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ABSTRACT:
To simulate the behaviour of an interface formed between two contacting bodies using the
finite element method, a review of previous approaches employed by other authors who
worked with the same finite element method is carried out; their models and experimental
data evaluated. A third-degree polynomial approximation approach is first undertaken  to
model the behaviour of the interface during loading, unloading and reloading. An
incremental method and an iterative procedure are both employed. Finally,  the tangent-
stiffness method in which, for every iterative step, a portion of the external load is applied and
the shear and normal stiffnesses are calculated is introduced. An example of a prismatic beam
on a rigid base is analyzed and the predicted results are compared with those obtained from
experiments.

Keywords: Modeling; Interface-surfaces; Finite-element-method; Loading-reloading-
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Symbols / Notations

ia area of contact of node I

intA apparent area of contact at the interface

1 2 3a , a , a coefficients of the τ-δ curve (loading branch)

1 2 3 slope and intercept of the straight lines obtained when a , a , a  are plotted
against pressure

0b distance of the unloading branch of the τ-δ curve from the original

1 2 3b , b , b coefficients of the τ-δ curve (loading branch)

1 2 3 slope and intercept of the straight lines obtained when b , b , b  are plotted
against pressure

c constant determined by the characteristic of the interface an defined by
equation (1)

0c distance of the reloading branch of the τ-δ curve from the origin

1 2 3c , c , c coefficients of the τ-δ curve (reloading branches)

11 12c , c slope of and intercept of the straight lines obtained when
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21 22 1 2 3c , c c , c , c  are plotted against pressure

21 22c , c

1d deflections of the interface element i
e number of elements to which node i is common

1e number of elements in the contacting bodies

2e number of interface elements
E equivalent Young’s modulus of the contacting bodies

zF normal load acting on the structure

z j∆ F incremental load acting on the structure during the jth iteration in the z-
direction

z j∆ F normal force acting on beam i after the jthi

xb yb sb{F , F ,..., F } forces acting on beam i

nk normal stiffness of the interface

nj k normal stiffness of beam i for the jth iteration

sxk shear stiffness in the x-direction

syk shear stiffness in the y-direction

intk stiffness matrix of an interface element

bk stiffness matrix of an element representing the contacting bodies

sk structural stiffness matrix
m constant determined by the characteristic of the surface
P pressure at the interface

avP average interface pressure resulting from a uniform distribution of the first

z1incremental load F

jP  i pressure in beam i after the jth iteration

1 1 2u , v ,….w  deflections of the nodes of an interface beam in the x-,y-, and z-directions

λ normal deflection at the interface

z j1λ normal deflection in beam i due to force ∆Fi

τ shear stress at the interface

jτ limiting value of shear stress due to friction

1τ shear stress in the beam after the iteration in which the limiting value of shear
stress is exceeded

τ shear stress in the beam after the first re-analysis

1.  INTRODUCTION
When  structures are analyzed by numerical
methods, it is sometimes acceptable to ignore
the influence of joints formed by the
constitutive elements of a structure. In the
analysis of interface surfaces in machine
tools, however, they cannot be ignored
because their flexibility can account for a
fairly large percentage of the deflection

occurring at the cutting edge [1].
In the case of bolted joints the stiffness

depends upon the bolt preload, the geometry
of the flanges and bolt, the area over which
the bolt load is applied and the characteristics
(i.e. the surface roughness, hardness,
machining methods employed, etc.) of the
mating surface. Several research workers [2-
7] have considered the geometry of the joint
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and developed empirical relationships for the
stiffness of the assembly and for the pressure
distribution along the interface. Some of
these relationships are based upon the
pressure cone theory.

The advent of large-scale computers
and the rapid growth of the finite element
method have made it possible to obtain
more accurate models. Cullimore and
Eckart [8] extended an earlier empirical
relationship [9] to cater for a three-bolt
three-flange assembly. Fernlund [10]
assuming that a single plate can replace two
plates estimated the contact pressure and
area but Gould and Mikic [11] using an
iterative finite element technique have
shown that the assumptions made in [10]
could lead to serious errors. Thompson et al
[12] using an experimental/finite element
approach found that the contact area is
independent of the bolt preload and
bolthole diameter. In another paper, Jofiert
et al [13] developed from finite element
studies empirical relationships for the
interface pressure and contact area for ring-
loaded flanges. Schafer [14],  Mahtab and
Goodman [15] extended the finite element
model by introducing bond elements
between the contacting bodies and modeled
the behaviour of the joint in shear.

The above models do not take into
account the characteristics of the contacting
surfaces.

Back et al [16] represented the normal
stiffness of the interface by using beam and
plate-like elements. However, their model
caters only for the situation when the
interface or part of it is being continuously
loaded. The model developed herein
calculates the stiffness of the interface
when it is being loaded, unloaded or
reloaded. The model also takes into account

the shear stiffness of the interface. The
tangent-stiffness method [17] is used to
calculate these stiffness values and it is
shown that this method gives results that
are more accurate than those obtained by
the method employed in [16].

2. NORMAL AND SHEAR
BEHAVIOUR OF AN 
INTERFACE

Several research workers have studied
deflections experimentally [1,18,19]. Briefly,
when two specimens are brought into contact
and a load normal to the interface is applied,
the deflections produced lie on the curve OA
(Fig. 1a).  If the loading is stopped, for

1example at pressure p , and then gradually
decreased, the unloading curve, AB, is almost
linear and corresponds to the elastic
behaviour of the specimens. If the load is
increased again, the behaviour is elastic until

2the pressure, p  is reached after which the
deflection follows the curve OAC again until
the next unloading cycle. It has been found
[1] that the curve OAC can be adequately
described by the following equation:   

λ = cp ...(1)m

Where λ is the deflection at the interface, p is
the pressure and c and m are constants
determined by the characteristics of the
interface.

In addition to normal loads, shear
loads may act upon the joint. The behaviour
of an interface loaded in shear has been
studied,, amongst others ,by Kirsanova
[20], Masuko [21] and Sanad [22]. A
typical shear deflection curve for an
interface is shown in Fig. 1b. This curve,
which is obtained with a constant normal
pressure and varying shear load acting on
the interface, can be divided into three
parts:
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(a) The loading curve formed by the
segments OA, AB, BC, etc

(b) The unload branches A1, B2, C3, etc.;
(c) The reload branches 1A, 2B, etc.

Fig . 1.
Normal and shear behaviour 

of an interface

Unlike the pressure-deflection curve, there is
no known simple equation to represent the
shear stress-deflection curves. It was decided
to use polynomials to represent each part of
the curve. Several tests were conducted and
it was found [23] that a third-degree
polynomial of the type: 

1 2 3τ = a δ + a δ  + a δ ... (2)2 3

represented the loading curve accurately. The

oterm a  is absent because the curve passes
through the origin.

The unload branches are disjointed
because they start from different points on
the main curve. They have, however, the
same shape. This was verified by translating

the different branches so that they passed
through the same point (i.e. the origin).
Notice the resulting interloop. This important
property made it possible to group them
together and represent them by a single third-
degree polynomial:

1 2 3τ = b δ + b δ  + b δ  ...(3a)2 3

Each branch has to be uniquely identified and
this is done by expanding the above equation

oand including the term b ; whose value is
made equal to the amount by which the
branch has to be translated so that it passes
through the origin.
Therefore, for unloading:

o 1 2 3τ = b  + b δ + b δ  + b δ  …(3b)2 3

Fig. 2 Approximation of the 
pressure-deflection curve

It was found that an identical procedure could
be used for the reloading branches and the
polynomial to represent them is:

o 1 2 3τ = c  + c δ + c δ  + c δ  …(4)2 3

The behaviour of the interface shown in fig.
1b is for a specific value of normal pressure.
If the normal pressure is changed, another but
a similar τ - δ curve is obtained. For example,
from the experimental results obtained, by
Sanad [22] for ground mild steel, the
reloading branches at different normal
pressures, when translated to pass through the
original, were approximated at follows:
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p =  24 kgf/cm ; τ = 337.99δ - 116.34δ  +    26.76δ2 2 3

p =  50 kgf/cm ; τ = 427.52δ - 115.45δ  +    90.50δ2 2 3

p =  75 kgf/cm ; τ = 609.50δ - 264.80δ  +  166.34δ2 2 3

p = 103 kgf/cm ; τ = 647.83δ - 280.89δ  + 265.61δ 2 2 3

p = 128 kgf/cm ; τ = 724.83δ - 276.43δ  + 361.66δ2 2 3

Figure 2 shows the values of the coefficients
of δ, δ , δ  plotted against the normal2 3

pressure. The maximum value of p
considered is 128kgf/mm  because this was2

the maximum pressure, which the
experimental rig, designed and built by Sanad
[22], could exert on the test specimens.
Assuming that at higher normal pressure a

1 2 similar trend is exhibited, the values of c , c

3 and c (in equation 4)  can be approximated to
vary linearly with p. Thus, in equation form:

1 11 1 2 21 22 3 31 32c  = c  + c p, c  = c  + c p and c  = c  + c p

If these values are substituted into equation

o(4) and the term c  is neglected because its
value is associated with a particular branch,
a general equation to represent the reloading
branches is obtained:

11 12 21 22 31 32τ = (c +c p)δ +(c +c p)δ +(c +c p) δ  ... (5)2 3

For the load and unload branches, a similar
linear variation of the coefficients with
normal pressure was observed. Therefore,
equation (2) and (3a) can be re-written as:

11 12 21 22 31 32τ = (a + a p)δ +(a  + a p)δ +(a  + a p) δ  ... (6)2 3

and 

11 12 21 22 31 32τ = (b  +b p)δ +(b  +b p)δ +(b  +b p) δ ... (7)2 3

3. STIFFNESS MATRIX OF AN
INTERFACE ELEMENT

To model the above non-linear behaviour,
beam elements are introduced between the
two contacting bodies. For the three-
dimensional case, each interface node has
three degrees of freedom: two (u,v) in the
plane of the joint and one normal to it (w),
The force-deflection relationship for an
interface element, I, is given below:

int  {∆F }I   =    (k ) {d}i ... (8)

1 2Note that λ is given by (w  – w ) and the

1 2 1 2shear deflection, δ, by (u  – u ) or (v  – v ).
Although the shear and normal stiffnesses
appear to be uncoupled, it was shown earlier
[equations (5-7)] that the shear stiffness is
dependent upon the normal pressure. In the
calculations below, the normal and shear

z1 z2 x1 x2forces ∆F  (or - ∆F ), ∆F  (or - ∆F ) and

y1 y2 zF  (or - ∆F ) are designated by ∆F , ∆andi

y∆F  respectively. The suffix, hereafter, refersi

to the iteration number.

4. D E T E R M I NA T I ON OF T H E
NORMAL AND SHEAR STIFFNESS

The most commonly used methods to model
non-linear behaviour are the step-wise,
iterative and mixed methods. In the iterative
method, the structure is fully loaded in each
iteration and the portion of the load that is
not equilibrated is used in the next step to
compute an additional increment of
deflection. 

This process is repeated until the
deviation from equilibrium becomes
negligible. Back et al [16] used a modified
version of this technique to model the
pressure-deflection curve. The convergent
curve obtained by them was oscillatory in
nature; the oscillations were damped out by
averaging two consecutive sets of results.

In the step-wise method, which has
been used herein, the total load applied to
the system is subdivided into several partial
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loads which need not be of equal
magnitude. During each iteration the
relationship between the forces and
displacements is assumed to be linear. This
relationship, i.e. the stiffness matrix as
defined by equation (8), can be evaluated
using either the ‘secant modulus’ or the
‘tangent-stiffness’ method. A description of
these methods is given in [17]. In the first
iteration, the former is used; in the second
and subsequent iterations the latter is used.
The accumulated values of the increments
of displacement corresponding to the force
increments, gives the total displacement for
the intended load. Given below is a detailed
description of how these methods have
been adapted to calculate the normal and
shear stiffnesses of the interface when it is
being loaded, unloaded or reloaded.

4.1 Normal stiffness during loading
The process starts by subdividing the total

zexternal load F  into several load increments.
For the first iteration, it is assumed that the
actual area of contact is equal to the apparent

intarea of contact, A . Therefore, for the

z1iteration, the incremental load, ∆F , is
distributed over the entire interface.

To calculate the force acting at an
interface node, it is necessary to know (i) the

1pressure at the node and (ii) the area, a , over
which it exerts an influence.

For the first iteration, it is assumed that

z1 av∆F  will cause a uniform pressure, p , across
the interface therefore its magnitude is given

z1/ int iby ∆F A . The area of influence, a ,
ascribed to an interface node i can be shown

i x yequal to Σ  ∫∫ N  d  d  where e is the numbere

of elements the node is common to. This
derivation is based upon the assumption that
the pressure remains constant over the
element. It was found that the variation in the
pressure had to be one degree lower than that
assumed for the displacement functions. The

stiffness matrices of the elements in the
contacting bodies were derived using linear
shape functions. When a linear variation of
pressure was tried with these elements
incorrect pressure distribution were obtained.
For example, in an axisymmetric problem,
instead of the pressure maintaining a constant
value around the circumference of a given
circle, it oscillated. Note that the sum of all

intthe areas of influence is equal to A  and that
the above expression merely helps to

intsubdivide A  into region. Therefore, for the
first iteration the load acting at node i is 

z av i∆F  = p   a .i .

This concentrated force acting at the node
will cause the asperities within its area of
influence to deform. This deformation can be
caluculated from equation (1) and is

 0represented by the deflection, λ , occurring ini

  =i
0the beam which is introduced at node i: λ

a . Hence the normal stiffness at thism
vc  p.

point on the interface is:

Fi
g.
3:
V
ari
ati

on of the polynomial coefficients with normal
load
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...(9)

This value corresponds to the slope of

0the line OA  in Fig.3 For this first iteration;
one cannot use the slope of the curve because
its value is zero at the origin.

The value of the normal stiffness as
given by equation (9) is now used in equation
(8) to calculate the stiffness matrix for the
interface element. The above procedure is
repeated for all the interface elements. These
matrices are now combined with the stiffness
matrices of the elements representing the
contacting bodies to form the global stiffness
matrix of the structure:

A finite element analysis of the structure is
now performed with the first incremental

z1load ∆F  acting on it. From the resulting
displacements, the relative deflection
between the two ends of beam i can be

 1extracted. Let this be represented by λ  .i

This pressure acting at the same node after
the first iteration can now be calculated:

1 p = element force area of influencei

    = Stiffness x deflection

    = ... (10)

This value of pressure is now intersected with

1the curve to locate point A  (fig.3). The slope
of the curve at this point is required to
calculate the stiffness of the beam element i
for the second iteration. Differentiating
equation (1) gives the slope of the curve at a
point:

 ... (11)

n iSince, k  = (dp/dλ)a  the normal stiffness of

the interface node i for the second iteration

is: ...(12)

The interface element stiffness matrices are

nrecalculated with the new values of k .

bMatrices [k ] are not recalculated because the
deflections occurring in the structure are
small and its behaviiour is elastic. Therefore:

z2The second incremental load, ∆F , is applied
and another finite element analysis is

2performed. This causes deflection, λ , toi

2occur in element i and from it the pressure pi

in the beam at the end of the second iteration
can be calculated [equation (10)]:

... (13)

The normal stiffness for the third iteration is:

... (14)

This process is repeated until all the
incremental loads have been applied. The 
final deflection of the interface at node i is 

given by  where k is the 

number of iteration performed.

The pressure calculated from equation
(13) is assumed to act over the part of the
interface, which is assigned to node i. Over
this region it is assumed to be constant. There
is, however, with this model a discontinuity
in the pressures occurring in adjacent
regions. This discontinuity will decrease as
the number of nodes in the finite element
model is increased.

The magnitude of the incremental
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zkforces, DF , are arranged to be either in a
geometric or an arithmetic progression. This
seems justifiable considering the exponential

nnature of equation (1). Since the value of k
for the first iteration is calculated using the

0, z1secant OA  the first iteration load is F  is
chosen to be small (about 5 per cent of the
total load). The greater the initial load, the

1 1greater is the magnitude of A B  (fig. 3)
which is the error incurred in the first
iteration.

4.2 Normal stiffness during unloading and
reloading

As the total load is increased, the pressure in
the regions around the load also increases. At
the same time, in the other regions the
pressure decreases thus initiating the
unloading process. As mentioned earlier,
during unloading the joint behaves as if the
two bodies were rigidly connected. This
results in curve AB (fig. 1a) that can be
approximated to a straight line; its slope is
given by the equivalent Young’s modulus of
the contacting bodies.

If, during the iterations, a beam is found
to go into tension, it indicates that unloading
has begun. For the next iteration, its stiffness
is:

... (15)

This value is used as long as the beam
continues to be unloading. When the sum of
the incremental forces acting on it becomes
zero, the beam is removed from the finite
element model. This indicates that a certain
amount of area at the interface has lost
contact. The deflection occurring in the beam
when it is disconnected represents a

Bpermanent deflection, λ  (fig. 1a) which has
occurred at the interface.

In subsequent iteration, due to a change
in loading conditions, the same regions of the
interface may begin to approach each other.
When the relative deflection between a

Bcontact nodepair reaches λ  (fig. 1a) the
beam is reintroduced. This indicates that this
part of the interface has been brought into
contact and reloading has begun. The
stiffness of the beam is calculated from the
slope of the reloading curve BA. When the
deflection in the element reaches the value
corresponding to point A. an equation similar
to (14) is used once again to calculate the
normal stiffness of the interface element.

4.3 Calculation of the shear stiffness

sx syThe shear stiffness, k  and k , are calculated
using the stepwise method. The total force, as
before is applied in increments. For all the
iterations, including the first, the shear
stiffness of a beam is calculated using the
tangent-stiffness method

  

The value of τ/δ is evaluated from the slope,

dτ/dδ, of the loading, unloading or reloading
curve. If equation (6) is used, the shear
stiffness of beam i is:

1 2 3 i        =  (a  + 2a δ + 3a δ )    a.2

1 11 12 1where a  = (a  + a  p ), etc. This equation is
used for all the iterations. Note that for the
first iteration, the slope of the curve at the
origin is used and therefore 
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  (a) For
constant
normal

load
       

(b) For varying normal load

Fig. 4 Approximation of the τ-δ curve

For the second and subsequent iterations, the
cumulative of the incremental shear
deflections is used to locate the point on the
curve at which the tangent is drawn. 
Therefore, for example, for the third iteration

where and  are  the

shear deflections occurring in the beam in the

first and second iterations.

Figure 4a shows how the loading curve is
approximated by lines OA, AB, etc.: their
slopes are the same as the tangent to the
curves. This approximation is valid only if
the normal pressure remains constant. If an
increase in the shear force results in a
corresponding increase in the normal
pressure, as would happen if the plane of the
joint is not normal to the direction of
application of the load, a different curve has
to be used for each iteration. The shear
behaviour of the interface is now
approximated by OA, AB, BC, etc. (fig. 4b)

1 2 3whose slopes,  α , α , α , etc., are obtained

0 1 2 3from the curves, P , P , P , P , etc. These
curves represent the shear behaviour of the
interface at different normal pressures.

4.4   Coefficient of friction
The model also takes into consideration the
coefficient of friction. By limiting the maxi
mum shear force that can be transmitted
through the joint, the coefficient of friction
defines the position (point D, Fig. 5a) at
which the loading curve stops and slip begins
to occur. The curve OPQ should be
represented by the tangents OA, AB, BC, CD
and DE. DE represents the small amount of
slip, which is permitted to occur in localized
regions in the vicinity of the bolt load. With
the tangent stiffness method, it is difficult to
model the transition from CD to DE.
Consider the situation at the interface where
one of the beams after k iterations has

kdeflected δ  (fig. 5a), for the next iteration,
the shear stiffness of the beam is calculated
from the slope of the curve at point P. 
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Fig. 5. Modeling the τ-δ near the limit of friction

At the end of this iteration, the shear acting at

1this beam is τ  which exceeds the limiting

1 kvalue τ  but the resulting deflection, δ . This
is also illustrated in Fig. 5b. AB represents
the initial position of the beam. The beam
should deflect to A ‘B’ with B’B”
representing the slip. However, the finite
element model moves the beam to position

1 1A B . The sole reason for considering the
coefficient of friction is to reduce the excess

1 fstress (τ - τ ) and to correct the position of

1 1A B . It is not intended to model the
behaviour of the joint when gross-slip occurs;
for this the reader is referred to [24,25]. To
reduce the excess stress, an approach
suggested in [26] has been adapted herein.
The excess force, whose magnitude is given

1 f iby (τ - τ ). a , is applied at the interface nodes
after which the structure is re-analysed. The

beam AB under the action of the correcting

sforce ∆F  (fig. 5b) now deflects to positions

1 1A  B , which is nearer to the required1 1

position A’B”. After the first re-analysis, the

f1excess shear stress is reduced to (τ  – τ ). It is1

suggested in [26] that the model is re-
analysed several times until the excess

 

 
    
  

Fi
g. 6a Flow diagram for solving contact

problems
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Fig. 6b Flow diagram for subroutine SHEAR

shear stress become zero. This was found to
be very expensive with respect to computing
time because several re-analysis are required
for every node where slip has just occurred.
Because of this and the fact that the shear
behaviour of the interface plays a secondary

part in the case of fixed joints, it was decided
to perform only one re-analysis. It was found
that this reduced the excess stress by 60 per
cent.
5. COMPUTATIONAL PROCEDURE
The overall operation is described by the
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flowchart shown in Fig. 6a. In addition to the
data required to describe the finite element
model such as nodal coordinates, element
node numbers, the user must supply the
values of c and m, the number of iterations
required, the coefficients which describe the
τ-δ curve, and the manner in which the
external load is to be divided into
incremental loads.
To start with, the program calculates the
stiffness matrices of the elements
representing the contacting bodies. For the

n sinterface elements, the values of k  and k  are
calculated by subroutines NORM and
SHEAR. The flowchart for NORM is shown
in Fig. 6b. For the first iteration, the

ncalculation of k  is straightforward. For the
second and subsequent iterations, the values
of BRANCH, SUMF and SIGMAF are
examined to decide which part of the
pressure-deflection curve should be used to

ncalculate k . Note that SUMF and SIGMAF,
the current and previous sums of the
incremental forces sustained by the beam are
given by the following expressions:

where k is the iteration which has just been
completed. 

A similar but more complex procedure is

sused in SHEAR to calculate the value of k .
In a three- dimensional problem, two calls
are made to this subroutine because the shear
stiffness in the plane of the joint may not be
equal.

After each iteration is completed, the
shear force sustained by a beam is compared
with the limiting friction force; if it exceeds
the latter, correction forces are calculated and
included in the overall load vector. A re-
analysis is performed before passing on to
the next iteration.

6.  RESULTS AND DISCUSSION

6.1 Prismatic beam on a rigid base
The example to be analysed is a simple
rectangular prism (Fig. 7 inset) which lies
with one of its longitudinal narrow faces
against a plate of infinite stiffness. An
external load is applied at mid-length and
compresses the prism against the rigid base.
The prism is represented by in-plane
rectangular elements and the interface by
beam elements (not shown in the inset, Fig.
7). The rigid base is simulated by fixing one
end of the beams. Because the problem is
sysmmetrical, suitable constraints are
imposed on nodes which lie on the center-
line and only one-half of the structure is
analysed.

This example was selected for two
reasons: experimental values of the interface
deflections are available from Levina [28]
and it has also been analysed by Back et al
[16] using a ‘standard spring’ method. These
two sets of results serve as a basis of
comparison. Levina and Back et al did not
consider the shear stiffness of the interface,
and therefore the finite element results shown
in Fig. 7 take into account only the normal
stiffness of the interface. In general, the
interface deflection is given by the
compression occurring in a beam element.
Since, in this example, one end of each beam
is constrained, the interface deflection is
given directly by the downward deflection of
the nodes lying on the interface i.e. nodes
labeled 1,6,11,16, etc.  in Fig 7a. Figure 7b
shows the pressure at each of the interface
nodes.

With the incremental method, the
accuracy obtained depends upon the number
of steps chosen by the user. This problem has
been analysed with three, five, ten and fifteen
steps. 
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Increasing the steps from three to five
results in a relatively large increase in the
accuracy of the predicted results; the increase
in the accuracy from ten to fifteen steps is
only marginal and does not justify the extra
computing effort. For this problem, Levina
quotes a value of c = 0.8 µm and m = 0.5 and
modulus of elasticity of 9500kgf/mm . The2

results obtained by the incremental method
converge to a value slightly higher than the
experimental results. The results obtained by
the method suggested in [16] are even further
removed from the experimental values.

Fig. 7 Interface pressure and deflections for a
plate on a rigid base

Another important observation is that if

the convergence curve were to be plotted for
the interface deflection at node 51, it would
be monotonic in nature and would converge

from ‘above’. However, in the case of
pressure (Fig.7b), the nature of the
convergent curve depends upon the position
of the node along the interface. For example,
the pressure for nodes 36 to 51 converges
from ‘below’, whereas for nodes 6, 11, 16, 21
and 26 it converges from ‘above’.

7. CONCLUSIONS

The tangent-stiffness method has been
adapted to model the normal and shear
behaviour of an interface. It was found that
the loading, unloading and reloading

branches of the τ-δ curve could be
approximated by third-degree polynomials.
The results are fairly accurate if the load is
subdivided into five or more partial loads.
The model has yielded results which agree
with the experimental values.
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