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ABSTRACT:

Compared with conventional structural columns, the pronounced role of instabilities
complicates the behaviour and design of thin-walled columns. This study investigated the
stability of axially compressed single-cell thin-walled column with mono-symmetric
non-deformable cross-sections. The work involved a theoretical formulation based on Vlasov's
theory with modification by Varbanov and implemented the associated displacement model
in analysing flexural and flexural-torsional (FT) buckling modes. The initial result of the
formulation was in form of total potential energy functional, which was then minimized using
Euler-Lagrange equation to obtain a set of differential equations of equilibrium in matrix
form. The elements of the coefficient matrices of the governing differential equations of
equilibrium were determined for the mono-symmetric cross-section by first generating and
plotting the generalized strain fields. Technique of diagram multiplication was then used in
determining the elements of the coefficient matrices from the generalize strain mode
diagrams. The substitution of the determined coefficients back into the governing equations
of equilibrium resulted to one uncoupled ordinary differential equation representing flexural
behaviour and a pair of two interactive (coupled) ordinary differential equations representing
the flexural-torsional (FT) behaviour. These equations were then solved using direct
closed-form approach for the uncoupled flexural behaviour and Varbanov's trigonometrical
series with accelerated convergence (TSWAC) for the coupled flexural-torsional behaviour.
The results are presented in form of stability matrices and the numerical results are presented
on tables (1) and (2). Comparison of the two tables' results indicates that the flexural
behaviour will control design. 

Key Words: Mono-Symmetric Section, Stability, Thin-walled Column, Trigonometrical Series

with Accelerated Convergence, Vlasov's Theory.

NOTATIONS:

iU (x): Longitudinal displacements function

due to flexure about oy- and oz-axes

and warping due to torsion about

ox-axis.

kV (x): Transverse displacements function

due to flexure about oy- and oz-axes,

torsion about ox-axis, and distortion

of the cross-section.

in (s): Generalized longitudinal strain fields

due to flexure about oy- and oz-axes,

and warping torsion about ox-axis.

in N(s): First derivative of the longitudinal

strain fields with respect to the profile

coordinate, S

kψ (s): Generalized transverse strain fields
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due to flexure about oy- and oz-axes,

torsion about ox-axis and distortion

of the cross-section

crP : Critical buckling load

S: Profiles coordinate

E: Modulus of elasticity

G: Modulus of rigidity

τ(x, s): Shear stress

σ(x, s): Normal stress

xg : Longitudinal strain

xsγ : Shear strain

yI : Moment of inertia about the oy - axis

zI : Moment of inertia about the oz - axis

ωωI : Warping constant

ω: Warping function

INTRODUCTION
Thin-walled structures comprise an important

proportion of engineering construction with

areas of application becoming increasingly

diverse, ranging from aircrafts, bridges, ships,

box girders, box columns, industrial

buildings, and warehouses. They consist of a

wide and growing field of engineering

applications which seek efficiency in strength

and cost by minimizing material. The result is

a structure in which the stability of the

components, that is, the “thin walls” is often

the primary aspect of behaviour and design

[1].

The first serious advancement in the

understanding of stability for elastic

structures was made by Euler (1707 – 1783)

during his work on axially compressed rods

called elastica models [2]. According to

Schafer and Andny [3], cross section

instability greatly complicates the behaviour

of thin-walled members. While significant

advances have been made in thin-walled

structure research through experimental

testing and theoretical work, new research is

still required since many important questions

remain partially or controversially answered,

such as torsional buckling, distortional

buckling and overall stability [4, 5]. Vlasov

[6] was the first to substantiate the existence

of distortional and warping stresses in

thin-walled closed structures and he

subsequently formulated a theory for their

analysis. Study has shown that strict

application of Vlasov's displacement model

for the analysis of thin-walled closed

structures leads to a large number of

kinematic unknowns in form of displacement

functions. Varbanov [7] has shown that by

using generalized strain fields on Vlasov's

equation, the number of kinematic unknowns

can be drastically reduced. This paper reports

an investigation into the stability of axially

compressed single-cell thin-walled column

with mono-symmetric non-deformable cross

sections. The study involved a theoretical

formulation based on Vlasov's theory with

modification by Varbanov and implemented

the associated displacement model in

analyzing flexural and flexural-torsional (FT)

buckling modes (Ezeh [8]).

The main motivation for this study is

the need to derive simplified stability

matrices for readily flexural and

flexural-torsional (FT) buckling analysis of

single-cell monoosymmetric thin-walled

columns.

ENERGY FORMULATION OF THE

EQUATIONS OF EQUIUBRlUM:
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Figure 1 shows one of the cross sections of a

single-cell mono symmetric thin-walled

closed column under consideration. Using

Lagrange's principle, Vlasov [6] expressed

the displacements in the longitudinal and

transverse directions, u(x, s) and v(x, s) of a

thin-walled closed structure in series form as

follows:

(1)

(2)

i k Where, U (x) and V (x), are unknown

functions which express the law governing

the variation of the displacements along the

i k length of the column. n (s) and ψ (s) are

elementary displacements of the column

(longitudinal and transverse strain modes)

respec t ive ly ou t  o f  t he  p l a n e

(m-displacements) and in the plane

(n-displacements).

The potential energy of an axially

loaded thin-walled closed structure is given

by:

pπ  = S – W (3)

For the structure under consideration, the

strain energy and work done by the external

load are given by:

(4)

     (5)

Substituting equations (4) and (5) into

equation (3), we obtained:

       (6)

Using constitutive relation in equation (6), we

obtained:

(7)

Using equations (1) and (2) and basic stress-

strain relationships of the theory of elasticity,

the expressions for normal and shear stresses

became [6 -10]:

(8)

           (9)
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The bending moment induced by distortion is

given by:

(10)

Substituting equations (2), (8), (9) and (10)

into equation (7) and simplifying, we

obtained:

(11)

where

(12)

Equation (11) shows that the total potential

penergy π  is a functional of the form:

(13)

pThe total potential energy functional π  has
stationary (extreme) values if the following
Euler-Lagrange differential equations are
satisfied:

(14)

(15)

Using equations (14) and (15) on equation

(11) and noting that for the thin-walled closed

column under axial compression, m=3 and n

= 4, we obtain the governing equations of

equilibrium as:

(16)

(17)

GENERALIZED STRAIN FIELDS AND
ELEMENTS OF COEFFICIENT
MATRICES:

iThe longitudinal strain modes n (s) and the

ktransverse strain modes ψ (s) consist of
bending about oy-axis, bending about
oz-axis, warping in the longitudinal direction,
pure rotation about ox-axis and distortion of
the cross section and they are chosen as
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follows:

1 (s) 2 (s) 3 M n (s) = y ; n (s) = z ; n (s) = ω (s) (18)

(19)

Using the indirect method [9], the strain

modes, their derivatives and the warping

properties were determined for the single-cell

mono-symmetric section and presented in

form of diagrams in figure 2. The technique

of diagram multiplication was used on the

strain field diagrams shown in figure 2 to

determine the elements of the coefficient

matrices as follows:
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ij ji S i j a  = a  = I n (s) n (s) t(s)ds

11 S 1 1 a  = I n (s) n (s) t(s)ds = 16.435a t3

22 S 2 2 a  = I n (s) n (s) t(s)ds = 7.107a t3

12 21 S 1 2 a  = a  = I n (s) n (s) t(s)ds = 0

13 31 S 1 3 a  = a  = I n (s) n (s) t(s)ds = 0

23 32 S 1 3 a  = a  = I n (s) n (s) t(s)ds = 0

33 S 3 3 a  = I n (s) n (s) t(s)ds = 0.115a t5

ij ji S i j b  = b  = I nN(s) nN (s) t(s)ds

11 S 1 1 b  = I nN (s).nN (s) t(s)ds = 6at

22 S 2 2 b  = I nN (s) nN (s) t(s)ds = 3.574at

12 21 S 1(s) 2(s) b  = b  = I nN  nN t(s)ds = 0

13 S 1(s) 3(s) b  = I nN  nN t(s)ds = 0.194a t2

23 S 2 3 b  = I nN (s) nN (s) t(s)ds = 0

33 S 2 3 b  = I nN (s) nN (s) t(s)ds = 0.234a t3

ir ri S i r c  = c  = I nN(s) ψ (s) t(s)ds

11 S 1 1 c  = I nN (s) ψ (s) t(s)ds = 6at

22 S 2 2 c  = I nN (s) ψ (s) t(s)ds = 3.574at

12 21 S 1 2 c  = c  = I nN (s) ψ (s) t(s)ds = 0

13 S 1 3 c  = I nN (s) ψ (s) t(s)ds = 0.86a t2

23 S 2 3 c  = I nN (s) ψ (s) t(s)ds = 0

14 S 1 4 c  = I nN (s) ψ (s) t(s)ds = 0.194a t2

24 S 2 4 c  = I nN (s) ψ (s) t(s)ds = 0

33 S 3 3 c  = I nN (s) ψ (s) t(s)ds = 0.271a t3

34 S 3 4 c  = I nN (s) ψ (s) t(s)ds = 0.234a t3

kr rk S k r m  = m  = I ψ (s) ψ (s) t(s)ds

11 S 1 1 m  = I ψ (s) ψ (s) t(s)ds = 6at

12 S 1 2 m  = I ψ (s) ψ (s) t(s)ds = 0

13 S 1 3 m  = I ψ (s) ψ (s) t(s)ds = 0.86a t2

14 S 1 4 m  = I ψ (s) ψ (s) t(s)ds = 0.194a t2

22 S 2 2 m  = I ψ (s) ψ (s) t(s)ds = 3.574at

23 32 S 2 3 m  = m  = I ψ (s) ψ (s) t(s)ds = 0

24 42 S 2 4 m  = m  = I ψ (s) ψ (s) t(s)ds = 0

33 S 3 3 m  = I ψ (s) ψ (s) t(s)ds = 14.562a t3

34 S 3 4 m  = I ψ (s) ψ (s) t(s)ds = 0.271a t3

44 S 4 4 m  = I ψ (s) ψ (s) t(s)ds = 0.234a t3

kr rk S k r h  = h  = I ψ (s) ψ (s)ds

11 S 1 1 h  = I ψ (s) ψ (s)ds = 

12 21 S 1 2 h  = h  = I ψ (s) ψ (s)ds = 0

13 S 1 3 h  = I ψ (s) ψ (s)ds = 0.86a2

14 S 1 4 h  = I ψ (s) ψ (s)ds = 0.194a2

22 S 2 2 h  = I ψ (s) ψ (s)ds = 3.574a

23 S 2 3 h  = I ψ (s) ψ (s)ds = 0

24 S 2 4 h  = I ψ (s) ψ (s)ds = 0

33 S 3 3 h  = I ψ (s) ψ (s)ds = 14.562a3

34 S 3 4 h  = I ψ (s) ψ (s)ds = 0.271a3

44 S 4 4 h  = I ψ (s) ψ (s)ds = 0.234a3

But, for all the plates

DERIVATION OF BUCKLING

EQUATIONS IN TRANSVERSE

k DISPLACEMENT QUANTITIES V (x):
When the cross section of the column is non-

deformable, that is distortion is not allowed,

the governing equilibrium equations (16) and

(17) were reduced to the following matrix

forms:

(20)
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(21)
Expanding equation (20), we obtained:

... (22(a))

(22(b))

... (22(c))

Expanding equation (21), we obtained:

(23(a))

(23(b))

(23(c))

where, etc.

2Eliminating U (x) and its derivatives from

equations (22(b)) and (23(b)), we obtained:

(24)

where,

1 3Eliminating U (x), U (x) and their derivatives

first from equation (22(a)) and (23a&c) and

second from equations (22(c)) and (23a&c)

respectively, we obtained the following pair

of homogeneous ordinary differential

equations:

(25(a))

(25(b))

1 11 13 13 11 33 11where, a  = γa c k  – γa c k ;

2 11 13 33 11 33 13a  = γa c k  – γa c k ;

3 33 13 11 33 11 31a  = γa c k  – γa c k ;

4 33 13 13 33 11 33a  = γa c k  – γa c k ;

1 11 13 31 11 33 11 13 13 11b  = b c k  – b c k  + b c k

2 11 13 33 11 33 13 13 13 13b  = b c k  – b c k  + b c k

3 13 13 31 13 33 11 33 13 11b  = b c k  – b c k  + b c k

4 13 13 33 13 33 13 33 13 13b  = b c k  – b c k  + b c k

DETERMINATION OF STABILITY

MATRICES
The general solution of the flexural mode

equation (24) is given by:

2 1 2 3 4V  = c  cos ηx + c  sin ηx + c x + c (26)

1 4The arbitrary constants, c  ... c  were

evaluated for the different boundary

conditions as follows:

(i) Hinged-Hinged condition:

2V  = 0(x = 0, l);

(27)
NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 28 NO.2, SEPTEMBER 2009
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(ii) Clamped-Hinged condition:

(28)

(iii) Clamped-Clamped condition:

(29)

Applying the boundary conditions (27), (28)

and (29) to equation (26) and noting that for

nontrivial solutions or nonzero values of the

constants, the determinant of the coefficients

1 4of c  ... c  must vanish, we obtained the

following:

(i) Hinged-Hinged conditions:

(30)

(ii) Clamped-Hinged conditions:

(31)

(iii) Clamped-Clamped conditions:

(32)

Equations (30), (31) and (32) are the stability

matrices for equation (24) representing the

flexural buckling modes for the different

boundary conditions. Expanding equations

(30), (31), and (32), we obtained the critical

buckling loads for the respective boundary

conditions and for n = 1 as follows:

NUMERICAL STUDY:
A numerical study was performed for a

single-cell mono-symmetric thin-walled steel

box column with the following parameters:

E = 210 × 10 MN/m , G = 81 × 10 MN/m , L3 2 3 2

= 4.5m, a = 0.08m, and t = 0.0005m to

0.02m.

The critical loads associated with the flexural

modes were evaluated for the three sets of

boundary conditions and the results presented

on table 1.

Equations (25(a)) and (25(b)) were

solved simultaneously using Varbanov’s

method of trigonometrical series with

accelerated convergence (TSWAC) [11].
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(25(a))

(25(b))

Equations (25(a & b)) were integrated

conveniently using TSWAC. We seek for the

unknown functions in the form:

(33)

In the assumed solutions, the auxiliary

functions and are given as:

(34)

1 3The supplementary functions v (x) and v (x)

are given as:

(35)

where,

0 3 0 3The constants A , ... A  and B  ... B  were

obtained from the boundary conditions and

1n 3nthe coefficients of Fourier a  and a  are

defined from the given system of differential

equations. Differentiating equation (33) four

times and substituting into equations (25

a&b), we obtain:

... (36a)

... (36(b))

The boundary conditions were then

introduced as follows:

Case 1: Hinged-Hinged Column:

(37a)

(37b)

Differentiating the auxiliary equations twice,

we obtained:

(38)

Substituting equations (37a) and (37b) into

equations (25a&b) and (38), and simplifying,

we obtained:

0 1 2 3A  = A  = A  = A  = 0
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0 1 2B  = B  = B  = B = 0

1(x) 3(x)and P  = P  = 0

(39a)

(39b)
Differentiating equations (34) four times and

substituting into equation (38(a)) and (38(b)),

and simplifying, we obtained:

(40)

(41)

Equation (40) and (41) will always be

nsatisfied in the coefficients of sin α x are

equated to zero, that is:

(42)

(43)

Equation (42) and (43) can be written in the

following matrix form:

(44)

Equation (44) will have nontrivial solutions

if the determinant of the matrix of the

1n 3ncoefficients of a  and a  is zero.

(45)

Equation (45) is the stability matrix for the

system of equations (25a&b) for the hinged-

hinged boundary conditions. The least critical

loads are obtained when n = 1.

Hence, (46)

1 2 3 4Substituting the expressions for a , a ,a , a ,

1 2 3 4b , b , b , and b  into equation (47) and

expanding, we obtained:

(47)

where,
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Using the values of the coefficients as
obtained earlier in equation (47) and the
numerical parameters as used ear1ier, we
obtained table 2 as the variation of critical
load with respect to the wall thickness. 

Case 2: Clamped-hinged column:
Using the clamped-hinged boundary)
conditions on the auxiliary and
supplementary) functions of the assumed
solutions and also on equations (36(a) and
(36(b)), we obtained the stability matrix for
the system of equations (25 a&b) and for the
clamped-hinged boundary) conditions to be:

(48)

where, and

Case 3: Clamped-clamped column:
Using the c1amped-clamped boundary

conditions on the auxiliary and

supplementary functions of the assumed

solutions and also on equations (36(a) and

(36(b)), we obtained the stability matrix for

the system of equations (25a) and (25b) and

for the c1amped-clamped boundary

conditions to be: 

(49)

w h e r e ,

and

1 2 3 4Substituting the expressions for a , a ,a , a ,

1 2 3b , b , b , and into equations (48) and (49)

and expanding and substituting the numerical

parameters, we obtained the critical loads for

the respective thicknesses as shown on table

2.

RESULTS AND DISCUSSION:
The stability matrices representing the

flexural behaviour of the column were

derived as equations (30) for the

hinged-hinged, (31) for the clamped-hinged

and (32) for the clamped-clamped boundary

conditions respectively. The numerical results

for the three sets of boundary conditions are

presented on table 1. It is obvious from the

results that the flexural buckling strength

increased by about 100% from hinged-hinged
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to clamped-hinged boundary conditions and

about 90% from clamped-hinged to

clamped-clamped boundary conditions.

The stability matrices representing the

flexural-torsional (FT) behaviour of the

column were derived as equations (46) for the

hinged-hinged, (48) for the clamped-hinged

and (49) for the clamped-clamped boundary

conditions respectively. The numerical results

are presented on table 2. The results show

that the critical buckling loads for each wall

thickness are near1y the same for all three

sets of boundary conditions. This result

confirms the work of the second author that

the nature of the boundary conditions has

little or no effect on torsional buckling

strengths. The very high values of the

flexural-torsional (FT) buckling strengths

show the overriding influence of the torsional

behaviour over flexural behaviour under

interactive action.

CONCLUSION 
This study has simplified the stability

analysis of non-symmetric cross section

columns by deriving series of stability

matr ices  for both f lexural  and

flexural-torsional (FT) behaviour. The

availability of these stability matrices will not

only ensure easy application by designers but

will also ensure safe design. Comparison of

tables (1) and (2) shows that the flexural

torsional (FT) buckling load are far higher

than the flexural buckling loads. These high

differences in critical buckling loads indicate

that the flexural behaviour will control the

design for each set of boundary conditions.

Table 1: Flexural critical buckling loads
for the respective thickness for the three
sets of boundary conditions

Thickness Critical buckling loads (MN)

t(m) Hinged-

Hinged

Clamped-

Hinged

Clamped-

Clamped

0.02 25.646 51.596 97.933

0.0175 22.44 45.146 85.691

0.015 19.234 38.697 73.449

0.0125 16.029 32.247 61.208

0.01 12.823 25.798 48.966

0.0075 9.617 19.348 36.725

0.005 6.411 12.899 24.483

0.0025 3.206 6.449 12.242

0.001 1.282 2.580 4.897

0.00075 0.962 1.935 3.672

0.0005 0.641 1.290 2.448

Table 2: Flexural-Torsional (FT) critical
buckling loads for the respective thickness
and for the three sets of boundary
conditions

Thickness Critical buckling loads (MN)

t(m) Hinged-

Hinged

Clamped-

Hinged

Clamped-

Clamped

0.02 1611.990 1612.136 1611.823

0.0175 1410.491 1410.619 1410.345

0.015 1208.992 1209.102 1208.867

0.0125 1007.494 1007.585 1007.389

0.01 805.995 806.068 805.911

0.0075 604.496 604.551 604.434

0.005 402.997 403.034 402.956

0.0025 201.499 201.517 201.478

0.001 80.599 80.607 80.591

0.00075 60.450 60.455 60.443

0.0005 40.300 40.303 40.296
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