function:  

m(2,3,6,7); m(0,2,8,10) and m(9,13).  

2. The minimum SOP contains only the bound 

variables of l-cubes, 2-cubes etc.  

3. The bound variables carry information about 

the essential prime implicants and hence about 

the number of l-cubes of the function formed 

by each variable of the function. In other 

words, a relationship exists between the 

frequency of each bound variable in a minimal 

SOP and the total number of I-cubes formed by 

each variable of the function. This relationship 

is established in section 2.3.  

 

2.3  Relationship between the frequency of 

each bound variable in a minimal SOP and the 

total number of I-cubes formed by each of the 

function.  

 

The need to establish a relationship 

between the frequency of occurrence of bound 

variables in a minimal SOP and the total number 

of a l-cubes formed by each variable of the 

function is due to the following facts  

i) the total number of l-cubes is the only 

information required to partition the function 

variables into data select and data input 

variables in the Whitehead's structure.  

ii) the data input variables in the Domindo and 

Canto structure are chosen from the finite set of 

variables that form 2-cubes of the function.  

The key to partitioning the function variables into 

data select and data input variables in the 

algorithmic techniques is the determination of the 

total number of l-cubes formed by each variable of 

the function as well as the 2-cubes of the function. 

These information are obtained using the Quine 

McCluskey technique. This technique is quite 

laborious and prone to mistakes when used 

manually. The k-map should be a simple manual 

way of obtaining the partition information if it can 

be shown that the frequency of occurrence of 

bound variables in the minimal SOP can be used 

to predict the variable that forms the largest 

number of 1-cubes of the function. 

For our running example, the 2-cubes of the 

function are obvious:  

         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

        
What is not so obvious is the total number of 1- 

cube formed by each variable of the function. 

Table 1 shows the number of l-cubes formed by 

each variable of the function obtained using a 

slightly modified Quine McCluskey technique.  

 

 

 

 

 

 

 
 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 22 
 

 

 

 

Table 1: 

1 cubes of F(A,B,C,D) = m(0,2,3,4,6,7,8,9,10,13) 

Minterm groups  A B C D 

0/2 

8/3 

6 

9 

10/7 

13 

WA =8 

(0,8) 

(2,10) 

WB =4 

(2,6) 

(3,7) 

(9,13) 

WC =2 

(0,2) 

(8,10) 

WD =1 

(2,3) 

(8,9) 

(6,7) 

 

 

From table 1 we find, by counting the number 

of minterm pairs under each variable, that the 

variables B and D form the largest number of 

1- cubes of the function. 

 

2.3.1 Frequency of bound variables in a 

minimal sum of products expression 

As we observed in section 2.2, a minimal SOP 

expression contains only the bound variables 

of l-cubes, 2-cubes etc. The presence of a 

bound variable in a SOP expression indicates 

that variable was not eliminated in the 

formation of the l-cube of the function. It 

seems self evident that the higher the 

frequency of occurrence of a bound variable in 

a minimal SOP expression, the smaller the 

total number of l-cubes of the function formed 

by that variable. Conversely the lower the 

frequency of occurrence of a bound variable in 

a minimal SOP expression, the greater the 

total number of l-cubes of the function formed 

by that variable. Clearly then, the variable that 

forms the largest number of 1- cubes of the 

function will also be the variable with the 

lowest frequency of occurrence in the minimal 

SOP expression.  

 

2.3.2 Proof  

The easiest way to prove the correctness of 

these statements is to show that in all cases, 

the prediction of the variable that forms the 

greatest number of l-cubes of the function 

obtained using the Quine McCluskey 

technique is the same as that obtained by 

inspection of the minimal SOP expression. 

The frequency of occurrence of the bound 

variables, FO, is best set out in a selection 

table. For our example, whose minimal SOP is 

           ̅     ̅ ̅      ̅ ., the 

selection table is shown in table 2.  

 
Fig.2: K-map of F(A,B,C,D) 

m(0,2,3,4,6,7,8,9,10,13). 

 

 

 

 

 

 

 

 

 

 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 23 
 

 

 

 

 

TABLE 2-SELECTION TABLE 

 FUNCTION VARIABLES  2-CUBE FREE COMMPONENTS 

A B C D BD AC 

Frequency of 

occurrence of 

bound variables  

FO 

2 1 2 2 1,2 2,2 

 

Since the bound variable A occurs two times 

in the minimal SOP expression, the value 2 is 

listed under the function variable A in table 2. 

The rest of the entries follow. From the 

selection table, we find that the variable B 

has the lowest frequency of occurrence in the 

minimal SOP expression. This implies that it 

forms the largest number of 1-cubes of the 

function, a conclusion that agrees with the 

findings of table 1.  

 

2.3.3 Discussion  

It is important to observe that the selection 

table failed to identify the variable D as 

forming the largest number of l-cubes also. 

But this poses no problem since if two or 

more valid Whitehead's structure exist for the 

same minterm list, the resulting input 

loadings in each case are the same. It does 

not matter, therefore, which of the variables 

forming the largest number of 1-cubes of the 

function is selected as the data input variable. 

In all cases, the selection table will predict 

accurately the variable that forms the largest 

number of 1- cubes of a function; and will 

sift out one or more such variables in 

situations where two or more variables tie in 

forming the largest number of 1-cubes of a 

function.  

The selection table (see table 2) also gives the 

free components of the 2-cubes of the 

function and associates to each free 

component the frequency of its bound 

equivalent from the function variable column. 

BD has a frequency of (1,2) and this carries 

the information that the variables Band D 

together form more 1-cubes of the function 

than AC with a frequency of (2,2). This 

prediction agrees with that of table 1 where 

we find that B and D together form a total of 

six 1-cubes of the function, while A and C 

form a total of four 1-cubes of the function. 

For the Domindo and Canto structure, the 

two free component variables which together 

form the largest number of 1-cubes of the 

function are used as the data input variables. 

This is because the resulting residue 

functions, if the Domindo and Canto 

structure exists, collapse into logic 1, single 

input variable or complement of single input 

variable. It is quite easy to select the data 

input variables for the Domindo and Canto 

structure using the selection table. In the 

present example, we see from the 2-cube free 

components column of table 2 that BD are 

the data input variables to choose.  

 

 2.4  Connectivity graph  

A connectivity graph is a graph that links the 

free components of the 2-cubes of a function. 

It shows at a glance the variables which form 

the free components of the 2-cubes of the 

function and the variable or variables which 

do not form any free components in the 2-

cubes of the minimised expression. Fig. 3 

shows the connectivity graph for our running 

example.  

Notice that all the variables of the function 

are involved in forming the 2-cubes of the 

function. Fig. 4 and 5 show the connectivity 

graphs of the illustrative examples of section 

3.  

In fig. 4, we can see at a glance that the 

variables DE are not free components of any 

2- cubes of the function while the variables 

AB, BC and AC are free components. The 

variables DE cannot therefore result in 

multiplexer redundancies (see section 2.5) in 

a tree structure implementation and must 

therefore be used as the output multiplexer 

data select variables. One of the two variables 

from the set (AB, BC, AC) will be used as the 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 24 
 

data select variables for the input multiplexers 

depending on which set has the lowest 

frequency of occurrence. Since the variables 

are free components, they will result in 

multiplexer redundancies and hence give rise 

to a minimum tree structure realisation 

 

In fig 5 only the variable E is not a free 

component. This variable should be used as a 

data input variable in a tree structure 

implementation in which the data select 

variables of the input multiplexer consist of 

the two variables with the lowest frequency of 

occurrence. The connectivity graph can be 

used also to identify the free component that is 

common to as many 2-cubes of the function as 

possible. The connectivity graph probably 

carries more information and therefore 

deserves further study.  

 

2.5  Multiplexer redundancy  

Multiplexer redundancy leads to a minimum 

tree structure realisation.  

 

Now, if a 4-1 multiplexer implements a 2-

cube, that multiplexer is redundant since it can 

always be replaced by the variable or 

variables corresponding to the bound 

components of the 2- cube independent of the 

partition of the function variables into data 

select and data input variables (8). From our 

running example, consider the 2- cube 

m(0,2,8,10) =  ̅ ̅. A 4-1 mux implementation 

of this 2-cube is shown in fig 6 and it is clear 

the multiplexer implements an AND residue 

gate.  

 

Let the implementation of fig 6 be 

equivalently represented by the notation (l, 0, 

0, 0): BD  

If we use respectively AB, AC, BC, and CD 

as data select variables to implement this 2-

cube, we obtain the following realisations: 

  ̅    ̅           ̅  ̅  ̅  ̅   ̅  ̅    ̅  ̅         
 

  ̅    ̅          ̅  ̅           
 

  ̅    ̅         
The outputs of these 4-1 multiplexer 

realisations in each case is  ̅ ̅,  the bound 

components of the 2-cube.  

 

The importance of this theorem due to Miller 

(8) is that if the free components of the 2-cube 

of a function are used as the data select 

variables of the input multiplexer, redundancy 

will result no matter the variable used as the 

data input variable. In tree structure 

multiplexer realisation, redundancy is sought 

in the input multiplexer because the input 

multiplexer stack contains the largest number 

of multiplexers 

 

2.6  Summary of procedure  

The k-map procedure for partitioning the 

function variables into data select and data 

input variables has been presented in this 

section and is summarised here for ease of 

reference:  

Step 1: Obtain the minimal SOP expression 

from the k-map of the function.  

Step 2: By inspection of the minimised 

function construct the selection table 

and the connectivity graph.  

Step 3: Determine  

i. the variable that forms the largest 

number of I-cubes of the function 

ii. the free components with the lowest 

frequency of occurrence in the 2-

cubes of the function;  

iii. the variable or variables that do not 

form any free components in the 2-

cubes of the function 

. 

iv.  



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 25 
 

 
 

 

 

 

 

 

 

 

 

 

 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 26 
 

 

 

Step 4: Depending on the multiplexer structure 

desired, use the information of step 3 

to partition the function variables into 

data select variables and data input 

variables 

Using the data select variables as the MEV 

mapping variables and the data input 

variables as the map entered variables, draw 

the applicable MEV map. Finally implement 

the function with multiplexers.  

 

3.0  ILLUSTRATIVE EXAMPLES  

In this section, we illustrate the procedure 

with two examples.  

3.1 Example 1  

Consider the minterm list of:  

                        
  
                                        
The k-map, selection table and connectivity 

graph are shown in figs 7(a), 7(b) and 7(c) 

respectively.  

  

3.1.1  Elimination of one variable 

(Whitehead's Structure).  

From fig 7(b) we discover that variables A,B, 

and C have the lowest frequencies of 

occurrence in the minimised function and will 

form equal number of 1 cubes of the function 

(see appendix 1). So any of the three variables 

can be used as data input variable for a 16-1 

mux implementation of the function. The 

remaining variables will constitute the data 

select variables. Fig 8 (a) shows the MEV 

map for the 16-1 mux implementation of the 

function with A as the data input variable. 

The resulting multiplexer implementation is 

denoted equivalently as:  

                                       .  

 

 3.1.2  Elimination of two variables 

(Domindo and Canto Structure).  

For realisation using 8-1 mux, AB, AC or BC 

can be used as data input variables since these 

variables form 2-cubes of the function and 

have the same frequency of occurrence. The 

remaining variables constitute the data select 

variables. Fig 8 (b) shows the MEV map for 

an 8-1 multiplexer implementation of the 

function with AB as data input variables and 

CDE as the data select variables. The 

resulting multiplexer structure can be denoted 

equivalently as:  

      ̅        ̅          
 

3.1.3 Elimination of three variables.  

From fig 7 (c) we find that the variables DE 

do not form any free components in the 2-

cubes generated by the minimised function. 

Hence DE must be used as the data select 

variables for 4-1 mux realisation of the 

function and the variables A,B,C used as the 

data input variables. Fig 8 (d) shows the 4-1 

mux implementation with ABC as data input 

variables and DE as the data select variables. 

Notice the function is realised with a single 4-

1 multiplexer without residue gates.  

 

 3.2  TREE STRUCTURE 

IMPLEMENTATION WITH 

MULTIPLEXER REDUNDANCY.  

To implement this multiplexer structure, no 

new MEV map is required since the mapping 

variables of fig 8 (a) correspond to the data 

select variables. BC is used as the data select 

variables of the input multiplexer since BC 

form a 2-cube of the function and so can 

result in multiplexer redundancy. DE is used 

as the data select variables of the output 

multiplexer since DE do not form any 2-cube 

of the function and therefore cannot result in 

any multiplexer redundancies. Reading the 

map of fig 8 (a)  

 

 

 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 27 
 

 
 

 

 

 

 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 28 
 

 
 

 

 

 

 

 

 

 

 

 

 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 29 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 30 
 

 

 

 

 

horizontally we obtain the tree structure 

realisation shown in fig 9. This multiplexer 

realisation can be denoted equivalently as:  

                                          
                    
Each of the multiplexers labelled 2,3,4 and 5 

in fig. 9 implements a 2-cube and is replaced 

by its bound variable A,O,B,C respectively. 

The resulting structure is the same as that 

shown in fig 8(d).  

 

3.2 Example 2  

Consider the minterm list                
                           

                           
This example illustrates the usefulness of the 

connectivity graph in identifying a bound 

variable that can be used as a data input 

variable so that the function can be realised 

with a single multiplexer without using 

residue gates. Fig. 10 shows the k- map of the 

function while figs. 11 and 12 show 

respectively the selection table and the 

connectivity graph. From the function table 

the variable C forms the largest number of 1-

cubes of the function (see also appendix 2). 

The implementation options are shown in 

table 3.  

16-1 mux implementation  

                                         
8-1 mux implementation  

                        
4-1 mux implementation  

 

 

 

Table 3: Implementation Options  

Implementation Options Data Input Variable Data Select Variable 

16-1 mux  

Eliminating one variable from data  

select. 

C ABDE 

8-1 mux  

Eliminating two variables from data select. 

BC 

or 

AC 

ADE 

BDE 

4-1 mux  

Eliminating three variables from data select. 

ABC DE 

4-1 mux  

Tree structure with multiplexer  

Redundancy. 

Data Select Input  

Multiplexer 

Data Select Output 

Multiplexer 

BC 

BC 
DE 

AD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 31 
 

 

 

 

 

 

 

 

 

 

 

 
 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 32 
 

 

 

 

 

 

      ̅               
Note that the 4-1 mux implementation 

requires two residue gates.  

 

3.3.1 Tree structure realisation with 

redundancy  

The first tree structure partition in table 3 uses 

A as data input variable, BC as input 

multiplexer data select and DE as output 

multiplexer data select. The applicable MEV 

map is shown in fig 13.  

The resulting tree structure implementation 

can be equivalently denoted as:  

                                ̅  ̅           
                     
Notice that the 4-1 multiplexers  

                                 
implement 2-cubes of the function and are 

replaced by 0 and 1 respectively. The 

multiplexer (A,A, 1,1): BC implements the 

OR residue gate  ̅     while the multiplexer 

(O,O,A,A): BC implements the AND residue 

gate AB. It is therefore clear that the resulting 

tree structure realisation shown in fig 14 is 

equivalent to the 4-1 mux implementation 

      ̅             of table 3.  

 

This implementation uses two residue gates 

and hence does not result in a Domindo and 

Canto structure. This data input and data 

select variable partition was made to obtain 

the maximum number of logic l's and zeros 

connected to the data inputs of the 

multiplexers. Notice that it does not yield the 

minimum tree structure realisation.  

 

The connectivity graph of fig 5 shows that the 

variable E is a bound component. Millers 

theorem guarantees that so long as BC, which 

form 2-cubes of the function, is used as the 

input multiplexer-data select, multiplexer 

redundancy will result even if the bound 

variable E is used as the data input variable. 

We should expect, of course, that the 

multiplexer inputs will have the minimum 

number of logic 1 and logic 0 connected to 

them. This partition, the second tree structure 

partition in table 3, is discussed in details in 

section 3.3.2 

 

3.3.2  Second tree structures realisation 

with redundancy  

Here the variable E which forms the least 

number of 1 cubes of the function is used as 

the data input variable. This guarantees that 

the input bus structure will have the minimum 

number of logic l 's and zeros connected to it. 

BC is again used as the input multiplexer data 

select to exploit redundancies that will arise 

since BC implements 2-cubes of the function 

The remaining variables AD are used as the 

data select variables for the output level 

multiplexer. The applicable MEV map is 

shown in fig 15. The MEV map of fig 15 is 

transformed to that of fig 16 so as to orient the 

variables in the proper mapping order.  

 

Reading the MEV map of fig 16 horizontally, 

we obtain the multiplexer tree structure 

realisation denoted equivalently as 

                  ̅  ̅  ̅  ̅        
                                   

The four 4-1 input multiplexers are all 

redundant since each implements a 2-cube and 

can be replaced respectively by their bound 

components:  

  ̅  ̅      

 

Hence the tree structure implementation can 

be replaced by a single 4-1 multiplexer  

 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 33 
 

 
 

 

 

 

 

 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 34 
 

 

 

implementation without residue gates as 

follows:  

    ̅           
Notice that there is no logic I or logic 0 

connected to the multiplexer input.  

 

4. CONCLUSION 

A simple k-map based variable selection 

scheme for partitioning the function variables 

into q data select and (n-q) data input variables 

so as to obtain multiplexer implementations 

with stated optimum attributes has been 

presented. The ease of use of this manual 

technique stems from the fact that the variable 

with the lowest frequency of occurrence in the 

minimal sum of products expression is also 

the variable that forms the greatest number of 

I-cubes of a function. This variable can be 

selected from an inspection of the minimal 

sum of products expressed and used as the 

data input variable of the multiplexer for 

partitions where n = q + 1.  

For partitions where n > q + I. the 

connectivity graph of the free components of 

the 2-cubes of a function has been shown to 

be a useful aid in identifying the bound 

variable which when used as the data input 

variable in a tree structure realisation with 

redundancy, results in a single multiplexer 

implementation without residue gates. It is 

hoped that the k-map based variable 

selection scheme will assist design teachers 

in the early use of multiplexers in the 

traditional synthesis of logic functions 

alongside the more traditional synthesis with 

universal gates. Multiplexers are afterall 

universal logic modules and are available.  

 

REFERENCES 

 

1. Hill, F.J., and Peterson, G.R., 

Introduction to Switching Theory and 

Logical Design. John Wiley, New 

York. 1981. Third Edition.  

 

2. Kohavi, Z., Switching Theory and 

Finite Automata Theory. McGraW-

Hill, New York, 1970.  

 

3. Bennett. L. A. M. , The Application of 

Map-entered Variable to the use of 

Multiplexers in the Synthesis of Logic 

Functions". Int. J. Electronics, 1978, 

Vol. 45, No.4, pp. 373 - 379.  

 

4. Blakeslee. T.R., Digital Design with 

Standard MSI and LSI. John Wiley, 

New York, 1975.  

 

5. Fletcher. W.1., An Engineering 

Approach to Digital Design. Prentice 

Hall. New Jersey, 1980.  

 

6. Whitehead, D. G., "Algorithm for 

logic- circuit Synthesis using 

multiplexers".Electron Lett., 1977. 

13, pp. 355 - 256.  

 

7. Dornindo, B., and Canto. D., 

"Systematic Synthesis of 

Combinational Circuits using 

Multiplexers". Electron. Lett., 1978, 

14, pp. 588-590.  

 

8. Ektare. A.B., and Mital, A.B., "An 

Algorithm for Designing Multiplexer 

Logic Circuits". Int. J. Electronics, 

1980, Vol. 49. No.2, pp. 103 - 114.  

 

9. Osuagwu, C.C., "On the use of 

Ashenhursr Decomposition Chart as 

an alternative to Algorithmic 

Techniques in the Synthesis of 

Multiplexer-Based Logic Circuits". 

Accepted for publication in Vol. 18 

of Nigerian Journal of Technology, 

NIJOTECH.  

 

10. Li. H. F., "Variable Selection in 

Logic Synthesis using 

Multiplexers". Int. J. Electronics, 

1980, Vol. 19. No.3, pp. 185 - 195. 
 

 

11.  
 

 



Nigerian Journal of Technology, Vol. 16, No. 1, September 1995,         OSUAGWU 35 
 

 

 

 

 

APPENDIX 1 

Minterms arranged in Groups according to the number of one's in their binary representation 

G1 = (2,16); G2 = (6,18,20,24); G3 = (7,22,28); G4 = (15,23); G5 = 31 

A B C D E 

WA= 16 WB = 8 We = 4 WD = 2 WE = 1 

(2,18) (16,24) (2,6) (16,18)       (6,7) 

(6,22) (20,28) ( 16,20) (20,22)      (22,23) 

(7,23) (7,15) (18,22) 
  

(15,31 ) (23,31) (24,28) 

 

1-cubes of minterm list of Example 3-1 showing that variables A, B and C tie in forming the largest 

number of 1-cubes of the function.  

 

 

APPENDIX 2  

Minterms arranged in Groups according to the number of one's in their binary 

representation.  

G1 = (1,2); G2 = (5,6,9,10,17); G3 = (13,14,21,25,26); G4 = (27,29,30); G5 = 31.  

A  B  C  D  E  

WA = 16  WB = 8  We = 4  WD = 2  WE= 1 

(1,17)  (1,9)  (1,5)  (25,27)  (26,27)  

(5,21 )  (2,10)  (9,13)  (29,31)  (30,31)  

(9,25)  (2,13)  (10,14)  

  

(10,26

)  
(6,14)  (17,21)  

(13,29

)  
(17,25)  (25,29)  

(14,30

)  
(21,29)  (26,30)  

   (27 ,31)  

 

1-cubes of minterm list of Example 3-2. The Variable C forms the largest number of 1-cubes of the 

function.  

 


