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ABSTRACT 
 
The analysis of bridge decks is at present effected using mostly the method of distribution 

coefficients. The method involves the use of coefficients obtained from charts for the 

approximate determination of bending moments in simply supported right concrete bridge 

decks. However, the method is limited to only simply supported decks. Also, reading the 

charts and interpolating between curves can be very tiresome and can easily introduce 

errors in the analysis. This paper therefore proposes and develops a finite element model as 

a more versatile alternative for the analysis of bridge decks for all support conditions. The 

results show that the proposed model is sufficiently accurate compared to solutions obtained 

using the method of distribution coefficients. 

 

NOTATION 

{Δ
e
}  Nodal displacement vector 

[K
e
]   Element stiffness matrix 

ε(x, y)  State of stress at a point 

σ(x, y)  State of stress at a point 

[D]  Elasticity matrix 

θx, θy  Rotations about x and y-axis respectively 

w  Transverse deflection 

Dx   Longitudinal flexural rigidity per unit width of bridge 

Dy   Transverse flexural rigidity per unit span of bridge 

Dxy   Torsional rigidity per unit width of bridge 

Dyx   Torsional rigidity per unit span of bridge 

D1, D2  Coupling rigidities in the x and y-directions respectively  

q   Distributed load per unit area 

 

INTRODUCTION 

In the past, analysts have attempted to solve 

problems of the beam and slab type bridge 

decks using various approaches. Ganga Rao, 

et al [1] proposed a method, the 

macro-approach, which involves splitting 

the beam and slab system into separate 

components. The slab is separately analysed 

and all the interactive forces and 

displacements are determined. These are 

imposed on the beams which are analysed 

while ensuring that compatibility and 

orthogonality conditions are satisfied. The 

method involves the use of Kernel's identity 

function and complicated mathematical 

manipulations. But attempts to analyse the 

beam and slab deck as a continuous slab 

have been criticized on the grounds that the 

underlying assumption that the girders and 

cross beams constitute non-yielding 

supports simply does not hold for the beam 
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and slab deck. The beams actually yield to 

pressure in the transverse direction. The 

longitudinal and transverse beams can be 

viewed as ribs that serve to stiffen the bridge 

deck and are deformable in the transverse 

direction. At best, the system can be treated 

as a deck that is continuous over deformable 

or elastic beams, [2]. 

 The method of distribution 

coefficients, often employed by structural 

engineers for the analysis of beam and slab 

decks, is an approximate method that 

replaces the structure under study by an 

equivalent elastic system. This equivalent 

system is obtained by transforming the 

stiffnesses of a number of beams into a 

uniformly distributed system of the same 

overall stiffness. The width of the 

distributed system is given by the number of 

original beams multiplied by their spacing. 

This equivalent width may be different from 

the original width of the structure. 

 Cussens and Pama [3] prepared 

design curves based on a series solution of 

the partial differential equation for the 

deflection w of an orthotropic plate: 

  
   

   
   

   

      
   

   

   
  (   ) (1) 

where 2H is the torsional rigidity of the 

bridge deck given by: 

                         (2)  

 They showed that if values of the 

distribution coefficients Kmx and Kmy can be 

found from their design curves, the moments 

may be determined as follows: 

 
                                  (3) 
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)                           (4) 

so that both bending moments Mx and My 

are now expressed in terms of the product of 

a distribution coefficient and the mean 

longitudinal moment. 

 The method of distribution 

coefficients is approximate, since the charts 

were prepared on the basis of nine terms of 

the series solution of the partial differential 

equation (1) stated above, [3]. 

 The method is limited to simply 

supported decks. Also, reading the charts 

and interpolating between curves can be 

very tiresome and can easily introduce errors 

in the analysis. 

 This paper therefore aims at the 

development and application of a more 

versatile approach to bridge deck analysis 

using a finite element model. 

 

A Finite Element Model 

The proposed model involves the 

representation of the slab by rectangular 

plate finite elements and the beams by 

undimensional beam elements. In order to 

simulate the T-beam action of the deck, the 

centroidal surfaces of the plate elements and 

the beam elements are considered joined 

together at the corresponding nodes by 

members that are assumed to be of infinite 

stiffness, so that no curvature of these 

connections can occur. (See Fig. 1). This 

assumption implies that at these nodes, in 

addition to plane sections remaining plane, 

the displacements of the plate and the 

displacements of the beam may be related to 

each other, so that at the plate-beam 

connections there is only one independent 

node. Therefore the number of independent 

nodes, and thus equations, is the same as that 

in a grillage representation. Thus the 

simplicity of the grillage representation is 

combined with the sophistication of the 

finite element approach. 
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(a) Beam-plate system 

 

(b) T-beam structural model 

 
Fig. 1 Beam-plate structure idealisations 

 

 The matrix displacement method of 

analysis is used. The continuum structure is 

divided into a number of sub-regions, called 

finite elements, which are assumed to be 

interconnected at the nodal points only. 

Approximate displacement functions are 

assumed over each finite element. 

Displacement compatibility conditions are 

satisfied and the governing equilibrium 

equations that are generated are solved to 

yield the unknown nodal displacements. 

Once the displacements are known, the 

strains may then be evaluated from the 

strain-displacement relations, and finally the 

stresses are determined from the 

stress-strain relations. 

 The slab of the T-beam bridge deck 

is represented by non-conforming but 

complete rectangular plate bending elements 

with three degrees of freedom per node (w, 

θx, θy) and a cubic displacement model, (Fig. 

2). Studies by Gallagher [4] showed that this 

element is efficient and yields solutions of 

acceptable accuracy. 

 
Fig. 2 Co-ordinate system for the plate element 

 

A suitable displacement function chosen for 

the rectangular plate bending element is: 

                
       

   
     

     
       

      
  

    
        

                     (5) 

 Although the chosen displacement 

function involves a discontinuity of cross 

slope at inter-element boundaries, and is 

said to be non-conforming, it is nevertheless 

used for the rectangular plate bending 

element since it has been found to exhibit 

good convergence, [5]. 

 

 The beams of a T-beam bridge-deck 

are idealized by one-dimensional beam 

elements, (Fig. 3). 

Fig. 3 Co-ordinate system for the beam element 

 

Element Stiffness Matrix 

The above displacement function defines 

displacement Δ(x, y) at any point in the 

rectangular finite element: 

* (   )+  {

 
  
  
}               (6) 

 The nodal displacement {Δ
e
} can be 

obtained by substituting the coordinates of 

the element in {Δ(x, y)}. 
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*  +  

{
 

 
 (     )

 (     )

 (     )

 (     )}
 

 
                 (7) 

 (7) 

The state of strain at any point ε(x, y) is 

expressed by the curvatures and twist: 

* (   )+  {

        

        

     (    )

}       (8) 

{ε(x, y)} can be related to nodal 

displacements {Δ
e
}: 

 {ε(x, y)} = [B]{Δ
e
}          (9) (9) 

where [B] is (3×13) matrix for the 

rectangular plate element, [6]. 

The internal ‘stresses’ are the bending and 

twisting moments. Thus, the state of stress 

can be represented by: 

* (   )+  {

  
  
   

}                (10) 

 

From the constitutive relationship: 

{σ(x, y)} = [D]{ε(x, y)}            (11) (11) 

where [D] is the elasticity matrix. 

, -  {

         
         

           

}                 (12) 

 (12) 

 The element stiffness matrix [K
e
] 

can be obtained by replacing the internal 

stresses {σ(x, y)} with statically equivalent 

nodal forces [F
e
]. 

 By applying the principles of virtual 

work, we derive the element stiffness matrix 

to be: 

,  -   
 
, - , -, -                 (13) 

or, for the plate bending finite element, we 

have that: 

,  -   
 
, - , -, -               (14) 

 The nodal forces are obtained using 

the same principle. 

 Explicit expressions for the element 

stiffness matrix for an orthotropic material 

and the element load vector for the plate 

bending finite element have been evaluated 

by Zienkiewicz [5]. 

 Stiffness matrix for the beam 

element may be obtained directly from the 

well-known slope deflection equation, [7] 

 

Numerical Example 

A T-beam bridge deck is simply supported 

at opposite ends. There are 4 longitudinal 

girders of size 250mm × 300mm deep and 4 

transverse ribs of size 250mm × 200mm 

deep, spaced as shown in Fig. 4



 
Fig. 4 T-beam bridge deck-plan 

 

The bridge deck was analysed using uniformly distributed loads and a central point load as 

(a)  a simple slab deck, and 

(b)  a T-beam bridge deck (i.e. with girders and cross beams) 

 

The results are presented in the Table below: 

 

Table 1: Simple slab deck (Uniform load, q) 

Method Deflection, W 

at centre span 

(x qa
4
/D) 

Moment, Mx 

at centre of 

span (x qa
2
) 

Moment, My 

at centre of 

span (x qa
2
) 

Deflection, W at 

centre of edges 

(x qa
4
/D) 

Moment, Mx 

at centre of 

edges (x qa
2
) 

Finite 

Element 

   0.01302    0.12507    0.01043    0.01359    0.12904 

Distribution 

Coefficients 

   0.01306    0.12509    0.01045    0.01361    0.12907 

% Difference    0.31    0.02    0.19    0.15    0.02 

 

Table 2: Simple slab deck (Central Point Load, p) 

Method Deflection, W 

at centre span 

(x qa
2
/D) 

Moment, Mx 

at centre of 

span (x p) 

Moment, My 

at centre of 

span (x p) 

Deflection, W 

at centre of 

edges (x qa
2
/D) 

Moment, Mx 

at centre of 

edges (x p) 

Finite 

Element 

0.03238 0.52062 0.29016 0.03123 0.03037 

Distribution 

Coefficients 

0.03242 0.52074 0.29060 0.03127 0.03039 

% Difference 0.12 0.02 0.15 0.13 0.07 

 

Table 3: T-beam Bridge deck (Uniform load, q) 

Method Deflection, W 

at centre span 

(x qa
4
/D) 

Moment, Mx 

at centre of 

span (x qa
2
) 

Moment, My 

at centre of 

span (x qa
2
) 

Deflection, W at 

centre of edges 

(x qa
4
/D) 

Moment, Mx 

at centre of 

edges (x qa
2
) 
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Finite 

Element 

    0.01145     0.11020     0.01641     0.01166     0.11223 

Distribution 

Coefficients 

    0.01155     0.11090     0.01640     0.01170     0.11250 

% Difference     0.87     0.63     0.06     0.34     0.24 

 

Table 4: T-beam Bridge deck (Central Point Load, p) 

Method Deflection, W 

at centre of span 

(x qa
2
/D) 

Moment, Mx 

at centre of 

span (x p) 

Moment, My at 

centre of span (x 

p) 

Deflection, W at 

centre of edges (x 

qa
2
/D) 

Moment, Mx at 

centre of edges 

(x p) 

Finite Element     0.02817     0.47503     0.24727     0.02719     0.27591 

Distribution 

Coefficients 

    0.02840     0.47600     0.24748     0.02729     0.27664 

% Difference     0.82     0.20     0.08     0.37     0.26 

 

DISCUSSION OF RESULTS  

AND CONCLUSION 

The Tables show that the finite element 

solutions of the bridge deck problem agree 

reasonably with the solutions obtained by 

the method of distribution coefficients, (less 

than 0.4% maximum mean difference). The 

proposed finite element model is therefore 

acceptable and clearly offers more 

attractions than the chart-based method of 

distribution coefficients presently in use in 

many design offices. Reading the charts and 

interpolating between curves can be very 

tiresome and can easily introduce errors in 

the analysis. On the other hand, the finite 

element method, being computer-based, is 

incomparably faster and less prone to errors. 

Again, it is not limited to only simple 

supports as in the method of distribution 

coefficients. It can analyse the deck for more 

complex support and loading conditions. 

 

The versatility of the proposed model can be 

improved by including shear deformation in 

the formulation in order to cater for T-beam 

bridge decks with deep beams. 
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