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ABSTRACT 

In this work, the Kantorovich method is applied to solve the bending problem of thin rectangular plates with three simply 

supported edges and one fixed edge subject to uniformly distributed load over the entire plate surface. In the method, the 

plate bending problem is presented using variational calculus. The total potential energy functional is found in terms of a 

displacement function constructed using the Kantorovich procedure, as the product of an unknown function of x (f(x)) 

and a coordinate basis function in the y direction that satisfies the displacement end conditions at y = 0, y = b. The Euler-

Lagrange differential equation is determined for this functional. The Galerkin method is then used to obtain the unknown 

function f(x). Bending moment curvature relations are used to find the bending moments and their extreme values. The 

results obtained agree remarkably well with literature. The effectiveness of the method is demonstrated by the marginal 

relative error obtained for one term displacement solutions. 
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1. INTRODUCTION 

Plates are initially flat structural members bounded by 

two parallel planes, called faces and rectilinear or 

curvilinear surface called an edge or boundary. The 

generators of the cylindrical surface are perpendicular to 

the plane faces. The distance between these plane faces is 

called the thickness h, which is small as compared with 

the other characteristic dimensions of the plate [1]. 

Geometrically, plates are bounded by either rectilinear or 

curved boundaries. Plates are widely used in the fields of 

aerospace, aeronautical, naval, marine, mechanical, 

architectural, structural, and highway engineering. 

Specifically, plates are used in architectural structures, 

bridge decks, naval and marine structures, containers, 

airplane panels, spacecraft panels, missiles, ship decks, 

instruments, machine parts (components) and hydraulic 

structures. They are classified by their shapes as 

rectangular, circular, elliptical, square, triangular, sector, 

circular with hole, square with hole, etc. They are also 

classified according to their materials of construction as 

homogeneous, heterogeneous, isotropic, anisotropic, and 

orthotropic. 

The structural behavior of plates as a function of the type 

of loading acting on it can be classified as static flexure, 

dynamic flexure or buckling. The analysis of the plates 

for static flexure, dynamic flexure, and buckling has been 

extensively done in the technical literature [2 – 9]. 

The analysis of plates has generated considerable 

research interest and activities, with many varying 

methods being developed and implemented for specific 

shape and material properties. The methods for plates 

analysis can be grouped into two namely: analytical 

methods and numerical or approximate methods. 

Analytical methods of plate analysis seek to find 

mathematical expressions valid for the entire plate 

region that identically solve the governing partial 

differential equations on the entire plate domain subject 

to the geometric and natural boundary conditions at the 

plate edges. They are closed form mathematical solutions 

which exist for a limited number of plate problems, and 

for the vast majority of plate problems whether in static 

flexure, dynamic flexure or buckling, they do not exist 

[10 - 13]. The need for approximate solutions for cases 

where closed form analytical solutions cannot be found 

gave rise to numerical methods for solving plate 

problems. The double trigonometric or Fourier series 

method was one of the earliest methods of solving the 

plate problem. The method, applicable to plates with all 

edges simply supported, assumes, apriori, that a double 

Fourier series can be developed to represent any 

distribution of the applied load p (x, y). By assuming that 

the deflection response can be represented by a double 

Fourier series of the same form as the loading, and which 

is specifically constructed to satisfy the geometric and 

force boundary conditions at the simply supported 
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edges, the governing fourth order biharmonic equation 

for flexural static analysis of thin plates is simplified to 

an algebraic problem, readily solved to find the unknown 

generalized displacement parameters. Thus, the internal 

forces are obtained from the internal force displacement 

relations. 

Levy’s single trigonometric series method was originally 

developed for the analysis of rectangular thin plates with 

two opposite edges simply supported; and the remaining 

two edges subject to arbitrary boundary support 

conditions. Levy chose the x and y coordinate axes such 

that the plate surface is defined by         
 ⁄  

    
 ⁄   where the edges x = 0, x = a are simply 

supported [15]. He then assumed the deflection can be 

represented as a single Fourier series that automatically 

satisfies the simply supported boundary conditions along 

the edges x = 0, x = a; regardless of the choice of fm(y) 

which must be obtained such as to satisfy homogeneous 

part of the plate equation and also satisfy the support 

conditions at     
 ⁄ He further assumed, in line with 

the theory for non-homogeneous differential equations, 

that the general solution of the governing equation  is the 

superposition of the homogeneous solution wh and the 

particular solution wp. 

The primary attraction of Levy’s method is the advantage 

presented by a single Fourier series representation of the 

plate deflection and load distribution, which is 

convenient and efficient from the perspective of 

mathematical analysis, and computations [10]. 

The method is particularly suited to the rectangular thin 

plate problems with simple support on two opposite 

edges and arbitrary support conditions in the remaining 

two edges [16]. It is more general in application than the 

double trigonometric series method, and the resulting 

series for deflection converges more rapidly. However, 

the computational rigours and demands are more in the 

single trigonometric series method than the double 

trigonometric series method. 

Apart from the analytical methods of Navier and Levy, 

many numerical and approximate methods have been 

formulated and implemented for the analysis of plates 

under static flexure, dynamic flexure and buckling. Such 

methods include variational methods (Ritz, Galerkin, 

Kantorovich), Weighted residual methods (Point 

collocation, Galerkin method, Bubnov-Galerkin method, 

subdomain collocation, Least squares residual). Virtual 

work methods, Finite Difference method, Improved 

Finite Difference method, Boundary Element method, 

Finite Element method, Symplectic Elasticity method and 

Finite Strip method. Researchers have used various 

numerical methods to solve plate problems [ 3 – 8, 17 – 1 

9, 21]. 

The general aim of this research is to apply the 

Kantorovich-Galerkin method to the static flexural 

analysis of rectangular Kirchhoff plates with three simply 

supported edges and one clamped edge, for the case of 

uniformly distributed load over the entire plate surface. 

The specific objectives are: 

(i) to present the methodology of the Kantorovich-

Galerkin method for the rectangular thin plate 

problem 

(ii) to determine the Euler-Lagrange differential 

equation of equilibrium for the Kirchhoff plate with 

three simply supported edges and one clamped edge 

for the case of uniformly distributed load over the 

entire plate surface 

(iii) to formulate the Galerkin variational integral 

equation for the Euler-Lagrange differential equation 

of equilibrium 

(iv)  to solve the Galerkin variational integral 

statement, and obtain the unknown function f(x) in 

the assumed displacement function 

(v) to find the critical values of the displacement, and 

use the bending moment curvature equations to find 

the bending moment distributions, and critical 

values of the bending moment. 

 

2. APPLICATION OF KANTOROVICH-EULER-GALERKIN 

METHOD TO THE BENDING ANALYSIS OF CSSS PLATE 

Consider a rectangular Kirchhoff plate that is simply 

supported at the edges x = 0, x = a, y = b, and clamped at 

the edge y = 0. The plate is subject to a uniformly 

distributed transverse load of intensity p over the entire 

plate domain      ,       , as shown in Figure. 

1. 

 
Fig.1: Rectangular Kirchhoff CSSS plate under uniformly 

distributed load 

A suitable displacement function that satisfies the 

boundary conditions at the edges y = 0, y = b  is obtained 

by considering the fourth degree polynomial function 

  ( )       

 

 
   

  

  
   

  

  
   

  

  
          ( ) 

In (1),                    are unknown polynomial 

constants, and b is the span of the plate in the y 

coordinate direction. The polynomial constants are 
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determined such that g(y) should become a suitable 

polynomial shape function for the plate in the y 

coordinate direction. Hence g(y) is required to satisfy the 

boundary conditions: 

  ( )             
 ( )    

  ( )             
  ( )           

                     ( ) 
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By the Kantorovich-Galerkin method, we assume for the 

plate flexure problem 

 (   )   ( ) (
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and then determine f(x) for w(x, y) to be a true 

displacement function of the plate. 

. __________________________________________________________________ 

The total energy functional   is given by: 
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where R is the two dimensional plate domain.,   is the Poisson’s ratio  and     
   

        
   

          
   

    
 

By Kantorovich-Galerkin method, the total energy functional should be minimized for equilibrium of the plate under 

static flexure. Due to the support conditions of the plate the twisting curvatures vanish and the total energy functional 

simplifies to Equation (13) as follows: 
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Using the assumed displacement function, the total energy functional becomes 
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Simplifying, we obtain: 
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Further simplification and evaluation of integrals yields the total energy functional to be minimized as Equation(16) 

  ∫  
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The integrand in the total energy functional is  (   ( )    ( )) where  

 (   ( )    ( ))            (   ( ))  
         ( )   ( )
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2.1 Euler-Lagrange Differential Equation for the Functional 

The Euler-Lagrange differential equation for this functional is: [22, 23, 24] 

  

  
 

 

  
(

  

   ( )
)  

  

   
(

  

    ( )
)                                         (  ) 

Applying the Euler-Lagrange condition, we find the condition for the extremum of the total energy functional as the 

fourth order ordinary differential equation in f(x) as follows: 
   

  
 ( )  
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Simplifying, Equation (19) can be written as: 

     ( )                ( )           ( )          
   

 
                  (  ) 

2.2 Galerkin Solution to the Euler-Lagrange Equation 

The ordinary differential equation, Equation (12), is solved subject to the boundary conditions at the simply supported 

ends x = 0, x = a. A suitable displacement shape function f(x) that satisfies the boundary conditions of simple supports 

at the edge x = 0, x = a, i.e. f(0) = 0, f(a) = 0,   ( ) = 0, f ” (a) = 0 is obtained by considering the fourth degree 

polynomial f4(x) as follows: 
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where c0, c1, c2,c3 and c4 are the polynomial constants obtained by requiring that f(x) satisfies the boundary conditions 

at x = 0, x = a. Thus, using the boundary conditions, 
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The other higher shape functions are obtained from f(x) by multiplication by x, x2, x3 … xn. 

However xf(x) satisfies the displacement boundary condition at x = 0, x = a, but violates the force boundary condition 

atx = 0, x = a. (M(x = 0) = M(x = a) = 0) where Mx is the bending moment. Thus, in general, 
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where c1, c2, c3  …  cn are the n undetermined parameters of f(x). For a one parameter solution for f(x),f(x) is considered 

as: 
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A Galerkin variational solution is sought to the Euler-Lagrange differential equation in order to obtain the parameter c1. 

The Galerkin variational integral becomes: 
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Simplifying, we obtain 
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where     ( )  (                                  )                                   (  ) 

Thus, the deflection function along x-axis becomes: 
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Therefore  the res ltant deflection f nction on the plate’s domain x – y becomes: 
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2.3 Two-Term Displacement Shape Function in Polynomial form in the Kantorovich Functional 

Substituting the second term deflection function into the Euler-Lagrange differential Equation; and evaluating for the 

constants, c1 and c2  sing the Galerkin’s variational integral gives: 
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Thus, Equation (37) becomes: 
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Evaluating the integrals, we obtain: 
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In compact form, Equation (45) becomes: 
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2.4 Center Deflection 

The deflection at the center of the plate is found as: 
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where        
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where wc is the deflection at the center of the plate 
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2.5 Bending Moments 

The bending moment distributions are given by 

Timoshenko and Woinowsky-Krieger [12] as; 
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where       
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2.6 Alternative Expressions for Bending Moments 

The bending moments expressions for rectangular plates 

under pure bending along x and y axes are given by 

Timoshenko and Woinowsky-Krieger [12] as Equation 

(59).Substituting Equation (36) into Equation (59), we 

obtained the first term approximation to the bending 

moment expressions for rectangular plates under 

bending along x and y axes as follows: 
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At mid-span of the plate;   
 

 
   

 

 
   

Equations (34 and 35) become: 
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The solutions for deflection coefficients and bending moment coefficient are presented in Tables 1, 2, 3, 4, and 5. 

At the center of the plate, the deflection can be obtained as 
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The bending moment distributions are found from Equation (59). 

At the center of the plate, 
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The accuracy of the deflection and bending moment expressions obtained using a two term Kantorovich-Galerkin 

solution is illustrated for a square Kirchhoff plate. Then, for      
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Hence at the plate center, 
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3. RESULTS AND DISCUSSIONS 

The Kantorovich-Galerkin variational method has been 

successfully implemented in this work to analyse the 

static flexure problem of a thin rectangular plate with 

three simply supported edges and one fixed (clamped) 

edge; and subject to uniformly distributed load over the 

entire plate surface. The displacement function was 

assumed following Kantorovich method to be a product 

of an unknown function of one spatial coordinate, x, and 

a coordinate basis function f(y) presented in Equation 

(11) which satisfies the boundary conditions at the edges 

y = 0, y = b. The total potential energy functional was 

then found as given in Equation (16) to be a function of x, 

 ( )    ( )  Using the principles of variational calculus, 

the Euler-Lagrange differential equation of equilibrium 

was found for the extremization of the functional as the 

fourth order ordinary differential equation presented as 

Equation (19). 

A Galerkin variational (weighted residual) solution to the 

Euler-Lagrange differential equation of equilibrium was 

then obtained for a one parameter choice of f(x). Thus 

the solution for w(x, y) to the plate flexure problem was 

obtained as Equation (36). Bending moment expressions 

were then determined for the plate as Equations (64) 

and (70). Tables 1, 2, and 3 present the Kantorovich-

Galerkin solutions for a one parameter assumption for 

the deflection and bending moment values of the centre 

of the plate and their comparison with exact solutions 

obtained by Timoshenko and Woinowsky-Krieger [12]. 

Table 1 shows that the relative difference between the 

Kantororich-Galerkin solutions and the exact solutions 

for displacement vary from 0.34% to 0.948% with an 

average value of 0.4%. The relative difference for 

bending moment coefficients βxx   βyy as shown in Tables 

2 and 3 for a one parameter Kantorovich-Galerkin 

solution vary from 4.6% to 9.41%, for βxx and 7.46% to 

17.23%, for βyy for the aspect ratio varying from 1.0 to 

2.0. 

A two term (two parameter) assumption was also used 

to obtain the centre deflection as Equation (92), yielding 

a reduced relative difference of 0.586% as compared 

with the one term solution for central deflection.  

However, when the results are presented using four 

decimal places, the results for two-term solution 
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becomes identical with the results obtained for the one 

term solutions. Two term (parameter) solutions yielded 

bending moment values given by Equation (94) for Mxx 

and Equation (97) for Myy. Bending moment values given 

by the two term solution yielded identical results with 

the one term solutions. The accuracy and effectiveness of 

the Kantorovich-Galerkin method is thus validated. 

The results of the study for deflections and bending 

moment at the mid – span of the CSSS plate is tabulated 

in Tables 1, 2, 3, 4, 5 and 6 for first and second terms 

approximation to the deflection functions respectively. 

These values which are computed at aspect ratio range: 

      α       and Poisson ratio  µ       (steel material) 

represent deflection function coefficients,   and bending 

moment coefficients about x and y directions,    and 

  respectively. Results from Timoshenko and 

Woinowsky – Krieger [12] were also tabulated alongside 

these values; and percentage differences between them 

were calculated as: 

 

percentage difference

 (
 al e o tained  y a theory

corresponding val e  y e act theroy
)

                                                                           (  ) 

 

The results are presented in Tables 1, 2, and 3. 

 

Table 1: Deflection coefficients for deflection at the center of CSSS plates under uniform load (one term Kantorovich-

Galerkin solution) 

   
 ⁄  

 
F1(a)

   ( 
   

 
) 

 

  (e act) ( 
   

 
) % Difference 

1.0 0.03605299 2.81664 Х10–3 2.80  Х 10–3 0.593 

1.1 0.04531717 3.540444  Х 10–3   

1.2 0.05485367 4.285443  Х 10–3 4.30  Х 10–3 -0.34 

1.3 0.06439362 5.03075  Х 10–3 5.0  Х 10–3 0.615 

1.4 0.073725567 5.75981  Х 10–3 5.8  Х 10–3 -0.693 

1.5 0.08269671 6.46068  Х 10–3 6.4  Х 10–3 0.948 

1.6 0.091406594 7.125515  Х 10–3   

1.7 0.0991976 7.74498  Х 10–3   

1.8 0.10664477 8.3318  Х 10–3   

1.9 0.113546812 8.870848  Х 10–3   

2 0.11991844 9.36863  Х 10–3 9.3  Х 10–3 0.738 

3 0.16116764 12.591153  Х 10–3   

4 0.179681433 14.0376  Х 10–3   

5 0.189094048 14.77297  Х 10–3   

 

 

Table 2: Bending moment coefficient βxx for the center of 

CSSS plate under uniformly distributed load (one-term 

Kantorovich-Galerkin solution) 

   
 ⁄  

 

   (    ) 
 

(e act)(    ) % Difference 

1.0 0.0371797 0.034 9.41 
1.1 0.04452 0.041 8.59 
1.2 0.051854 0.049 5.82 
1.3 0.0590 0.056 5.36 
1.4 0.06587 0.063 4.56 
1.5 0.07236 0.069 4.87 
1.6 0.07843   
1.7 0.08405   
1.8 0.08924   
1.9 0.094   
2 0.098372 0.094 4.68 

 

 

Table 3: Bending moment coefficient βyy for the center of 

CSSS plate under uniformly distributed load (one-term 

Kantorovich-Galerkin solution) 

 

  
 ⁄  

 

   (    ) 

 
   (e act)(    ) 

% 
Difference 

1.0 0.04191 0.039 7.46 

1.1 0.0453 0.042 7.86 

1.2 0.04805 0.044 9.20 

1.3 0.05021 0.045 11.58 

1.4 0.05185 0.047 10.32 

1.5 0.05306 0.048 10.54 

1.6 0.05392   

1.7 0.0545   

1.8 0.05485   

1.9 0.0550   

2 0.0551 0.047 17.23 
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Table 4: Mid – span deflection coefficients (for four decimal places) 

Aspect ratio  α 
Deflection Coefficient  λ 

First term and [12] 
% Difference 

Second term and [12] 
% Difference 

First term 
Study 

Second Term 
Study 

[12] 

1.0 0.0028 0.0028 0.0028 0.00 0.00 
1.1 0.0035 0.0035 0.0035 0.00 0.00 
1.2 0.0043 0.0043 0.0043 0.00 0.00 
1.3 0.0050 0.0050 0.0050 0.00 0.00 
1.4 0.0058 0.0058 0.0058 0.00 0.00 
1.5 0.0065 0.0065 0.0064 1.56 1.56 
2 0.0094 0.0094 0.0093 1.08 1.08 
∞ 0.0162 0.0162 0.0130 24.62 24.62 
 

Table 5: Mid – span bending moment coefficients along x – a is  βx (for four decimal places) 

Aspect ratio  α 
Bending moment Coefficient, βx 

First term and [12] 
% Difference 

Second term and [12] 
% Difference 

First term 
Study 

Second Term 
Study 

[12] 

1.0 0.0372 0.0372 0.0340 9.41 9.41 
1.1 0.0445 0.0445 0.0410 8.54 8.54 
1.2 0.0519 0.0518 0.0490 5.92 5.71 
1.3 0.0590 0.0590 0.0560 5.36 5.36 
1.4 0.0659 0.0659 0.0630 4.60 4.60 
1.5 0.0724 0.0724 0.0690 4.93 4.93 
2 0.0984 0.0984 0.0940 4.68 4.68 
∞ 0.1554 0.1554 0.1250 24.32 24.32 
 

Table 6: Mid – span bending moment coefficients along y – a is  βy (for four decimal places) 

Aspect ratio  α 

Bending moment Coefficient, βy 
First term and [12] 

% Difference 

Second term and [12] 

% Difference 
First term 

Study 

Second Term 

Study 
[12] 

1.0 0.0419 0.0419 0.0390 7.44 7.44 

1.1 0.0453 0.0453 0.0420 7.86 7.86 

1.2 0.0481 0.0480 0.0440 9.32 9.09 

1.3 0.0502 0.0502 0.0450 11.56 11.56 

1.4 0.0519 0.0518 0.0470 10.43 10.21 

1.5 0.0531 0.0531 0.0480 10.63 10.63 

2 0.0551 0.0551 0.0470 17.23 17.23 

∞ 0.0466 0.0466 0.0370 25.95 25.95 

 

4. CONCLUSIONS 

The analysis of CSSS plate has been investigated using 

Kantorovich – Euler Lagrange – Galerkin’s approaches 

for one and two unknown parameters approximation to 

deflection functions. The following inferences are 

therefore adduced: 

a) Tr ncation of Taylor Macla rin’s infinite series 

beyond the fifth term (fourth degree) would result in 

higher terms of unknown parameters in the 

polynomial functions representation of the 

displacement coordinate functions. 

b) Convergence of deflection and bending moments of 

CSSS plate to the exact solution did not improve with 

the use of the second parameter of the polynomial 

shape functions using the Kantorovich – Euler 

Lagrange method because the second shape function 

violated force boundary conditions at the ends of the 

plate. 

c) The use of one and two unknown parameters in the 

polynomial shape functions in the Kantorovich – 

Euler Lagrange – Galerkin method for CSSS plate 

gives marginally better solutions for deflections than 

for bending moments. However, the extent of 

difference for bending moments is approximately a 

single digit.  

d) Galerkin’s method remains s ita le for the 

evaluation of the unknown variables or coefficients 

of polynomial shape functions for boundary value 

problems of elastic Kirchhoff plates formulated as 

differential equations under transverse distributed 

loads. 
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