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ABSTRACT:

Compared with conventional structural columns, the pronounced role of instabilities
complicates the behaviour and design of thin-walled columns. This study investigated the
stability of axially compressed single-cell thin-walled column with mono-symmetric
non-deformabl e cross-sections. Thework invol ved atheoretical formulation based on Vlasov's
theory with modification by Varbanov and implemented the associated displacement model
in analysing flexural and flexural-torsional (FT) buckling modes. The initial result of the
formulation wasin form of total potential energyfunctional, which wasthen minimized using
Euler-Lagrange equation to obtain a set of differential equations of equilibrium in matrix
form. The elements of the coefficient matrices of the governing differential equations of
equilibrium were determined for the mono-symmetric cross-section by first generating and
plotting the generalized strain fields. Technique of diagram multiplication was then used in
determining the elements of the coefficient matrices from the generalize strain mode
diagrams. The substitution of the determined coefficients back into the governing equations
of equilibrium resulted to oneuncoupled ordinary differential equation representing flexural
behaviour and apair of two interactive (coupled) ordinary differential equationsrepresenting
the flexural-torsional (FT) behaviour. These equations were then solved using direct
closed-form approach for the uncoupled flexural behaviour and Varbanov' strigonometrical
serieswith accelerated convergence (TSWAC) for the coupled flexural-torsional behaviour.
Theresultsarepresentedin form of stability matricesand thenumerical resultsare presented
on tables (1) and (2). Comparison of the two tables results indicates that the flexural
behaviour will control design.

Key Words: Mono-Symmetric Section, Stability, Thin-walled Column, Trigonometrical Series
with Accelerated Convergence, Vlasov's Theory.

NOTATIONS: of the cross-section.

U,(X): Longitudinal displacements function ¢,(9): Generaizedlongitudinal strain fields
due to flexure about oy- and oz-axes due to flexure about oy- and oz-axes,
and warping due to torsion about and warping torsion about ox-axis.
OX-axis. @,'(s): First derivative of the longitudinal

V. (X): Transverse displacements function strainfieldswith respecttothe profile
due to flexure about oy- and oz-axes, coordinate, S

torsion about ox-axis, and distortion P (s): Generalized transverse strain fields
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due to flexure about oy- and 0z-axes,
torsion about ox-axis and distortion
of the cross-section

P,:  Critical buckling load
S Profiles coordinate
E: Modulus of elasticity
G: Modulus of rigidity

T(X, S): Shear stress
o(x, s): Normal stress

INTRODUCTION

Thin-walled structurescompriseanimportant
proportion of engineering construction with
areas of application becoming increasingly
diverse, ranging fromaircrafts, bridges, ships,
box girders, box columns, industrial
buildings, and warehouses. They consist of a
wide and growing field of engineering
applicationswhich seek efficiency in strength
and cost by minimizing material. Theresultis
a structure in which the stability of the
components, that is, the“thinwalls’ is often
the primary aspect of behaviour and design
[1].

The first serious advancement in the
understanding of stability for elastic
structures was made by Euler (1707 — 1783)
during his work on axially compressed rods
called elastica models [2]. According to
Schafer and Andny [3], cross section
instability greatly complicates the behaviour
of thin-walled members. While significant
advances have been made in thin-walled
structure research through experimental
testing and theoretical work, new research is
still required since many important questions
remain partially or controversially answered,
such as torsional buckling, distortional
buckling and overall stability [4, 5]. Vlasov
[6] was thefirst to substantiate the existence

€, Longitudinal strain
Vs Shear strain

: Moment of inertiaabout the oy - axis
Moment of inertiaabout the oz - axis
l,..  Warping constant
w: Warping function

of distortional and warping stresses in
thin-walled closed structures and he
subsequently formulated a theory for their
anaysis. Study has shown that strict
application of Vlasov's displacement model
for the analysis of thin-walled closed
structures leads to a large number of
kinematic unknownsin form of displacement
functions. Varbanov [7] has shown that by
using generalized strain fields on Vlasov's
equation, the number of kinematic unknowns
can bedrastically reduced. This paper reports
an investigation into the stability of axialy
compressed single-cell thin-walled column
with mono-symmetric non-deformable cross
sections. The study involved a theoretical
formulation based on Vlasov's theory with
modification by Varbanov and implemented
the associated displacement model in
analyzingflexura andflexural-torsiona (FT)
buckling modes (Ezeh [8]).

The main motivation for thisstudy is
the need to derive simplified stability
matrices for readily flexural and
flexural-torsional (FT) buckling analysis of
single-cell monoosymmetric thin-walled
columns.

ENERGY FORMULATION OF THE
EQUATIONS OF EQUIUBRIUM:
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Figure 1 shows one of the cross sections of a
single-cell mono symmetric thin-walled
closed column under consideration. Using
Lagrange's principle, Vlasov [6] expressed
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x = Longitudinal (length
coordinate) ¥

y,z = transverse plane
coordinates.

s = profile coordinate in
-z plane.

g tj——|
Figure 1: Siﬂgle-cgll mono-

symmetric cross section of the¥
column.

the displacements in the longitudinal and
transverse directions, u(x, s) and v(x, s) of a
thin-walled closed structurein seriesform as
follows:

u(x, s) = E;nzl U;(x) @;(s)

v(x,s) = EZ=1 V() wg(s)

Where, U, (X) and V, (x), are unknown
functions which express the law governing
the variation of the displacements along the
length of the column. o, (s) and U, (s) are
elementary displacements of the column
(longitudinal and transverse strain modes)
respectively out of the plane
(m-displacements) and in the plane
(n-displacements).

The potential energy of an axialy
loaded thin-walled closed structure is given
by:

m,=S-W 3
For the structure under consideration, the
strain energy and work done by the external
load are given by:

1
SzELEW@Nm@”mm@W%>

2
M
L) P (
EI

W= %foSPv/é,S)dxds

Substituting equations (4) and (5) into
eguation (3), we obtained:

P - % Lf S{[G(an)e(x,S) * T(x, 5)V(x,5)1 15)

2
M
+M—Pv/2 }dxds

EI (x,5)
Using congtitutiverelationin equation (6), we
obtained:
(1)
62 ‘52
_ 1 (x,5) . (x,5)
CREITIE (G ae el KO
2
M
+ (*x,5) —Pv/2 dxds
EI (x,5)

Using equations (1) and (2) and basic stress-
strain relationships of thetheory of elasticity,
the expressions for normal and shear stresses
became [6 -10]:

o(x,s) = Ee, = EZZ’ZI Ul./(x) ®;(s)
m /
©(x,5) = Gyyg = G[Eizl U;i(x) ¢;(s)

S N T0)
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Thebending moment induced by distortionis
given by:

M(x,5) = Yo _1 My(s) + V@)
Substituting equations (2), (8), (9) and (10)

into equation (7) and simplifying, we
obtained:

Tp ——fL{ Y Y 4y Ui Ui +

FGYLL XL biUi@Uie) +
CGY Y U@V +
PG Yk U@ V@ +
LY X @V ¢
FEYy 1 X

PYR_ Y hkeri(x)V:(x)}dx

where

ajj = fS(Pi(S)<Pj(S)t(S)dS

St Vi) V0 (x) -

by = b = [ O@ds

- [ @OV OHs)ds

o
~l,
~

1l

~v~

Cik = Clj = fS (s)wk(s)t(s)ds
Mpp = My = fka(s)wr(s)t(s)ds

hig = hyp = qu/k(s)q/r(s)ds

Equation (11) shows that the total potential
energy m, isafunctional of the form:
A
=F(U;,Up, ViV, U,(le,Vk, V)
The total potential energy functional m, has
stationary (extreme) values if the following

Euler-Lagrange differential equations are
satisfied:

oF _d(oF) _,
oU; dx| 5y/

J
OF _dfoF) _,
| 5!

Using equations (14) and (15) on equation
(11) and noting that for thethin-walled closed
column under axial compression, m=3 and n
= 4, we obtain the governing equations of
equilibrium as:

3 3 /1 3 3
'Yzl‘zl Ejzl a;U; (x)-El-zl Ej=1 bijUi(x)

_E]il Shot RV = 0
(11)

E,_ Er chrU(x)+Ek 12, 1 (Mg -

Ek 1Er 1 Sk V() =0
(17)

Lo vy
Gk’)k

GENERALIZED STRAIN FIELDS AND
ELEMENTS OF COEFFICIENT
MATRICES:

The longitudinal strain modes ¢;(s) and the
transverse strain modes qu(sgE onsist of
bending about oy-axis, bending about
oz-axis, warpinginthelongitudina direction,
pure rotation about ox-axis and distortion of
the cross section and they are chosen as

ng; IAN SOL;C NA %)fE%kg%I%r(fgldg NO.2, SEPTEMBER 2009



62 N.N. OSADEBE and J.C. EZEH

follows: Using the indirect method [9], the strain
901(9) =Yg PoAS) =74 9s(9) =y () (18) modes, their derivatives and the warping
propertiesweredeterminedfor thesingle-cell

/ / ~ mono-symmetric section and presented in
vils) = P1(s) T V(s)’ form of diagramsin figure 2. The technique

/ / of diagram multiplication was used on the
Yo(s) = Pogs) = Zs)> V3Gs) T h(s);> strain field diagrams shown in figure_ 2 to

/ / determine the elements of the coefficient
yy(s) = P3(5) = Pa(s) matrices as follows:

(19)

* a 0.505E1 a
a

Fig. 2: Generalized strain modes for single-cell, mono-symmetric section
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a;=a; = [s@(9) ¢ () t(9)ds
a11 = [s9,(S) ¢, (9) t(s)ds = 16.435a’t
= [@,(5) @,(9) t(s)ds = 7.107a’

a =8y = [s01(9) 9,(9) t(9)ds=0
Q3= Ay = [s91(S) ¢5(9) t(s)ds =0
B3 = Ay = [s91(S) ¢5(9) t(5)ds =0

= [s@3(S) @5(9) t(s)ds = 0. 115a°t
b b = [s9i(8) @} (5) (s)ds

f s@1(9)-9'1(9) t(s)ds = 6at
b =[s95(9) ¢ 5(9) (s)ds = 3.574at
b12 =by, =] S(P 19 P t(8)ds=0
bys = [s@) @' t(S)ds = 0.194at
Bys = [s95(S) ¢%5(5) t(s)ds=0
by = [s@5(S) @'5(9) t(S)ds = 0.234a%
Cr =Ci = [s@i(5) Y, (5) U(s)ds
Cll = [s01(9) Y. (9) t(s)ds = 6at

= [s95(S) W, (s) t(s)ds = 3.574at

C =Cy =[50 (S) Y, (9) t(s)ds =0

= [s91(9) W5 (9) t(s)ds = 0.86a’t
Czs = [s95(S) W5(s) t(s)ds=0

= [s91(5) W4 (9) t(s)ds = 0.194a
024 [s95() Wy (s) t(s)ds=0

= [s05(8) Ys(9) t(9)ds = 0.271at
034 = [s95(9) U, (9) t(s)ds = 0.234a’t
M, =My = [sWe(S) Y, (9) t(s)ds
My, = [sW, () Wy (9) t(s)ds = Bat
My, = [sW1 () Yo (9) t(s)ds =0
Mys = [sP1 (S) W (S) s)ds = 0.86a’t
my, = [sW, () U, (s) t(s)ds = 0.1942%
my, = f sL|Jz (9) U, () t(s)ds = 3.574at
My, = = [sP,(s) Y5 (s) t(s)ds=0
mm m4z [sW2(9) Wy (s) t(s)ds =0

= [sW3(9) W5 () t(s)ds = 14.562a’t
%4 = [sW3(9) W, (9) t(s)ds = 0.271a’t
My, = [sW,(S) W, (S) s)ds = 0.234a’t
he =y = [sWi () U, (9)ds
hyy = [sWy(S) Y, (9ds= ™1/ = 6a
hy, = hy = [sW,(S) Y,(5)ds=0
hys = [sU, (S) Y5 (s)ds = 0.86a°
hy, = [sW, () W, (s)ds = 0.194a°

h,, = [sW, () W, (s)ds = 3.574a
hys = [sW,(S) Y5 (s)ds=0

oy = [sW,(S) Y, (s)ds=0

hys = [sW5 () Y5 (9)ds = 14.562a°
hay = [sW5(S) Y, (9)ds = 0.271a°
hy = [sWs(S) W, (9)ds = 0.234a°

Mk(S)M (S)
Skr = Srk =+ f
M4(S)M4(S) _ 0536611
S44 = — f .
But, 7 =3/12 for all the plates
05366 > _ 0.045t%
- 544 = — =
a 12 a

DERIVATION OF BUCKLING
EQUATIONS IN TRANSVERSE
DISPLACEMENT QUANTITIESV, (X):

When the cross section of the column is non-
deformable, that is distortion is not allowed,
the governing equilibrium equations (16) and
(17) were reduced to the following matrix
forms:

aj; 0 0 bll 0 b13 Up
v 0 ap 0 Uz//‘ 0

0 0 a33)| s [31 0 £33]|U3

b22 0 U2

c11 0 13
-10 ¢p O V2/ =0
31 0 ¢33
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Eliminating U, (x), U5(x) and their derivatives
/] first from equation (22(a)) and (23a&c) and
4 second from equations (22(c)) and (23a&c)
/ respectively, we obtained the following pair
0 e 0 ||u,)|+| 0 k2 0 }|y,'| = of homogeneous ordinary differential

uations;
31 0 e33|| 4| k31 0 k33| 4| &

U V
I 3- 3- alVl +a2V3 —blVl b2V3{/—0

c11 0 13 k11 0 k3

Expanding equation (20), we obtai ned: . "
Yaiq U1 —bllUl b13U3 - cllVl/ 13 V3 O’Vhere 3 = Yay; CisKis — Yay Cyskyy;
= Yau; Ci3 Kes — Y Cos Ky
... (22(9)) = Yags g Kyy — Y85 Cyy Kay;
/ / a4 = Yags 13 K3 — Y Cyy Kos;
Yayy U2 —-byrUy -9y V2 =0 b, = by, Cizksy — 0y Cyy kl(ﬂ@):m Kiq

2 2
, p -b13c11k31 * €133 ~€11¢935
U bay Uy-braa U 1% V=0
Y43353 TP31717033Y37631 7173373 b, = by €15 Kes — byy Cag Kz + D15 Cis ki

- (22(c)) -byyc11kry tc11c12C —c3'
Expanding equation (21), we obtained: 3371E33 TRIPI3533 513
/ // b3 = b13 C13 k3l - b13 C33 kll + b33 Cl3 kll
011U1+C31U3+k11V1 +k13V3 =0 (23(@) o)
~b33c11k31 +Ce11€13¢€33 ~ €135
) U2 +kyo V2// =0 b, = D13 Cy5 Keg 23)Fas Kis + D35 Cia Ky
2
/ // ~b33c11k33 * 011033} ~€13¢33-
€13 U1+C33 U3+k31 Vl +k33 V3 =0 (©)

p DETERMINATION OF STABILITY
where, k11 = (mll - Ehll) ; MATRICEStC.

The general solution of the flexural mode
Eliminating U,(X) and its derivatives from  €gquation (24) isgiven by:

equations (22(b)) and (23(b)), we obtained: V,=c¢, cosnx+c,sinnx+c;x+c,  (26)

p The arbitrary constants, ¢, .. ¢, were

v en?v,y =0 evauated (@f) the different boundary

conditions as follows:
) (1) Hinged-Hinged condition:
) 022 - b22k22 V, = O(X =0, |);
where, n° = | ———
Yax k) a?v,
=0(x =0,)
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(i) Clamped-Hinged condition:

Vy = 0Gc = 0,1);
av

2 ok =0)
dx |
a*v,

S
2 ,

(@iii)  Clamped-Clamped condition:

dV2
Vy =0; —= =(x =0,])

Applying the boundary conditions (27), (28)
and (29) to equation (26) and noting that for
nontrivial solutions or nonzero values of the
constants, the determinant of the coefficients
of ¢, ... ¢, must vanish, we obtained the
following:

(1) Hinged-Hinged conditions:

1 0 0 1]
1 0 00
cosn/ sinn/ [ 1

(cosn/ sinn/ 0 O]

(i) Clamped-Hinged conditions:
1 0 0 1]
0 n 10
cosn/ sinn/ [ 1

(cosn/ sinn/ 0 O]

(@iii)  Clamped-Clamped conditions:

1 0 0 1]
0 10
| =0
cosn/ sinn/ [ 1
| -nsinn/ mcosn/ 1 0

Equations (30), (31) and (32) arethe stability

matrices for equation (24) representing the

flexural buckling modes for the different

boundary conditions. Expanding equations

(30), (32), a;cgjz% 2), we obtained the critical
S

buckling lo r the respective boundary
conditions and for n = 1 as follows;

] 02

11 G
P » = m —_
cr(i 11
@ 22 i
*yayp +b1q
f29)

2

‘1 G

Pepii) = |mM11 -

20.19 2
S *vayy +by 1

I
2
Periity = |m11 - ‘11 G
criin
(30) 2 11 7011

NUMERICAL STUDY:

A numerica study was performed for a
single-cell mono-symmetricthin-walled stegl
box column with the following parameters:
E =210 x 10°MN/m? G =81 x 10°MN/m?, L
= 4.5m, a = 0.0d@1)and t = 0.0005m to
0.02m.

Thecritical |oads associated with theflexural
modes were evaluated for the three sets of
boundary conditionsand theresults presented
on table 1.

Equations (25(a)) and (25(b)) were
solved simultaneoudy(38sing Varbanov’'s
method of trigonometrical series with
accelerated convergence (TSWAC) [11].
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al Vlw + a2 V;v - bl Vl// - b2 V;/ =0
a3 Vllv + a4 V;v - b3 Vl// - b4 V;/ =0

Equations (25(a & b)) were integrated
conveniently using TSWAC. We seek for the
unknown functions in the form:

V() = V() +v1(x)

V3(x) = V3(x) + v3(x)

In the assumed solutions, the auxiliary
functions V7 (x) V3(@hd

I71(x) = AO +A1x +A2x2 +A3x3

173(x) = BO +le +B2x2 +B3x3

The supplementary functions v,(x) and vy(x)
aregiven as.

vi(x) = En _1 91p Sinoy,x

v3(x) = En _1%n sina,,x

where, a, = =

The constants A,, ... A; and B, ... B; were
obtained from the boundary conditions and
the coefficients of Fourier a,, and a,, are
defined from the given system of differential
equations. Differentiating equation (33) four
times and substituting into equations (25
a&b), we obtain:

/1 /1

(25(a)).. (36a)

=i =i S =1/
Pl(x):_al Vll(‘;) - a2V3lv Agl%{x) + b2V3(x)

e _/
P3)== a3V () ~ 94V3(x) * 0371 (x) * D4V 3y

... (36(b))
The boundary (@nditions were then
introduced as follows;

Case 1: Hinged-Hinged Column:

AT B0 = V1(0); V1) =0 = V1)
>

/I ;) _//
1072 "0y "1y~ °3=4)V1 (@)

730) =0 = 300y 73y =0 = V3(1)
}

/I ;g _//
300) =0 = 300y 32) =0 = V31

Differentiating the auxiliary equationstwice,
we obtained: (35)

Vl(x) = Al +2A2x +3A3x N

=//
Vl(x) = 2A2 + 6A3x

V3(x) = By +2Bzx +3B3x ;

—//
Y3) J
bstituting equations (37a) and (37b) into

= 232 + 6B3x

iv iv
V1) * 92300 ~1V1(x) TD2V3(x) = P1(xhquations (25a&b) and (38), and simplifying,

/1

e obtained:

a3vlv +a4vlv —b3v// - byv = P3 “A=A=A.=0
1(x) 3(x) 1(x) 3(x) (x 1 TAEA
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B,=B,=B,=B=0

= V@) = V3 = O

i v iv b /1 b 7 0
(399)

iv iv /! //

(39Db)
Differentiating equations (34) four timesand
substitutinginto equation (38(a)) and (38(b)),
and simplifying, we obtained:

o0 2 2
En=l {(al o, + bl)analn +

+(a2ai +b2)aia3n} sina,x = 0
00 2 2

En=1 {(a3an + b3)ana1n +

+(a4ai +b4)aia3n} sina,x = 0

Equation (40) and (41) will aways be
satisfied in the coefficients of sin o x are
equated to zero, that is:

2 2
(al (ln + bl)aln + (a2(xn + b2)a3n =0

2 2
(a3an + b3)a1n + (a4(xn + b4)a3n =0

Equation (42) and (43) can be written in the
following matrix form:

2 2
(a1 o, + bl)(azan + b2) aiy 0
a3n B 0

2 2
(a3(xn +b3) (a4(xn +by)

Equation (44) will have nontrivial solutions
if the determinant of the matrix of the

coefficients of a,, and a,, is zero.
o ﬁlwfﬁpﬁ(ﬁ:@lz “i +by)
= =0
2 2
(a3 (ln + b3) (a4 (ln + b4)

Equation (45) is the stability matrix for the
system of equations (25a& b) for the hinged-
hinged boundary conditions. Theleast critical
loads are obtained when n = 1.

2 2
(al (11 +b1) (a2a1 +b2)

Hence, =0

2 2
(a3a1 +b3) (a4a1 +b4)

Substituting the expressions for a,, a,,a;, a,,
b,, b,, b;, and b, into equation (47) and
expanding, we obtained: (40)

ERCER

where,
4 2 2 (4) 2
A =(0yv"a11a33 +<117011g33 ta~yayzbyy
2 2 2
+b11b33 -by3) (11733 - hy3) (c11¢33 - ¢13)
4 2 2 2
B = (0yv"a11a33 +ayya1 b3 yaz3 by
2
+b11b33-b33)@my3h13-m1{ASY-m33h11)(c11¢33 -
2 2 2 2
013) +(alya11 +b11)(013h33 +c33h11 -
2 2
Dcl3033h13)(011033 - 013) + (alya33 +
(44)

2 2
b33)(c11 733 +e13h11 ~2e11€13h13)(€11€33 -

2 2
c13) *2b13(c3h13 + €11€33h13 ~€13¢33h11 -
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2
c11€13h33) * *(c11¢33 ~¢3)

42 2 2
C = (ayy"ajya33 +ayyay1 b33 +a”yaz3byg

2 2 2
+b11b33-b33)(my m33-my3) * (011033‘01&?l

2
+o,vQarqc13¢33m13 +2a33¢11¢13m13

2 2 2
~da11¢13M33 ~A11¢633M]11 ~4933¢€117M33

2 2
—a33cyymi(e11¢633 —¢q3) + (2b11c13¢33

Case 3: Clamped-clamped column:

ng the clamped-clamped boundary
nditions on the auxiliary and
supplementary functions of the assumed
solutions and also on equations (36(a) and
(36(b)), we obtained the stability matrix for
the system of equations (25a) and (25b) and
for the clamped-clamped boundary
conditions to be:

m13

2 2
(alal +7\,4b1) (a1a2 +7\,4b2)

2 2
—b11c13m33 ~by1ey3my +2b33c11¢33m13 =0

2 2 2
b33cllm33 —b33cl3m11)(cllc33 _613) tw h e r €

2
((11613 + 7»4b3) (al ay + 7\,4b4)

1=

2
(b13(c11€13m33+ €13¢33m11 ~€11€33m13 ~ o = (%) Ay - (1 an%%)
T

2 2 2
c13m13)(€11¢33 ~ €13) ~ 3c11¢13¢33(€11¢33Substituting the expressions for a,, a,,a;, a,,

2 3 6
€13 €11933 €q3
Using the values of the coefficients as
obtained earlier in equation (47) and the
numerical parameters as used earlier, we
obtained table 2 as the variation of critica
load with respect to the wall thickness.

Case 2: Clamped-hinged column:

Using the clamped-hinged boundary)
conditions on the auxiliary and
supplementary) functions of the assumed
solutions and also on equations (36(a) and
(36(b)), we obtained the stability matrix for
the system of equations (25 a&b) and for the
clamped-hinged boundary) conditions to be:

2 2
((11 a +7»3b1) ((11 an +7\,3b2)
=0

b,, b,, b,, and into equations (48) and (49)
and expanding and substituting the numerica
parameters, we obtained the critical loadsfor
the respective thicknesses as shown on table
2.

RESULTS AND DISCUSSION:

The stability matrices representing the
flexural behaviour of the column were
derived as equations (30) for the
hinged-hinged, (31) for the clamped-hinged
and (32) for the clamped-clamped boundary
conditionsrespectively. Thenumerical results
for the three sets of boundary conditions are
presented on table 1. It is obvious from the
results that the flexural buckling strength
increased by about 100% from hinged-hinged

(48)

2 2
(0‘1 az +\3bp) (al a4 +A3b4)| NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 28 NO.2, SEPTEMBER 2009
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to clamped-hinged boundary conditions and
about 90% from clamped-hinged to
clamped-clamped boundary conditions.

Thestability matricesrepresentingthe
flexural-torsional (FT) behaviour of the
columnwerederived asequations(46) for the
hinged-hinged, (48) for the clamped-hinged
and (49) for the clamped-clamped boundary
conditionsrespectively. Thenumerical results
are presented on table 2. The results show
that the critical buckling loads for each wall
thickness are nearly the same for all three
sets of boundary conditions. This result
confirms the work of the second author that
the nature of the boundary conditions has
little or no effect on torsional buckling
strengths. The very high values of the
flexural-torsional (FT) buckling strengths
show theoverriding influenceof thetorsional
behaviour over flexural behaviour under
interactive action.

CONCLUSION

This study has simplified the stability
analysis of non-symmetric cross section
columns by deriving series of stability
matrices for both flexural and
flexural-torsional (FT) behaviour. The
availability of these stability matriceswill not
only ensure easy application by designers but
will also ensure safe design. Comparison of
tables (1) and (2) shows that the flexural
torsional (FT) buckling load are far higher
than the flexural buckling loads. These high
differencesin critical buckling loadsindicate
that the flexural behaviour will control the
design for each set of boundary conditions.

NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 28 NO.2, SEPTEMBER 2009

Table 1: Flexural critical buckling loads
for the respective thickness for the three
sets of boundary conditions

Thickness|Critical buckling loads (MN)
t(m) Hinged- |Clamped- |Clamped-
Hinged [Hinged |Clamped
0.02 25646 |51.596 |97.933
0.0175 |22.44 45.146  (85.691
0.015 19.234 (38.697 |73.449
0.0125 |16.029 (32.247 |61.208
0.01 12.823 |25.798  [48.966
0.0075 [9.617 19.348 [36.725
0.005 6.411 12899 [24.483
0.0025 |(3.206 6.449 12.242
0.001 1.282 2.580 4.897
0.00075 |0.962 1.935 3.672
0.0005 [0.641 1.290 2.448

Table 2: Flexural-Torsional (FT) critical
bucklingloadsfor therespectivethickness
and for the three sets of boundary
conditions

Thickness|Critical buckling loads (MN)
t(m) Hinged- |Clamped- |Clamped-

Hinged [Hinged |Clamped
0.02 1611.990 |1612.136 |1611.823
0.0175 |1410.491 (1410.619 |1410.345
0.015 1208.992 |1209.102 |1208.867
0.0125 |1007.494 (1007.585 |1007.389
0.01 805.995 [806.068 [805.911
0.0075 |604.496 (604.551 |604.434
0.005 402.997 |403.034 |402.956
0.0025 |201.499 (201.517 |201.478
0.001 80.599 |80.607 [80.591
0.00075 |60.450 [60.455 |60.443
0.0005 }40.300 [40.303 }40.296
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