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ABSTRACT:

To simulate the behaviour of an interface formed between two contacting bodies using the
finite element method, a review of previous approaches employed by other authors who
worked with the same finite element method is carried out; their models and experimental
data evaluated. A third-degree polynomial approximation approach is first undertaken to
model the behaviour of the interface during loading, unloading and reloading. An
incremental method and an iterative procedure are both employed. Finally, the tangent-
stiffnessmethod in which, for every iterative step, a portion of the external load isapplied and
theshear and normal stiffnessesarecalculatedisintroduced. An exampleof a prismatic beam
on arigid base is analyzed and the predicted results are compared with those obtained from
experiments.

Keywords. Modeling; Interface-surfaces, Finite-element-method; Loading-reloading-
unloading; Third-degree- polynomials; Tangent-stiffness-method.

Symbols/ Notations

a area of contact of node |

A apparent area of contact at the interface

a, a, & coefficients of the -0 curve (loading branch)

1, Sy
o 1 slope and intercept of the straight lines obtained when a,, a,, a, are plotted

s Ay against pressure

dyy, @ LJ

b, distance of the unloading branch of the t-6 curve from the original

b,, b,, b, coefficients of the 1-6 curve (loading branch)

by by,

B ' B slope and intercept of the straight lines obtained when b,, b,, b, are plotted
=2 against pressure

bEl 3 bj_

C constant determined by the characteristic of the interface an defined by

equation (1)

G distance of the reloading branch of the 1-8 curve from the origin

C, Cy Gy coefficients of the 1-0 curve (reloading branches)

Ci1y Cpp slope of and intercept of the straight lines obtained when
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Co1, Cp c,, C,, C, are plotted against pressure

C21’ CZZ

d, deflections of the interface element i

e number of e ements to which nodei is common

e number of e ements in the contacting bodies

e number of interface elements

E equivalent Y oung' s modulus of the contacting bodies

F, normal load acting on the structure

AF, incremental load acting on the structure during the jth iteration in the z-
direction

AF, normal force acting on beam i after the jth

{Fo Fypi-es Fo} fOrces acting on beami

K, normal stiffness of the interface

Ky normal stiffness of beam i for the jth iteration

Ky, shear stiffnessin the x-direction

Ky shear stiffnessin the y-direction

K stiffness matrix of an interface element

k, stiffness matrix of an element representing the contacting bodies

K, structural stiffness matrix

m constant determined by the characteristic of the surface

P pressure at the interface

P., average interface pressure resulting from auniform distribution of the first
incremental load F,;

Pi pressurein beam i after the jth iteration

u, vy,...w,  deflections of the nodes of an interface beam in the x-,y-, and z-directions

I normal deflection at the interface

I, normal deflection in beam i dueto force AF',,

t shear stress at the interface

t; limiting value of shear stress due to friction

t, shear stressin the beam after the iteration in which the limiting value of shear
stress is exceeded

t shear stressin the beam after the first re-anaysis

1. INTRODUCTION

When structures are analyzed by numerical
methods, it issometimes acceptabletoignore
the influence of joints formed by the
constitutive elements of a structure. In the
anaysis of interface surfaces in machine
tools, however, they cannot be ignored
because their flexibility can account for a
fairly large percentage of the deflection

occurring at the cutting edge [1].

In the case of bolted joints the stiffness
depends upon the bolt preload, the geometry
of the flanges and bolt, the area over which
thebolt load isapplied and the characteristics
(i.e. the surface roughness, hardness,
machining methods employed, etc.) of the
mating surface. Severa research workers[2-
7] have considered the geometry of the joint
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and developed empirical relationshipsfor the
stiffness of the assembly and for the pressure
distribution aong the interface. Some of
these relationships are based upon the
pressure cone theory.

The advent of large-scale computers
and the rapid growth of the finite element
method have made it possible to obtain
more accurate models. Cullimore and
Eckart [8] extended an earlier empirical
relationship [9] to cater for athree-bolt
three-flange assembly. Fernlund [10]
assuming that a single plate can replace two
plates estimated the contact pressure and
area but Gould and Mikic [11] using an
iterative finite element technique have
shown that the assumptions made in [10]
could lead to serious errors. Thompson et al
[12] using an experimental/finite el ement
approach found that the contact areaiis
independent of the bolt preload and
bolthole diameter. In another paper, Jofiert
et al [13] developed from finite element
studies empirical relationships for the
interface pressure and contact area for ring-
loaded flanges. Schafer [14], Mahtab and
Goodman [15] extended the finite element
model by introducing bond elements
between the contacting bodies and model ed
the behaviour of the joint in shear.

The above models do not take into
account the characteristics of the contacting
surfaces.

Back et al [16] represented the normal
stiffness of the interface by using beam and
plate-like e ements. However, their model
caters only for the situation when the
interface or part of it is being continuously
loaded. The model developed herein
calculates the stiffness of the interface
when it is being loaded, unloaded or
reloaded. The model also takes into account

the shear stiffness of the interface. The
tangent-stiffness method [17] is used to
calculate these stiffness valuesand it is
shown that this method gives results that
are more accurate than those obtained by
the method employed in [16].

2. NORMAL AND SHEAR

BEHAVIOUR OF AN

INTERFACE
Severa research workers have studied
deflectionsexperimentally [1,18,19]. Briefly,
when two specimens are brought into contact
and aload normal to the interfaceis applied,
the deflections produced lie on the curve OA
(Fig. 1a). If the loading is stopped, for
example at pressure p,, and then gradually
decreased, theunloading curve, AB, isalmost
linear and corresponds to the elastic
behaviour of the specimens. If the load is
increased again, the behaviour is elastic until
the pressure, p, is reached after which the
deflection followsthe curve OAC again until
the next unloading cycle. It has been found
[1] that the curve OAC can be adequately
described by the following equation:

A=cp” ..(2)
Where A isthe deflection at theinterface, pis
the pressure and ¢ and m are constants
determined by the characteristics of the
interface.

In addition to normal loads, shear
loads may act upon the joint. The behaviour
of an interface loaded in shear has been
studied,, anongst others ,by Kirsanova
[20], Masuko [21] and Sanad [22]. A
typical shear deflection curve for an
interfaceis shownin Fig. 1b. This curve,
which is obtained with a constant normal
pressure and varying shear load acting on
the interface, can be divided into three
parts:
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(@ The loading curve formed by the
segments OA, AB, BC, etc

(b) Theunload branches A1, B2, C3, etc.;

(c) Thereload branches 1A, 2B, etc.

.5
A A= cp™
: c
L /
o
L
j=1
EPI > T
s
CMJT >

Deflection A, pm=—p

—_
o
Na?

»
»

Shear stress, T

(=)

(b)
Fig L
Normal and shear behaviour
of an interface

Unlikethe pressure-deflection curve, thereis
no known simple equation to represent the
shear stress-deflection curves. It was decided
to use polynomials to represent each part of
the curve. Several tests were conducted and
it was found [23] that a third-degree
polynomial of the type:

t =ad+ad +ad® .. (2
represented theloading curveaccurately. The
term a, is absent because the curve passes
through the origin.

The unload branches are digointed
because they start from different points on
the main curve. They have, however, the
same shape. Thiswas verified by tranglating

the different branches so that they passed
through the same point (i.e. the origin).
Noticetheresultinginterloop. Thisimportant
property made it possible to group them
together and represent them by asinglethird-
degree polynomial:

t =b,d + b,d? + b,d® ...(33)
Each branch hasto be uniquely identified and
thisis done by expanding the above equation
and including the term b,; whose value is
made equal to the amount by which the
branch has to be trandated so that it passes
through the origin.
Therefore, for unloading:

t =b, + b,d+ b,d + b, ...(3b)
Fig. 2 Approximation of the
pressure-deflection curve
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It wasfound that an identical procedurecould
be used for the reloading branches and the
polynomial to represent themiis:

t =c,+c,d+c?+cd ...(4)
The behaviour of the interface shown in fig.
1b isfor a specific value of normal pressure.
If thenormal pressureischanged, another but
asimilart - dcurveisobtained. For example,
from the experimental results obtained, by
Sanad [22] for ground mild steel, the
reloading branches at different normal
pressures, whentransl ated to passthrough the
original, were approximated at follows:
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p= 24kgf/cn?; t = 337.99d- 11634 + 26.76¢°
p= 50 kgf/cn?; t = 427.52d - 1154502 +  90.50¢F
p= 75kgf/cn?; t = 609.50d - 264.80c% + 166.34d"
p = 103kgf/cn?; t = 647.83d - 280.89c? + 265.61°
p = 128 kgf/cn?; t = 724.83d - 276.43d? + 361.66°

Figure 2 shows the values of the coefficients
of d, &?, & plotted against the normal
pressure. The maximum value of p
considered is 128kgf/mm? because this was
the maximum pressure, which the
experimental rig, designed and built by Sanad
[22], could exert on the test specimens.
Assuming that at higher normal pressure a
similar trend is exhibited, the values of ¢, c,
and ¢, (inequation 4) can be approximated to
vary linearly with p. Thus, in equation form:
€, =C,y+CP, G, = Cyy + P AN C; = Cyy + €y
If these values are substituted into equation
(4) and the term ¢, is neglected because its
value is associated with a particular branch,
agenera equation to represent the reloading
branches is obtained:

t = (Cu+CP)d +(CoytCoP) P+ (CortCiop) & ... (D)
For the load and unload branches, a similar
linear variation of the coefficients with
normal pressure was observed. Therefore,
equation (2) and (3a) can be re-written as:

t = (ay + aP)d +(ay + P)dP+(ay + agP) d*... (6)
and

t = (b +by,P)d +(byy +b,,P)d+(by, +byyp) ... (7)

3. STIFFNESS MATRIX OF AN
INTERFACE ELEMENT

To model the above non-linear behaviour,
beam elements are introduced between the
two contacting bodies. For the three-
dimensiona case, each interface node has
three degrees of freedom: two (u,v) in the
plane of the joint and one normal to it (w),
The force-deflection relationship for an
interface element, |, is given below:

[AFx1] (ke O 0 -ki O 0 u)
AFyil | 0 ke 0 0 kg O ||wm
j;FzE'L 00k 0 0 ky|w|
|6Fxy| |-k 0 0 kg 0 0 ||u
|4Fyal | 0 kg 0 0 kg O ||
|AFz «|i 0 0 -k, 0 0 kg [w2)
{DF} = (ki) {d} - (8)

Note that | is given by (w, — w,) and the
shear deflection, d, by (u, — u,) or (v, —V,).
Although the shear and normal stiffnesses
appear to be uncoupled, it was shown earlier
[equations (5-7)] that the shear stiffness is
dependent upon the normal pressure. In the
calculations below, the normal and shear
forces DF,, (or - DF,,), DF,, (or - DF,,) and
F,. (or - DF,,) are designated by DF,, Dand
DF,' respectively. Thesuffix, hereafter, refers
to the iteration number.

4. DETERMINATION OF THE

NORMAL AND SHEAR STIFFNESS
The most commonly used methods to model
non-linear behaviour are the step-wise,
iterative and mixed methods. In the iterative
method, the structure is fully loaded in each
iteration and the portion of the load that is
not equilibrated is used in the next step to
compute an additional increment of
deflection.

This process is repeated until the
deviation from equilibrium becomes
negligible. Back et al [16] used a modified
version of this technique to model the
pressure-deflection curve. The convergent
curve obtained by them was oscillatory in
nature; the oscillations were damped out by
averaging two consecutive sets of results.

In the step-wise method, which has
been used herein, the total load applied to
the system is subdivided into several partia
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loads which need not be of equal
magnitude. During each iteration the
relationship between the forces and
displacementsis assumed to be linear. This
relationship, i.e. the stiffness matrix as
defined by equation (8), can be evaluated
using either the ‘ secant modulus’ or the
‘tangent-stiffness’ method. A description of
these methodsisgivenin[17]. Inthefirst
iteration, the former is used; in the second
and subsequent iterations the latter is used.
The accumulated values of the increments
of displacement corresponding to the force
increments, gives the total displacement for
the intended load. Given below is adetailed
description of how these methods have
been adapted to calculate the normal and
shear stiffnesses of the interface when it is
being loaded, unloaded or reloaded.

4.1  Normal stiffnessduring loading
The process starts by subdividing the total
external load F, into several |oad increments.
For the first iteration, it is assumed that the
actual area of contact is equal to the apparent
area of contact, A,,. Therefore, for the
iteration, the incremental load, DF,, is
distributed over the entire interface.

To calculate the force acting at an
interface node, it is necessary to know (i) the
pressure at the node and (ii) the area, a,, over
which it exerts an influence.

For the first iteration, it is assumed that
DF,, will causeauniform pressure, p,,, 8Cross
the interface therefore its magnitude is given
by DF, A, The area of influence, a,
ascribed to an interface node i can be shown
equal to S* @N, d, d, where e is the number
of elements the node is common to. This
derivation is based upon the assumption that
the pressure remains constant over the
element. It wasfound that the variationin the
pressure had to be one degreelower than that
assumed for the displacement functions. The

Pressure —p

stiffness matrices of the elements in the
contacting bodies were derived using linear
shape functions. When a linear variation of
pressure was tried with these elements
incorrect pressuredistribution wereobtai ned.
For example, in an axisymmetric problem,
instead of the pressure maintaining aconstant
value around the circumference of a given
circle, it oscillated. Note that the sum of all
the areas of influenceisequal to A, and that
the above expression merely helps to
subdivide A, into region. Therefore, for the
first iteration the load acting at nodei is

DF, =p.," &

Thisconcentrated forceacting at thenode
will cause the asperities within its area of
influenceto deform. This deformation can be
caluculated from equation (1) and is
represented by the deflection, | |, occurringin
the beam which isintroduced at nodei: | {, =
C ' pa. Hence the normal stiffness at this
point on the interfaceis:
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AFz)! _Pa

N o CPy

This value corresponds to the slope of

the line OA, in Fig.3 For thisfirst iteration;

one cannot use the slope of the curve because
itsvalue is zero at the origin.

The value of the normal stiffness as
given by equation (9) isnow used in equation
(8) to calculate the stiffness matrix for the
interface element. The above procedure is
repeated for all the interface elements. These
matrices are now combined with the stiffness
matrices of the elements representing the
contacting bodiesto form the global stiffness
matrix of the structure:

i
knl_

int

el e2
LANED I IARD IRIMH

A finite element analysis of the structure is
now performed with the first incremental
load DF,, acting on it. From the resulting
displacements, the relative deflection
between the two ends of beam i can be
extracted. Let this be represented by A ' .
This pressure acting at the same node after
the first iteration can now be calculated:

p, = element force area of influence
= Stiffness x deflection

koA
4
Thisvalueof pressureisnow intersected with
the curveto locate point A, (fig.3). The slope
of the curve at this point is required to
calculate the stiffness of the beam element i
for the second iteration. Differentiating

eguation (1) givesthe slope of the curve at a
point:

d pl—m

dh m.c
Since, k, = (dp/dl )a the normal stiffness of

the interface node i for the second iteration

o a 1%,
is k. = (af’) a = L 7L
Al m.c

The interface element stiffness matrices are
recalculated with the new values of K,
Matrices[k,] arenot recal cul ated because the
deflections occurring in the structure are
small and its behaviiour iselastic. Therefore:

el

e2
[ks]z = E [kb] +E [kint]2

The second incremental load, DF,,, isapplied
and another finite element analysis is
performed. This causes deflection, A,), to
occur in element i and from it the pressure p,
in the beam at the end of the second iteration
can be calculated [equation (10)]:

i _ ker()“; +)‘;)

2 ai
The normal stiffnessfor thethird iterationis:

knz3 _ (pZi)l_mai

m.c

This process is repeated until all the
incremental |oads have been applied. The
final deflection of the interface at node i is

'"é%by No= A +0 +o + A

number of iteration performed.

The pressure calculated from equation
(13) is assumed to act over the part of the
interface, which is assigned to node i. Over
thisregionitisassumed to be constant. There
is, however, with this model a discontinuity
in the pressures occurring in adjacent
regions. This discontinuity will decrease as
the er of nodes in the finite element
mode! iSincreased.

The magnitude of the incremental
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forces, DF,,, are arranged to be either in a
geometric or an arithmetic progression. This
seemsjustifiable considering the exponential
nature of equation (1). Since the value of k,
for the first iteration is calculated using the
secant OA,, the first iteration load is F,; is
chosen to be small (about 5 per cent of the
total load). The greater the initial load, the
greater is the magnitude of A,B, (fig. 3)
which is the error incurred in the first
iteration.

4.2 Normal stiffnessduringunloadingand
reloading

Asthetotal load isincreased, the pressurein
theregionsaround theload also increases. At
the same time, in the other regions the
pressure decreases thus initiating the
unloading process. As mentioned earlier,
during unloading the joint behaves as if the
two bodies were rigidly connected. This
results in curve AB (fig. 1a) that can be
approximated to a straight line; its slope is
given by the equivalent Y oung’s modulus of
the contacting bodies.

If, during the iterations, a beam is found
to go into tension, it indicates that unloading
has begun. For the next iteration, its stiffness
is.

k] = @.a1 = E.aq,
dr

This value is used as long as the beam
continues to be unloading. When the sum of
the incremental forces acting on it becomes
zero, the beam is removed from the finite
element model. This indicates that a certain
amount of area at the interface has lost
contact. The deflection occurringin the beam
when it is disconnected represents a
permanent deflection, | 5 (fig. 1@) which has
occurred at the interface.

In subsequent iteration, due to a change
inloading conditions, the sameregions of the
interface may begin to approach each other.
When the relative deflection between a
contact nodepair reaches | ; (fig. 1a) the
beam isreintroduced. Thisindicatesthat this
part of the interface has been brought into
contact and reloading has begun. The
stiffness of the beam is calculated from the
slope of the reloading curve BA. When the
deflection in the element reaches the value
corresponding to point A. an equation similar
to (14) is used once again to calculate the
normal stiffness of the interface element.

4.3 Calculation of the shear stiffness

The shear stiffness, kg, and kg, are calculated
using the stepwisemethod. Thetotal force, as
before is applied in increments. For all the
iterations, including the first, the shear
stiffness of a beam is calculated using the
tangent-stiffness method

k = shear force
$  shear deflection

shear stress x area of influence
shear deflection

I

—  ~

o |a

N——————
K

The value of {fghys evaluated from the slope,
dt/dd, of the loading, unloading or reloading
curve. If equation (6) is used, the shear
stiffness of beami is:

k= (dU/dd).a,
= (@ +2ad+3ad) a

wherea, = (a; + &, p,), €tc. Thisequationis
used for al the iterations. Note that for the
first iteration, the slope of the curve at the
originis used and therefore

NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.2, SEPTEMBER 2008



APPLICATION OF THE TANGENT-STIFFNESS METHOD IN THE FINITE ELEMENT MODELLING OF ... 29

k) = (du/dd)

origin =4a.aq
a
t .
o
@ 1
s L4 c
2 ! (@ For
1! ! constant
0 “ié_‘:vé“ ! normal
Deflection & — load

(b) For varying normal load

4

Shear stress T ==

Deflection, § =—>

Fig. 4 Approximation of thet-d curve

For the second and subsequent iterations, the
cumulative of the incremental shear
deflections is used to locate the point on the
curve a which the tangent is drawn.
Therefore, for example, for thethird iteration

8 = 8, +8 8  whéle

shear deflections occurring in the beamin the

first and second iterations.

Figure 4a shows how theloading curveis
approximated by lines OA, AB, etc.: their
slopes are the same as the tangent to the
curves. This approximation is valid only if
the normal pressure remains constant. If an
increase in the shear force results in a
corresponding increase in the normal
pressure, as would happen if the plane of the
joint is not normal to the direction of
application of the load, a different curve has
to be used for each iteration. The shear
behaviour of the interface is now
approximated by OA, AB, BC, etc. (fig. 4b)
whose slopes, a,, a,, a,, etc., are obtained
from the curves, P,, P, P,, P, etc. These
curves represent the shear behaviour of the
interface at different normal pressures.

4.4 Coefficient of friction

The model also takes into consideration the
coefficient of friction. By limiting the maxi
mum shear force that can be transmitted
through the joint, the coefficient of friction
defines the position (point D, Fig. 5a) at
whichtheloading curve stopsand slip begins
to occur. The curve OPQ should be
represented by thetangents OA, AB, BC, CD
and DE. DE represents the small amount of
dip, which is permitted to occur in localized
regions in the vicinity of the bolt load. With
the tangent stiffness method, it is difficult to
model the transition from CD to DE.
Consider the situation at the interface where
one of the beams after k iterations has
deflected d, (fig. 5a), for the next iteration,
the shear stiffness of the beam is calculated
from the dlope of the curve at point P.

are the

NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.2, SEPTEMBER 2008



30 S.0. Edelugo

A
U e e T g PO
I |
1)
--------------------------- Zoam-mq-20
T ,*" ,?" P!
e -7 Pl !
- e ]
A Rt D Do el T 1--r &
= e e '
C A P
kb= - e )
2 P-” o
©n y 1
1 Yo
/R N
A h 1 : [
- ' ! ]
' 1 I
H | Yot
[ ! [
e E
1 ! ' L
0 S . 5, 51 8
Deflection, 6———>
(a)
Flange
Al
A AAA

—>AF,
Initial position Finite element result
Finite element result
@=——2ftcr application of
Required poSition mm—)y correction forces
Bl B\ B

AF—> TTip

(b)

Flange

Fig. 5. Modeling the 1- near the limit of friction

At theend of thisiteration, the shear acting at
this beam is t; which exceeds the limiting
valuet, but the resulting deflection, d,. This
is aso illustrated in Fig. 5b. AB represents
the initial position of the beam. The beam
should deflect to A ‘B’ with B'B”
representing the dlip. However, the finite
element model moves the beam to position
A,B,. The sole reason for considering the
coefficient of friction isto reduce the excess
stress (t, - t;) and to correct the position of
A.B,. It is not intended to model the
behaviour of thejoint when gross-slip occurs;
for this the reader is referred to [24,25]. To
reduce the excess stress, an approach
suggested in [26] has been adapted herein.
The excess force, whose magnitude is given
by (t,-t,). &, isapplied at the interface nodes
after which the structure is re-analysed. The

beam AB under the action of the correcting
force DR (fig. 5b) now deflects to positions
A' B!, which is nearer to the required
position A’B”. After thefirst re-analysis, the
excess shear stressisreducedto (1, —1)). Itis
suggested in [26] that the model is re-
analysed several times until the excess

Read interface characteristics (c,m) element data,
nodal coordinates, number of iterations, shear
behaviour constants, loads applied, constraints, etc.

Calculate the element
stiffness matrix [ky]

( Next element )

Calculate area of influence for each
interface element op
T

Calculate incremental load
on element

Call NORM, SHEAR and
FORM [King]

( Next interface element )_

Assemble the [ky] and [k,] matrices
to form [k]; inject constraints

Apply incremental loads

l )

Determine correct Solve for deflections

forces

; |
NO Shear force < friction
coefficient

(All iterations completed )&

Fi

g. 6a Flow diagram for solving contact
problems
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SUMF = 3 AF + AF,

i=1 =
SUMF = SIGMAD + ;\}(

= Bram =
Loading\/Reloading
NO |[Store values of \ e
SUM]% point’A SUMF<SAE NO Reloading has begun
(Fig 1a) ~
YES
Unloading has begun
YES Was NO
NO beam out of
_< SUM> contact
YES
YES Has it
Branch =1 Beam has lost reached point
contact A (Fig. 1a)
NO
Calculate kn Store values of ;l:; it int YES
use Eqn. (15) point B "‘;‘;"F_ P1°“‘ Branch =1
(Fig. 1a) (Fig. 1a)
Calaulate k, Kn=0 Calculate kq
use Eqn. (14) - NO use Eqn. (15)
= = Beam still out! Calculate k
Besupie= BrAnCH=3 of contact use Eqn. (14)
Make ZAF =0 Branch =3

‘ Return ’

Fig. 6b Flow diagram for subroutine SHEAR

shear stress become zero. This was found to
be very expensive with respect to computing
time because several re-analysisarerequired
for every node where slip has just occurred.
Because of this and the fact that the shear
behaviour of the interface plays a secondary

part in the case of fixed joints, it was decided
to perform only onere-analysis. It was found
that this reduced the excess stress by 60 per
cent.

5. COMPUTATIONAL PROCEDURE
The overal operation is described by the
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flowchart shown in Fig. 6a. In addition to the
data required to describe the finite element
model such as nodal coordinates, element
node numbers, the user must supply the
values of ¢ and m, the number of iterations
required, the coefficients which describe the
t-d curve, and the manner in which the
external load is to be divided into
incremental |oads.

To start with, the program calculates the
stiffness matrices of the elements
representing the contacting bodies. For the
interface elements, the values of k, and k,are
calculated by subroutines NORM and
SHEAR. Theflowchart for NORM is shown
in Fig. 6b. For the first iteration, the
calculation of k, is straightforward. For the
second and subsequent iterations, the values
of BRANCH, SUMF and SIGMAF are
examined to decide which part of the
pressure-deflection curve should be used to
calculate k.. Note that SUMF and SIGMAF,
the current and previous sums of the
incremental forces sustained by the beam are
given by the following expressions:

SIGMAF = AF} +...+AFy |

SUMF = SIGMAF + AF,

where k is the iteration which has just been
completed.

A similar but more complex procedureis
used in SHEAR to calculate the value of k..
In a three- dimensiona problem, two calls
are made to this subroutine because the shear
stiffness in the plane of the joint may not be
equal.

After each iteration is completed, the
shear force sustained by a beam is compared
with the limiting friction force; if it exceeds
thelatter, correctionforcesarecalculated and
included in the overal load vector. A re-
analysis is performed before passing on to
the next iteration.

6. RESULTSAND DISCUSSION

6.1 Prismatic beam on arigid base

The example to be analysed is a simple
rectangular prism (Fig. 7 inset) which lies
with one of its longitudina narrow faces
against a plate of infinite stiffness. An
external load is applied at mid-length and
compresses the prism against the rigid base.
The prism is represented by in-plane
rectangular elements and the interface by
beam elements (not shown in the inset, Fig.
7). Therigid base is simulated by fixing one
end of the beams. Because the problem is
sysmmetrical, suitable constraints are
imposed on nodes which lie on the center-
line and only one-haf of the structure is
analysed.

This example was selected for two
reasons: experimental values of the interface
deflections are available from Levina [28]
and it has also been analysed by Back et al
[16] using a‘ standard spring’ method. These
two sets of results serve as a basis of
comparison. Levina and Back et al did not
consider the shear stiffness of the interface,
and thereforethefinite element resultsshown
in Fig. 7 take into account only the normal
stiffness of the interface. In genera, the
interface deflection is given by the
compression occurring in a beam element.
Since, in this example, one end of each beam
is constrained, the interface deflection is
given directly by the downward deflection of
the nodes lying on the interface i.e. nodes
labeled 1,6,11,16, etc. in Fig 7a. Figure 7b
shows the pressure at each of the interface
nodes.

With the incremental method, the
accuracy obtained depends upon the number
of steps chosen by the user. Thisproblem has
been analysed with three, five, ten and fifteen

steps.
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Increasing the steps from three to five
results in a relatively large increase in the
accuracy of the predicted results; theincrease
in the accuracy from ten to fifteen steps is
only marginal and does not justify the extra
computing effort. For this problem, Levina
guotesavaueof c=0.8mMmand m=0.5and
modulus of elasticity of 9500kgf/mm?. The
results obtained by the incremental method
converge to a value dightly higher than the
experimental results. The results obtained by
the method suggested in [16] areeven further
removed from the experimental values.

Fig. 7 Interface pressure and deflections for a
plate on arigid base

Another important observation is that if
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the convergence curve were to be plotted for

the interface deflection at node 51, it would

be monotonic in nature and would converge

from ‘above’. However, in the case of
pressure (Fig.7b), the nature of the
convergent curve depends upon the position
of the node along the interface. For example,
the pressure for nodes 36 to 51 converges
from*below’, whereasfor nodes6, 11, 16, 21
and 26 it converges from ‘above'.

7. CONCLUSIONS

The tangent-stiffness method has been
adapted to model the normal and shear
behaviour of an interface. It was found that
the loading, unloading and reloading
branches of the t-d curve could be
approximated by third-degree polynomials.
The results are fairly accurate if the load is
subdivided into five or more partial loads.
The model has yielded results which agree
with the experimental values.
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