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ABSTRACT 

The stability analysis of all four edges simply supported (SSSS) thin rectangular plate using multi-degrees of 

freedom (MDOF) Taylor Maclaurin’s series polynomial function in Galerkin’s variational method has been 

investigated. This was achieved by truncating the two domain Taylor Maclaurin’s series at the seventh term to 

evolve the general deflection polynomial function for thin rectangular plate continuum. Consequently, the SSSS 

plate boundary conditions were applied, reducing the polynomial function to four degrees of freedom function. 

Thereafter, Galerkin’s model was applied to the classical governing differential equation of uniaxial plate buckling 

with the improved function to obtain the auxiliary equation, whose lowest eigenvalue corresponds to the SSSS plate 

buckling load coefficient, K. However, this process was facilitated using the commands in the Mathematica. The 

average percentage difference of K – values from two previous works and the present study when compared with 

the exact solution stood at 0.066%, 0.011% and 0.002%respectively.This shows that MDOF function converges 

better than SDOF function. Among other revelations by the study is that Galerkin’s variational methods remains a 

veritable tool for MDOF continuum problems.  
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1. INTRODUCTION 

Thin plates are widely used as the main structural 

components of hull of ships, automotives, gate dams, 

aircrafts, bridges, etc., because of its two dimensional 

structural action. They also possess other interesting 

structural characteristics. For instance, when they are 

subjected to in plane loading (loading parallel to their 

fibre direction), they transit from their stable state of 

equilibrium to the unstable one, just like columns. 

Such transition is normally referred to as buckling or 

structural instability. During this transition, a critical 

point exists where an infinitesimal increase in load 

can cause the plate surface to buckle. The load at this 

critical point defines the buckling strength of the plate, 

or the critical or buckling load. Increase in load 

beyond the load at the initiation of buckling increase 

the buckling deformations until collapse occurs [1]. 
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So many researchers have investigated the buckling 

behaviour of thin rectangular plate subjected to 

uniform compression. Investigations involving simply 

supported plates subjected to uniform compression 

are common. Timoshenko and Gere [2] calculated the 

elastic buckling of simply supported plate, known as 

SSSS plate subjected to uniform compression by 

energy methods. Iyengar [3] used the Galerkin’s 

method to analyse the elastic buckling the SSSS plate 

subjected to uniform uniaxial loads. These studies 

obtained the plate’s critical load by assuming the 

deflection function of the plate in the form of 

truncated double Fourier series. 

Ibearugbulem et.al  [4] used truncated fourth order 

Taylor Maclaurin’s series and formulated approximate 

single degree of freedom deflection function for the 

plate. They subsequently furnished the critical load of 

the plate by applying Ritz direct variational method. 

Ezeh et.al [5] used fourth order characteristic 

orthogonal polynomials against Taylor  Maclaurin’s 

series and obtained the deflection function for the the 

plate. Their deflection functions are identical to those 

of Ibearugbulem et. al [4]. Okafor and Udeh [6] toed 

the same path to obtain their deflection function for 

the plate. Rather than apply Ritz direct variational 

method,they used Galerkin’s indirect variational 

method to obtainthe shear and bending stresses of the 

plate subjected to uniformly distributed lateral loads. 

The degree of freedom (DOF) of a continuum could be 

defined as the number of independent displacement 

admissible by the system in the course of its motion. 

Truncated fourth order Taylor Maclaurin’s series or 

characteristic orthogonal polynomials for deflection 

solution in plates’ analysis usually reduce to single 

degree of freedom Eigen – value problem. Whereas, 

the inclusion of fifth, sixth, seventh and other higher 

terms of the seriesor orthogonal polynomials would 

result to multi – degrees of freedom Eigen – value 

problem, whose final solution would improve 

convergence.  

No researcher has attempted to use these higher order 

polynomials of Taylor Maclaurin’s series to formulate 

the deflection function of simply supported plate. 

Perhaps, use the Galerkin’s method to finally obtain 

the elastic buckling of the plate subjected to uniform 

compression. Rather, Ibearugbulem et. al [7] 

deposited that higher DOF does not improve 

convergence in plates’ continuum analysis but would 

lead to rigorous work. They further concluded that 

Galerkin’s method cannot be used for any MDOF 

polynomial function in plates’ continuum analysis 

other than SDOF. In which case, they recommended 

only Ritz variational and Work principle approaches 

as the only method suitable for MDOF plates’ 

continuum analysis. 

This paper therefore, presents an improved Taylor 

Maclaurin’s solution approach that considered higher 

order functions in the Galerkin’ sindirect variational 

method towards establishing multi degrees of 

freedom eigen value problem of the elastic buckling of 

SSSS plate subjected to uniform uniaxial load along x - 

direction. The fundamental theories applied are the 

Kirchhoff’s plate theory, Galerkin’s indirect variation 

method. Mathematica®, a Wolfram Research 

developed tool for doing mathematics on the 

computer and for reporting the results would be used. 

Mathematica® has numerical, graphical, and symbolic 

capabilities. Its basic features include arbitrary 

precision arithmetic; differential and integral calculus 

(routines for both symbolic and numerical 

evaluation); infinite and finite series, limits and 

products; expansion and factoring of algebraic 

expressions; linear algebra; solving systems of 

equations; and two and three – dimensional graphics. 

Mathematica® packages and custom tools include 

procedures for probability and statistics [8]. 

 

2. CLASSICAL GOVERNING DIFFERENTIAL EQUATION 
OF BUCKLING PLATES’ BUCKLING 
Figure 1 shows an isotropic elastic thin rectangular 

plate of length “a” and width “b”. The plate is acted 

upon by axially compressed load in which, Nx, 

represents the magnitude of the compressive load.  

 
Figure 1:  Analytical Model: Rectangular Thin Plate 

Element with Uniform Compression. 

 

The equation that describes the behaviour of a thin 

elastic plate subjected to in plane load along x – 

coordinate according to Kirchhoff’s and Venant 

hypothesis is given by Ventsel and Krauthammer [9] 

as: 
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In (1), 

  
   

  (    )
                                               ( )  

 “E”, “h” and    are Young’s of modulus of  elasticity 

[1], thickness and Poisson’s ratio of plate respectively; 

Nx is the applied uniform compression along x – 

coordinate of the plate. 

Expressing the independent coordinates x and y in the 

form of non-dimensional coordinates say R and   for x 

and y directions respectively, as in [10].  

That is: 

x  aR;                                                ( ) 

y  b                                                  ( ) 

where, x and y are the directional coordinates of the 

thin rectangular plate’s surface along a and b 

directions respectively; R and Q are the corresponding 

non-dimensional surface or lateral dimensions of the 

plate along a and b directions respectively in the limits 

0 to 1.0.  

Then, the derivatives in Equation (1) in non-

dimensional coordinates R and Q transforms as 

follows: 
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Where, the aspect ratio, p and the plate’s lateral 

dimensions, a and b is related as [10]: 

p  
a

b
; a  pb                                                              ( ) 

Thus, Equation (1) becomes: 
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3. MDOF POLYNOMIAL FUNCTION FOR SSSS THIN 

PLATE 

Ibearugbulem [4] used Taylor Maclaurin series as in 

Stroud[10] to derive the deflection polynomial 

function of a rectangular thin isotropic plate subjected 

to in-plane load in x – direction. The function which 

satisfies Equation (8) and approximately describes the 

deflection of the plate under uni-axial loading is given 

as: 
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Truncating Equation (9) at seventh term gave the 

deflection function for the plate as: 
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Where,           are the unknown coefficients which 

would be evaluated using the boundary conditions of 

the plate. Rm  and Qn are the non – dimensional 

directions of the plates corresponding to x and y 

directions respectively. 

For SSSS thin rectangular plate, the prescribed 

boundary conditions along R and Q directions are 

given as: 

Boundary Conditions along R – direction 

[
   

   
]
        

                                     (  ) 

[ ]                                                        (  ) 

Boundary Conditions along Q – direction 

[
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[ ]                                          (  ) 

Implementing these boundary conditions (Equations 

11, 12, 13 and 14) in Equation (10) gave the fourth 

degree of freedom deflection polynomial function as: 
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Where,        ;     
    
 
;        ;         .  

They are the independent coefficients of the 

respective independent displacement functions of the 

four DOF polynomial. Previous researchers have 

always presumed the SSSS thin rectangular plate to be 

executing mostly one independent displacement, 

which is not so correct. Hence, such erroneous 

presumptions would no doubt lead to nearly false 

impression of plates’ continuum problem. Even worse 

where the problem statement bothers on stability 

problems, such eigenvalues may possess some danger 

to the structure under consideration.  

 

4. APPLICATION OF THE GALERKIN’S VARIATIONAL 

METHOD 

Ventsel and Krauthammer [9] gave the classical 

Galerkin’s generalized of solution of differential 
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equation for any given 2D boundary value elastostatic 

problems in non-dimensional coordinates R and Q 

domain as: 

    ∫∫[ ( )   ] ( ,  )      

 

                 (  ) 

Where, p and L(w) are the applied load and resistance 

offered by the system respectively. Both of them are 

represented by the left hand side of Equation (8), aij is 

the residual error; while  ( ,  ) is the non-coefficient 

shape function along R-Q directions in the plate’s 

domain a and b obtained from Equations (15) and 

(16) given as: 
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Where, wj and qj represent the independent deflection function and its respective undetermined coefficient 

corresponding to jth degree of freedom of the plate.  

Adopting the Galerkin’s formulation in Equation (  ) for SSSS plate stability problem in non – dimensional 

directions, R and Q with the fourth DOF deflection function in Equations (15) and (16) gave: 
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Replacing the integral in Equation (20) by the sum of integral, we obtained the following system of linear 

algebraic equations: 
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Expressing Equation (21) in the canonical matrix form, we have: 
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For non-trivial solution, the eigenvector, qi in Equation (22) cannot be zero but the Eigen-value. 

That is, 
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Hence, the determinant of the scalar matrix results to the auxiliary equation as follows: 
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This auxiliary equation is also a fourth degree single polynomial whose lowest eigenvalue corresponds to the 

lowest load level for which the critical load exists. The polynomial may be written as: 

C  C  C K
  C K

  C K
                                                (  ) 

In (24), C is a coefficient proportionality dependent of the aspect ratio, p of the plate. Equation (24) was solved at 

different aspect ratio, p range:   p   .  using the Mathematica® commands.  The lowest eigenvalue, K 

obtained for the various aspect ratios corresponds to the lowest load level for which the critical buckling exists. 

The lowest eigenvalue, K results from this study, those of Iyengar [3], Ibearugbulem et. al [4] and Ezeh et. al [5] 

are shown in Table 1.0. The percentage differences (error) between this study, Ibearugbulem et. al and Ezeh et. al 

with of those of Iyengar are also shown in Table 1.0. Where the % error is calculated as in Shimpi and Patel [9] as: 



STABILITY ANALYSIS OF SSSS THIN RECTANGULAR PLATE USING MDOF TAYLOR MACLAURIN’S SERIES …     N. N. Osadebe, et al  

 

Nigerian Journal of Technology  Vol. 35, No. 3, July 2016          508 

Percentage Error  (
Value obtained by a theory

corresponding value by exact theory
  )              (  ) 

 

Table 1: K values for different aspect ratios for the buckling of SS-SS thin plate 

 
Buckling load coefficients, K for SSS thin rectangular plates at different aspect ratios, P by researchers and 

present study 

Aspect 
ratio, P 

[3] [4] [5] 
Present 

study 
% Error between [3] 

and Present study 
% Error between 

[3]  and [4] 

% Error 
between [3] and 

[5] 
0.1 102.010 102.110 102.059 102.011 0.001 0.098 0.048 
0.2 27.040 27.065 27.051 27.045 0.018 0.092 0.041 
0.3 13.201 13.212 13.205 13.201 0.000 0.083 0.030 
0.4 8.410 8.416 8.412 8.410 0.000 0.071 0.024 
0.5 6.250 6.254 6.251 6.250 0.000 0.064 0.016 
0.6 5.138 5.141 5.138 5.138 0.000 0.058 0.000 
0.7 4.531 4.533 4.531 4.531 0.000 0.044 0.000 
0.8 4.203 4.205 4.202 4.203 0.000 0.048 -0.024 
0.9 4.045 4.047 4.044 4.045 0.000 0.049 -0.025 
1.0 4.000 4.002 4.000 4.000 0.000 0.050 0.000 

Average % Error 0.002 0.066 0.011 

 

5. RESULTS AND DISCUSSION 

The results  for the crit ical  buckling load 

coefficients at aspect ratios, p range: ( .  ≥ P ≥  . ) 

from the present study and previous works are 

presented in Table 1.0. A close observation of the 

table revealed that the results obtained using four 

degrees of freedom deflection p o l y n o m i a l  function 

of the Taylor Maclaurin’s series converges almost to 

those of the exact solution by Iyengar [3]. 

The average percentage difference between the 

solution from Iyengar [3] and Ibearugbulem et. al [4]; 

Ezeh et. al [5] and Iyengar [3] and the present study 

and Iyengar [3] are 0.066%, 0.011% and 0.002%. This 

reveals clearly the improved convergence occasioned 

by conceiving the plate’s continuum to be executing 

multiple degrees of freedom under any form of 

loading. This absolutely invalidates and clearly 

disprove the earlier supposition by Ibearugbulem et. 

al [ ] that convergence in line and plates’ continuum 

does not improve by increasing the number of terms 

in the polynomial series beyond the term that contains 

the fourth power. It has on the other hand 

substantiated Galerkin’s [  ] claim that his solution 

approaches the exact solution, if the DOF of the 

polynomial function tends to infinity. In this way, the 

continuum under consideration would be analysed as 

a continuous system (infinite DOF system), which is 

actually the case, rather than assuming single of 

lumped (finite) DOF system which been the trend by 

past researchers. 

 

 

 

6. CONCLUSION 

The effect of uniaxial in plane load on the elastic thin 

rectangular plate with SSSS boundary conditions has 

been investigated using higher degrees of freedom 

polynomial. The successful application of the four 

degrees of freedom polynomial function in the 

Galerkin’s method for buckling analysis of SSSS plate 

has also put to rest the recent conjecture of 

Ibearugbulem et. al [ ] that Galerkin’s method could 

be constrained for the analysis of continuum with 

multi-degrees of freedom. 

The following inferences are therefore adduced: 

a) Truncation of Taylor Maclaurin’s series beyond 

fourth term would result to higher degrees of 

freedoms polynomial functions. 

b) Convergence of Taylor Maclaurin’s series are 

improved with higher degrees of freedoms 

polynomial functions. 

c) Four DOF polynomial function for SSSS plate’s 

buckling approaches the exact solution better than 

one DOF polynomial function. 

d) Galerkin’s method remains suitable for the 

analysis multi degrees of freedom continuum.  

e) Application of Galerkin’s method for plate 

continuum could be made easier and faster by the 

use of commands in the Mathematica®. 
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