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Abstract 
 Stiffness coefficients which in essence are elements of stiffness matrix of a uniform beam 
element are derived in this work from first principles using elastic curve equation and 
initial value method. The obtained initial value solution enables exact values of stiffness 
coefficients, fixed end moments and shears as well as displacement (deflection and 
rotation) of any given beam element under arbitrary lateral load to be evaluated. 
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1. Introduction 
It is a common knowledge that the force F 
generated in an elastic beam is directly 
proportional to the induced displacement   
(deflection or slope) in the same beam, [1]. 
Consequently,   
F = K                                                                (1) 
where K is a constant which measures how 
stiff or resistant the elastic beam is to the 
induced displacement. The constant K for an 
isolated displacement is called stiffness 
coefficient and for an array or vector of 
displacements  it is called stiffness matrix, [2]. 
If in equation (1) the displacement   is 
assigned a unit value, we obtain that  
F = K                                                                (2) 
Consequently, K is numerically equal to the 
force necessary to induce a unit displacement 
in the structure. 
Stiffness coefficients are indispensable 
ingredients for displacement analysis of 
redundant beams and other redundant 
assemblages such as continuous beams, 
indeterminate frames etc [3], [4], [5]. They 
also form an important tool for finite element 
analysis of beam systems [6]. 

Traditional means used to obtain these 
coefficients considered a fixed ended uniform 
beam element as a system with two degrees 
of indeterminacy. By formulating the 
compatibility equations using flexibility 
approach the stiffness coefficients are 
obtained as fixed end forces (moments and 
shears) necessary to induce a unit 
displacement i.e., unit deflection or slope at 
the beam’s fixed end. Though this approach 
equally gives exact results, it demands 
evaluation of flexibility influence coefficients 
before solving the compatibility equations. 
In this present work, the equation of the 
elastic curve of a uniform beam element is 
solved using initial value method to obtain a 
set of solutions for displacement, slope, 
bending moment and shear force in terms of 
initial values of these quantities i.e., their 
values at x = 0, as unknown parameters. With 
this set of solutions the stiffness coefficients 
of any given beam element with stipulated 
end conditions are obtained. The advantage 
of this present formulation is that fixed-end 
moments and associated shear forces due to 
any arbitrary loads can be obtained, 
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circumventing the numerical work involved 
using traditional method. 
 
2. The Elastic Curve Equation 
Consider an ordinary beam element under 
the action of generalized load as shown in 
Fig.1. The elastic curve y(x), consequent upon 
the action of the imposed load, is given by;  

''( ) ( )EIy x M x                                                    (3) 

where, sagging moments are considered 
positive,  
EI = Flexural rigidity, and  

''y  denotes second derivative of the elastic 

beam curve with respect to x. 
After two successive differentiations with 
respect to x we obtain, 

( ) ( )ivEIy x q x                            (4) 

In the absence of lateral load q(x), the 
homogeneous equation of elastic beam curve 
is  

( ) 0IVy x                                                (5) 

By successive integration of equation (5) we 
obtain the following expressions; 

1'''( )y x C                                                              (6) 

1 2''( )y x C x C                                 (7) 
2

1
2 3'( )

2

C x
y x C x C                                               (8) 

3 2

1 2
3 4( )

6 2

C x C x
y x C x C                                 (9) 

where,  
C1, C2, C3, and C4 are arbitrary constants of 
integration which can be determined using 
initial value   methods as follows. 

 
Fig.1 Beam element under generalized load 

 
Let the initial conditions for determination of 
the coefficients be stipulated as follows. 

0(0)y y ,  
0'(0) (0)y                                    (10) 

0(0)M M ,     
0(0)Q Q                                         (11) 

 Substituting equations (10) and (11) into 
equations (6) to (9) , taking note of equation 
(3)  we obtain that  

4 0C y ,  
3 0C  ,  0

2

M
C

EI
  ,    0

1

Q
C

EI
  . 

Consequently, 
2 3

0 0
0 0( )

2 6

M x Q x
y x y x

EI EI
                                 (12) 

2

0 0
0( )

2

M x Q x
x

EI EI
                                             (13) 

0 0( )M x M Q x                                      (14)  

0( )Q x Q                                                                 (15) 

 
Equations (12) to (15) constitute the initial 
value solution for the elastic curve. They are 
used as shown below, to obtain the stiffness 
coefficients of ordinary elastic beams. 
 
3. Stiffness Coefficients of Elastic Beams 
In the development that follows, the set of 
initial value solutions is applied to elastic 
beams with various fixed end conditions to 
obtain their stiffness coefficients.     
 
3.1 Case 1; Fixed ended beam element with 

induced unit deflection at x = 0 

 
Fig. 2 Fixed ended beam element with induced 

unit deflection at x = 0 
 
In this case, 

0 1y  , and 
0 0    

At x =L;  y(L) =0 , ( ) 0L  , ( ) LM L M  and 

( ) LQ L Q  

 
Using  equations (12) and (13) we  obtain 
that; 

2 3

0 0 0
2 6

M L Q L

EI EI
                                                (16) 

2

0 0 0
2

M Q L

EI EI
                                                   (17) 

 
Solving equations (16) and (17) yields 

0 2

6
;

EI
M

L
   

0 3

12EI
Q

L
  ;

2

6
;L

EI
M

L
   

3

12
L

EI
Q

L
  

The fixed end moment diagram is shown in 
Table 1. 
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3.2 Case 2: Fixed ended beam element with 
induced unit rotation at x = 0 

 
Fig.3 Fixed-ended uniform beam with induced 

unit rotation at one end 

In this case, 0 0y  , and 0 1   

Using equations (12) and (13) we obtain that; 
3 2

0 0 0
6 2

Q L M L
L

EI EI
                                               (18) 

2

0 01 0
2

M L Q L

EI EI
                                                    (19) 

Solving equations (18) and (19) above yields, 

0 0 2

4 6
;

EI EI
M Q

L L
   , 

2

2 6
;L L

EI EI
M Q

L L
   

The plots of these moments and shears are 
shown in Table  1 
 
3.3 Case 3: Propped cantilever with induced 

unit deflection at x = 0 

 
Fig.4 Propped cantilever with induced unit 

deflection at x = 0 

In this case , 0 1y  ,  0 0   

At x = L; y(L) = 0, M(L) = 0, ( ) LQ L Q  

Substituting these into equations (12) and 
(13) we obtain that, 

2 3

0 01 0
2 6

M L Q L

EI EI
                       (20) 

0 0 0
M Q L

EI EI
                               (21) 

Solving gives 

0 02 3

3 3
;

EI EI
M Q

L L
   , 

3

3
0L L

EI
Q M

L
 

 

The moment diagram is shown in Table 1. 
 
 
 
 
 
 

 
3.4 Case 4: Propped cantilever with induced 

unit rotation at x = 0 

 
Fig. 5: Proposed cantilever with induced unit 

rotation at x=0 
 
In this case, 

0 00, 1y    

At x = L ; ( ) 0Ly L y  ; ( ) 0LM L M  ; 

( ) LQ L Q  

From equations (12) and (13) we have 
2 3

0 0

2 6

M L Q L
L

EI EI
                   (22) 

2

0 0 0
2

M L Q L

EI EI
                    (23) 

Solving equations (22) and (23) gives 

0

3EI
M

L


;        
0 2

3EI
Q

L
    and 

2

3
L

EI
Q

L
 ;    0LM   

 
4. Determination of Fixed End Moments of 

Laterally Loaded Beams Using Initial 
Value Solutions of the Elastic Curve  

In the foregoing presentations, we considered 
only the homogenous solution which enabled 
us to obtain stiffness coefficients. In the 
derivations that follow it is shown that the 
initial value solution can be used, in the face 
of imposed loads, to obtain fixed end 
moments and shears. 
 
4.1 Case 1: Fixed ended beam with a point 

load 
We consider a uniform beam of length L 
subjected to a lateral point load P as shown in 
Fig. 6. Equations (12) to (13) constitute the 
homogenous solution when the imposed 
lateral load is absent. In order to obtain a 
particular integral due to the imposed load 
we consider the additional effect of the 
imposed load on the beam uniform element. 
The imposed point load P, Fig. 6, has the 
similitude of shear and its particular integral 
on the displacement y(x), slope ( )x , moment 

M(x), and shear Q(x), can be obtained by 
considering the imposed load P as the 
parameter Q0. However, the origin is 
seemingly displaced to the point of 
application so that initial distance which 
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measured x  in the homogeneous solution will 
now measure (x-a) distance. 
Again the parameter Q0 has opposite 
direction with P, thus by introducing P with a 
negative sign and changing all distances x to 
(x-a) the particular integral is obtained as 
follows.   

 
Fig.6: Fixed ended beam with a point load 

 

   

 

3 2

,
6 2

;

p p

p p

P x a P x a
y

EI EI

M P x a Q p


 

 

    

                    (24)          

where the subscript ( p ) indicates the 
particular integral of the indicated 
parameters. 
Using these expressions, a set of general 
solution is obtained as follows.  

2 3

0 0
0 0( )

2 6

M x Q x
y x y x

EI EI
    

 
3

6

p x a

EI




             (25)  

2 2

0 0
0

( )
( )

2 2

M x Q x p x a
x

EI EI EI
 


                                (26)  

0 0( ) ( )M x M Q x P x a                                     (27)  

0( )Q x Q P                                                         (28) 

 
 In order to obtain fixed end moments and 
shears under the action of the point load, we 
note that the displacement and slope at both 
ends of the beam are all zero. Thus, 
 (0) 0y  , (0) 0  , ( ) 0y L  , ( ) 0L             (29) 

 Consequently, expanding equation (29) and 
keeping in view of equations (25) and (26) 
we obtain that; 
    

2 3 3

0 0

2 6 6

M L Q L Pb

EI EI EI
                     (30) 

and     

 
2 2

0 0

2 2

M L Q L Pb

EI EI EI
                    (31) 

 
Solving yields, after simplification; 

2

0 2

Pb a
M

L
  ,        2

0 3

( 2 )Pb L a
Q

L


  

Substituting these values into equations (27) 
and (28) we obtain: 

    
    

  
  and   2 3

3 2
( 2 )L

Pb L
Q L a

L b

 
   

 

 

4.2 Case 2: Fixed ended beam with moment 
at any arbitrary  point along the beam 
 
 
 
 
 
 

Fig.7 Fixed ended beam with moment at 
arbitrary point on the beam 

 
In this example the parameter M has 
similitude with Mo in the homogeneous 
solution and is of the same sign (direction). 
Therefore by replacing Mo with M and 
changing x to (x-a) in the initial value 
solution, equations (12) to (15), the 
particular integrals are obtained as follows.  

  
2( )

2
p

M x a
y

EI


  ,   

      

  
,

pM M ,  0pQ   

The general solution becomes 
2 2

0
0 0

( )
( )

2 2

M x M x a
y x y x

EI EI



    

3

0

6

Q x

EI
   (32) 

0
0

( )
( )

M x M x a
x

EI EI
 


   

2

0

2

Q x

EI
                   (33)   

0 0( )M x M M Q x                     (34)  

 
0( )Q x Q                                                         (35) 

   
 As in case 5, the deflection and slope at both 
ends of the beam are all zero. Therefore 
expanding equation (29) in view of equations 
(25) and (26) we obtain that;  

2 32

0 0 0
2 2 6

M L Q LMb
           (36)  

and 
2

0
0 0

2

Q L
M L Mb               (37) 

 
Solving equations (36) and (37) gives, after 
simplification; 
 

0 2
(2 )

Mb
M a b

L
  ,       

0 3

6Mab
Q

L
    

 
Substituting into equations (34) and (35) 
gives, after simplification,  

2
(2 )L

Ma
M b a

L
  ,       

3

6
L

Mab
Q

L
   

 
4.3 Case 3: Fixed ended beam with UDL 

P 

L

l 

b a 

 

 
ML 

QL 
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b a 

yo =0 

θo =0  

M

l 
QL 

ML 
M0 

Q0 
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Fig.8 :Fixed ended beam with uniformly 

distributed load 
In the case of uniformly distributed load, the 
particular integrals are obtained  as follows; 
Let 

py , ,p  
pM  and 

pQ     be the particular 

integrals. 
3

qu
dy =- dup

6EI
    

3

06

x

p

q
y u du

EI
     4

/ 24qx EI  

2

2
p

qu
d du

EI
   , 

3
2

0
2 6

x

p

q qx
u du

EI EI
     

pdM qudu  ;  
2

0 2

x

p

qx
M q udu     

pdQ qdu  ;  
0

x

pQ q du qx       

 Superimposing these particular integrals to 
the homogeneous solutions gives the general 
solutions, equations (38) to (41). 

2 3 4
0 0( )

0 0 2 6 24

M x Q x qx
y x y x

EI EI EI
                        (38)  

2 3

0 0
0( )

2 6

M x Q x qx
x

EI EI EI
                                 (39)   

 
2

0 0( )
2

qx
M x M Q x                                           (40)  

0( )Q x Q qx                                                      (41) 

 
The displacement and slope at both ends of 
the beam are zero, i.e. 

(0) 0,y  (0) 0, ( ) 0, ( ) 0y L L                  (42) 

 Therefore expanding equation (42) using 
equations (38) and (39) we obtain that;  

2 3 4

0 0 0
2 6 24

M L Q L qL
                                             (43) 

and 
2 3

0
0 0

2 6

Q L qL
M L                                            (44) 

 Solving equations (43) and (44) gives; 
2

0
12

qL
M    ,      

0
2

qL
Q    

Substituting into equation (40) and (41) 
gives, 

2

12
L

qL
M  ,       

2
L

qL
Q    

The summary of fixed end moments and 
shears is given on Table 3. 
 
5. Stiffness Matrix of Beam Elements 
The stiffness coefficients obtained above can 
be synthesized into a stiffness matrix of the 
considered beam element. Consider the 
uniform beam element, Fig.9, subjected to 
clockwise couples, M1 and M2, at its extreme 
nodal points together with vertical forces Q1 
and Q2. Let y1 and y2 be the displacements in 
the y-direction at the nodes, 1 and 2, while 

1

and 
2  are clockwise rotations at the same 

nodes respectively. Using the stiffness 
coefficients obtained earlier, the bending 
moment M1 and M2 and shear forces Q1 and Q2 
can be expressed in terms of displacements 
and rotations as follows; 

   
    

  
        

   

  
         

 1 1 2 1 22

6 4 2EI EI EI
M y y

L L L
      

    2 1 2 1 23 3

12 6EI EI
Q y y

L L
           

 2 1 2 1 22

6 2 4EI EI EI
M y y

L L L
      

 
In matrix notation the above equations take 
the form; 

3 2 3 2

1 1

2 2
1 1

2 2

3 2 3 2

2 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

L L L L
Q y

M L L L L
EI

Q y

L L L LM

L L L L











  



 
 
    
    
    
    
    
    
 
 
 

    

 
Consequently the stiffness matrix is       

    

3 2 3 2

2 2

3 2 3 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

L L L L

L L L L
K EI

L L L L

L L L L







  



 
 
 
 
 
 
 
 
 
 
 

 

L 

yo =0 

θo =0  

. 

qdu 

. . du  

x QL 

ML 
M0 

Q0 
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Fig.9 Fixed ended  beam element 

 
6. Discussion of Results 
The stiffness coefficients (Table 1) obtained 
for the various beam fixed end conditions can 
be used to build up the stiffness matrix of a 
beam and / or beam-column assemblages as 
exemplified in section 5.0. The fixed end 
moments and shears (Table 2) obtained for 
three standard beam loading conditions are 
the same as for those found in literatures, [3]. 
However, the advantages of initial value 
method which are; simplicity, ease of 
application, and room for repetitive work, 
were utilized in this work thus, reducing the 
computational time and procedures involved. 
 
7. Conclusion 
From the foregoing, it can be seen that the 
obtained stiffness coefficients, fixed end 
moments and shears are identical with the 
ones obtained in literatures [3], [6]. The 
advantage of this method is that the 

computation of flexibility influence 
coefficients before evaluating the 
compatibility conditions which lead to the 
desired stiffness coefficients are 
circumvented.  
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Table 1: Summary of Elements of Beam Stiffness  Coefficients 

Case Type of beam and loading Bending moment diagram Beam stiffness 
coefficients 

                
 
 
 
 
1 

 
 
 
 
 

  

       
 
 
 
 
2 

 

 

 

     
0

0 2

4

6

EI
M

L

EI
Q

L



 

      

2

2

6

L

L

EI
M

L

EI
Q

L





 

Q1 L 

M1 M2 

Q2 

 
L 

 
=0 

Constant EI 

ML 

 

ML 

 

 

QL 

ML 

 

 

QL 

ML 

  
L 

 

y0=0 
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Case Type of beam and loading Bending moment diagram Beam stiffness 
coefficients 

      
 
 
 
3 

  

     0 2

0 3

3

3

EI
M

L

EI
Q

L



 

     0
L

M   

     
3

3
L

EI
Q

L
  

     
 
 
 
4  

 

     
0

3EI
M

L
  

     
0 2

3EI
Q

L
   

     
2

3
L

EI
Q

L
  

 
 
 

Table 2: Fixed - End  Moments and Shears For Laterally Loaded Beams 
Case Type of beam and 

loading 
Bending moment diagram Fixed-end moments 

and shears 
     
 
1 

  

  
2

0 2

Pb a
M

L
  ,      2

2L

Pba
M

L


 

   
2

0 3
2

Pb
Q L a

L
 

 ,  

2

2L

Pab
Q

L
   

 
 
 
 2 

 
   

0 2
(2 )

Mb
M a b

L
    

0 3

6Mab
Q

L


  

 2
2L

Ma
M b a

L
   

3

6
L

Mab
Q

L
   
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