Main Article Content

Effect of Tensile Load on the Mechanical Properties of AlSiC Composite Materials using ANSYS Design Modeller


Mathias Ekpu

Abstract

Aluminium Silicon Carbide (AlSiC) composite materials are used in the electronics industries and other manufacturing companies hence, manufacturing of AlSiC composite materials with the right properties for different applications are vital to most industries. The challenge of testing the same specimens for different properties remains, because most of the tests carried out are destructive. Hence, the use of ANSYS finite element simulation software for the design and analysis of a flat bar specimen. Loads between 3 kN to 21 kN were applied on the specimen since it is within the operating limit of a Universal Tensile Testing Machine (UTTM), while both ends are fixed. The AlSiC composite materials used in this study have a composition of 63 vol% Al (356.2) and 37 vol% SiC and, the results
showed that stress was directly proportional to strain. While the calculated Young’s modulus from the stress versus strain plot was approximately 167 GPa for the different tensile loads applied. In addition, the total deformation of the AlSiC composite material increased as the load was increased. Also, the highest deformation of the material was observed around the centre of the test specimen. This is synonymous with the failure observed in practical testing of specimens.


Keywords: AlSiC, tensile load, aluminium MMC, stress analysis, deformation, ANSYS


Journal Identifiers


eISSN: 2437-2110
print ISSN: 0189-9546