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ABSTRACT: An integral sliding mode controller (ISMC) which employs particle swarm optimization (PSO) 

algorithm to search for optimal values of the parameters of the integral sliding manifold as well as the gains of the 

controller is proposed in this work. We considered the swing-up and stabilization of the cart-inverted pendulum system 

which is assumed to be affected by uncertainties. First, we determined the swing-up and stabilization conditions of the 

control system by using the internal dynamics of the cart-inverted pendulum system and sliding mode dynamics. A 

PSO algorithm is then used to search for the optimal values of the ISMC design parameters that satisfy the stabilization 

condition with the aim of improving the transient performance of the control system. To mitigate the chattering 

phenomenon, a saturation function of the integral sliding variable was used in the discontinuous control law. 

Simulation results on swing-up and stabilization of the cart-inverted pendulum system revealed improvement in 

transient behaviour by reducing settling time (by 52.61%), overshoots (by 45.56%) and required track length for cart 

movement (by 68.34%). 

 

KEYWORDS: Particle swarm optimization, integral sliding mode, uncertain systems, cart-inverted pendulum, chattering 

mitigation. 

[Received October 20, 2020; Revised Feb. 1, 2021, Accepted June 1, 2021]                            Print ISSN: 0189-9546 | Online ISSN: 2437-2110

 

I. INTRODUCTION 

Generally, the goal of control system design is to provide 

a control effort that will yield the desired system response for 

a given reference input under specified conditions. In practice, 

however, many practical control systems of high interest are 

affected by uncertainties, such as external disturbances and 

unknown plant parameters (Hamayum et al., 2016). For 

example, launching a rocket into space, stabilization of aircraft 

in a turbulent airflow, stabilization of a legged mobile robot, 

are all prone to air resistance. Designing a controller that will 

give the desired performance for this class of systems is a 

challenging task, since their accurate mathematical description 

is difficult to obtain. This paper proposes an improved robust 

controller in which the parameters of the integral sliding mode 

controller (ISMC) are optimized using particle swarm 

optimization (PSO), for one of such uncertain systems—the 

cart-inverted pendulum system (Krafes et al., 2018). 

The cart-inverted pendulum (CIP) system is a mechanical 

system in which a pendulum is hinged to the centre of a cart 

via a pivot (Figure 1). When the pendulum is vertically 

downward, the cart-pendulum system is said to be in its stable 

equilibrium position (Udhayakumar and Lakshmi, 2007). This 

position is often referred to as the pendant position. However, 

when the pendulum is in the upper plane above the cart, the 

cart-inverted pendulum system becomes unstable (Figure 2). 
Therefore, given a cart-pendulum system with the pendulum 

initially in its pendant position, the control task is to provide a 

suitable control effort that will, first, destabilize the cart-

pendulum system from its stable equilibrium and swing the 

pendulum to the upper plane above the cart. Then, it should 

stabilize the pendulum at the unstable equilibrium point and 

also return the cart to a reference position on the track.  

Although the cart-inverted pendulum system is seemingly 

simple from the construction point of view, its control is very 

challenging. This is because in addition to the effects of 

external disturbances (e.g. air resistance and uncertainties due 

to friction) on the open-loop unstable system and its nonlinear 

nature, the system is under-actuated (Krafes et al., 2018). 
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Figure 1: Physical model of the CIP system (Yih, 2013). 
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The analysis and control of the cart-inverted pendulum 

system has been considered as a benchmark in nonlinear 

control and it has received a lot of attention from many 

researchers in this field. Therefore, many research on control 

of the mechanical system have been reported in literature.  

Energy-based control schemes (Åström and Furuta, 2000; 

Udhayakumar and Lakshmi, 2007; Kennedy and Tran, 2016) 

have been proposed for swing-up control of the cart-inverted 

pendulum system. However, energy-based control of the 

inverted pendulum generally has two problems (Otani et al., 

2001). First, if the pendulum receives more energy than its 

potential energy at the upright position, then it will pass the 

position and will not stay at the unstable equilibrium point. 

Another problem is that the energy-based approach does not 

control the position of the pivot; it only controls the angle of 

the pendulum. 

Linear control design techniques (Jose et al., 2015; 

Siradjuddin et al., 2018) have also been proposed for the 

control of the cart-inverted pendulum system. Linear control 

algorithms are, however, incapable of handling nonlinear 

systems where uncertainties and external disturbances are 

inherently present (Irfan et al., 2018). 

Another category of control schemes proposed for the 

cart-inverted pendulum system is the intelligent control (El-

Nagar et al., 2013; Yusuf and Magaji, 2014; Al-Mahturi et al., 

2019). However, while intelligent control schemes generally 

offer good performance for a wide range of uncertainties, their 

implementation requires some good computation power and 

intelligence (Duarte-Galvan et al., 2012). 

Hybrid control schemes (Urniežius and Gegužis, 2014; 

Patel and Borkar, 2017; Isa et al., 2019; Mahmoodabadi and 

Haghbayan, 2019) have also been proposed for the cart-

inverted pendulum system. Such schemes often involve a 

nonlinear control for swing-up and a linear control for 

stabilization. 

Finally, researchers have also proposed sliding mode 

control schemes (Yih, 2013; Irfan et al., 2018; Al-Araji, 2019). 

The advantage of sliding mode controllers is that they are 

simple to implement and they provide robust performance 

against uncertainties (Wang et al., 2013). 

The conventional SMC possesses a reaching phase during 

which the system’s response is affected by uncertainties. To 

eliminate the reaching phase and, thereby, ensure insensitivity 

of the system to uncertainties from the beginning and 

throughout the entire system’s response, the integral sliding 

mode control (ISMC) scheme was proposed (Edwards et al., 

2014). 

Although ISMC schemes are simple to design, the 

analytical techniques for designing them is time-consuming 

and may not yield optimal design variables especially when 

dealing with uncertain and nonlinear control systems. 

Consequently, there is a need to employ the nature-inspired 

metaheuristic techniques (Okwu and Tartibu, 2021) to obtain 

optimal design parameters for the ISMC schemes. Among 

metaheuristic algorithms, PSO is gaining a lot of attention in 

the control community because of its simplicity, ease of 

implementation, and fast convergence in finding high-quality 

solutions (Bejarbaneh et al., 2018). 

This paper proposes a PSO-based integral sliding mode 

control (PSO-ISMC) scheme for the cart-inverted pendulum 

system. The aim is to employ a PSO algorithm to search for the 

optimal design parameters of the ISMC to improve the 

transient performance of the control system while still 

retaining its robustness property. In this design, the nonlinear 

dynamic models of the cart-inverted pendulum system are 

used. The approach presented by Yih (2013) for design of 

sliding surfaces is adopted in this work. By using a switch, two 

identical integral sliding mode controllers with different sets of 

sliding surface parameters are used; one for swing-up control 

and the other for stabilization. Optimal values of the 

parameters of the sliding surface are obtained using particle 

swarm optimization (PSO) technique. PSO requires a fitness 

function. In this paper, the objective function is a minimizing 

function which is a linear combination of the integral square 

error (ISE), integral absolute error (IAE), integral time square 

error (ITSE), and integral time absolute error (ITAE) 

performance indices, using appropriate weighting factors. 

The rest of the paper is organized as follows: Section II 

presents the model of the cart-inverted pendulum system and 

details the design of the control technique under study while 

Section III discusses the results obtained via simulations. 

Finally, Section IV concludes the paper. 

 

II. METHODOLOGY 
 

A. Dynamic Model of the Cart-Inverted Pendulum System 

       The dynamics of the cart-inverted pendulum system 

(Figure 1) can be described using Euler-Lagrange equations of 

motion (Siradjuddin et al., 2017). Let 𝑥1 = 𝜃, 𝑥2 = 𝑥, 𝑥3 =
�̇�1, and 𝑥4 = �̇�2, then in state-space the model of the cart-

inverted pendulum system is: 

 

 

Figure 2: Dynamics of the CIP system (𝛉(𝟎) = 𝟎 𝐫𝐚𝐝𝐬). 
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[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

𝑥3

𝑥4

𝑓1
𝑓2

] + [

0
0
𝑔1

𝑔2

] 𝑢(𝑡)     (1a) 

𝑦 = [
1 0 0 0
0 1 0 0

] [

𝑥1

𝑥2

𝑥3
𝑥4

]         (1b) 

where: 

𝑓1 =
1

∆
(𝑏𝑐𝑔 sin𝑥1 + 𝑐𝜇𝑥4 cos 𝑥1 − 𝑐𝑤 cos𝑥1

− 0.5𝑐2𝑥3
2 sin 2𝑥1) 

𝑓2 =
1

∆
(𝑎𝑐𝑥3

2 sin 𝑥1 + 𝑎𝑤 − 𝑎𝜇𝑥4 − 0.5𝑐2𝑔 sin2𝑥1) 

𝑔1 = −
1

∆
(𝑐 cos 𝑥1) 

𝑔2 =
1

∆
(𝑎) 

𝑎 = 𝑚1𝑙
2 + 𝐽 , 𝑏 = 𝑚2 + 𝑚1 , 𝑐 = 𝑚1𝑙  and ∆= 𝑎𝑏 −

𝑐2𝑐𝑜𝑠2𝑥1. 

Note that 𝑢(𝑡) is the control signal applied to the cart, 𝜇�̇� 

represent frictional forces between the wheels of the cart and 

the track (where 𝜇 (𝑁𝑠/𝑚) is the coefficient of viscous friction 

on the wheels of the cart), and 𝑤  represents external 

disturbances. 

Equations (1a) and (1b) are in the form of �̇� = 𝒇(𝒙, 𝑡) +
𝒈(𝒙, 𝑡)𝒖, 𝒚 = 𝒄𝒙 where 𝒙 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇  is the 

state vector, 𝒖 is the control input, 𝒇 is a nonlinear function of 

the state variables (including uncertainties and external 

disturbances �̃�), 𝒈 is the nonlinear input matrix, 𝒚 is the output 

and 𝒄 is the output matrix. The pendant position of the cart-

inverted pendulum system is (𝑥1, 𝑥2, 𝑥3, 𝑥4) =
(𝜋, 𝑥2𝑑 , 0, 0)  while the unstable equilibrium point is 

(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (0, 𝑥2𝑑 , 0, 0)  where 𝑥2𝑑  is the desired 

position of the cart. 

B.  Integral Sliding Mode Control Design 

Sliding mode control (SMC) theory aims at forcing the 

state trajectories of the plant to converge to a predefined sliding 

surface and “slide” along the sliding surface until the 

equilibrium point is reached, by applying a discontinuous 

control signal (Shtessel et al., 2014). The structure of the 

sliding mode control scheme is made up of two components, 

and may be expressed as 𝑢 = 𝑢𝑒𝑞 + 𝑢𝑠𝑤 , where 𝑢𝑠𝑤  is the 

switching control signal which drives the trajectory of the 

system to a carefully designed sliding surface, (𝜎0 = 0), and 

𝑢𝑒𝑞  is the so-called equivalent control action (Soon et al., 

2017) which ensures that the system trajectory stays on the 

sliding surface after reaching it. The switching function, 𝜎0, is 

generally defined as: 

𝜎0 = (
𝑑

𝑑𝑡
+ 𝜆)

𝑛−1
𝑒                       (2) 

where 𝑛  is the order of the system, 𝜆  is a positive constant 

which determines the slope of the sliding surface, and 𝑒 is the 

tracking error signal.The main feature of this approach is that 

once the plant’s states reach the sliding surface, the system 

becomes immune to external disturbances (Zhang et al., 2019). 

However, during the reaching phase of the conventional sliding 

mode control, invariance of the system’s response to external 

disturbances is not guaranteed (Pan et al., 2017). 

To eliminate the reaching phase of the traditional sliding 

mode control and ensure that the system is immune to external 

disturbances from the beginning of its response, integral 

sliding mode control (ISMC) scheme (Hamayum et al., 2016) 

has been proposed. ISMC assumes that a nominal plant exists, 

for which a state feedback control 𝑢0  has already been 

designed to ensure asymptotic stability of the closed-loop 

system. A discontinuous control 𝑢1  is then “added” to the 

nominal state feedback control to ensure that, in addition to the 

nominal performance, bounded uncertainties are compensated 

for without a reaching phase. The structure of the ISMC may, 

therefore, be expressed as: 

 

𝑢 = 𝑢0 + 𝑢1            (3) 

 

In ISMC, the switching surface is chosen as in Eq. (4). 

 

𝜎 = 𝜎0 + 𝑧             (4) 

 

where 𝜎0 is the conventional sliding manifold given in (2), and 

𝑧 introduces the integral term in the sliding surface. 

Let 𝑒1 = 𝑥1 − 𝑥1𝑑  be the error in the angle of the 

pendulum and let 𝑒2 = 𝑥2 − 𝑥2𝑑 be the error in the position of 

the cart, where 𝑥1𝑑 and 𝑥2𝑑 are the desired performances of the 

system. The cart-inverted pendulum system may be viewed as 

a combination of two second-order subsystems with the states 

(𝑥1, 𝑥3) and (𝑥2, 𝑥4). Then, we can define two time-varying 

sliding surfaces 𝜎1 = �̇�1 + 𝜆1𝑒1  and 𝜎2 = �̇�2 + (𝜆2 𝜆3⁄ )𝑒2 , 

where 𝜆1, 𝜆2, 𝜆3 ∈ ℝ+. 

If we choose the desired position of the cart as 𝑥2𝑑 = 0 

so that the unstable equilibrium position becomes (0, 0, 0, 0) 

and if we choose 𝜆3 as a coupling parameter (Yih, 2013) for 

combining 𝜎1 and 𝜎2, then we can propose the conventional 

sliding surface as presented in Eq. (5). 

 

𝜎0 = 𝜎1 + 𝜆3𝜎2 = 𝑥3 + 𝜆1𝑥1 + 𝜆3𝑥4 + 𝜆2𝑥2       (5) 

 

Hence, the integral sliding manifold in (4) becomes: 

 

𝜎 = 𝑥3 + 𝜆1𝑥1 + 𝜆3𝑥4 + 𝜆2𝑥2 + 𝑧          (6) 

 

Taking the time derivative of (6) yields: 

 

�̇� = �̇�3 + 𝜆1�̇�1 + 𝜆3�̇�4 + 𝜆2�̇�2 + �̇�          (7)  

 

Substituting (1a) and (3) into (7), yields Eq. (8). 
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�̇� = 𝑓1 + 𝜆3𝑓2 + 𝜆1𝑥3 + 𝜆2𝑥4 + (𝑔1 + 𝜆3𝑔2)𝑢0 +
(𝑔1 + 𝜆3𝑔2)𝑢1 + �̇�          (8) 

 

During sliding, 𝜎 = �̇� = 0  and the equivalent control 

term 𝑢1𝑒𝑞  associated with the discontinuous control 𝑢1  is 

expected to match the effects of the uncertainties in 𝑓1 and 𝑓2. 

Therefore, we can write 

 

𝑢1𝑒𝑞 = −(
𝑓1+𝜆3𝑓2

𝑔1+𝜆3𝑔2
)           (9) 

�̇� = −𝜆1𝑥3 − 𝜆2𝑥4 − (𝑔1 + 𝜆3𝑔2)𝑢0       (10) 

 

Hence, from (8) we can write 

 

�̇� = 𝑓1 + 𝜆3𝑓2 + (𝑔1 + 𝜆3𝑔2)𝑢1        (11) 

 

Define the constant rate reaching law (Khan et al., 2014) as 

 

�̇� = −𝑄𝑠𝑖𝑔𝑛(𝜎)          (12) 

 

From (11) and (12), we obtain the discontinuous control 

component as 

 

𝑢1 = −(
𝑓1+𝜆3𝑓2+𝑄𝑠𝑖𝑔𝑛(𝜎)

𝑔1+𝜆3𝑔2
)        (13) 

where the constant 𝑄 is the modulation gain (Shtessel et al., 

2014) which has to be made larger than the size of the 

uncertainty, and 𝑠𝑖𝑔𝑛(𝜎) is a signum function of 𝜎 defined by 

 

𝑠𝑖𝑔𝑛(𝜎) = {
1,                    𝑖𝑓 𝜎 > 0
−1,                𝑖𝑓  𝜎 < 0

       (14) 

𝑠𝑖𝑔𝑛(0) ∈ [−1, 1] 
 

From (4), we can write 

 

�̇�0 = �̇� − �̇�          (15) 

 

Therefore, during sliding (i.e. when 𝜎 = �̇� = 0), we can write 

 

�̇�0 = 𝜆1𝑥3 + 𝜆2𝑥4 + (𝑔1 + 𝜆3𝑔2)𝑢0       (16) 

 

To ensure that 𝜎0 eventually collapses into 𝜎, the nominal 

control action 𝑢0 that drives the conventional sliding variable 

𝜎0 is selected (Shtessel et al., 2014) as 

 

𝑢0 =
−𝐾𝜎0−𝜆1𝑥3−𝜆2𝑥4

(𝑔1+𝜆3𝑔2)
        (17) 

 

where 𝐾 > 0  and is defined as the nominal control gain. 

Therefore, the structure of the proposed ISMC for the cart-

inverted pendulum system is obtained as 

 

𝑢 = −(
𝐾𝜎0+𝑓1+𝜆3𝑓2+𝜆1𝑥3+𝜆2𝑥4+𝑄𝑠𝑖𝑔𝑛(𝜎)

𝑔1+𝜆3𝑔2
)  (18) 

 

To ensure a sliding mode from the beginning of the 

system’s response, we set 𝜎(0) = 0 so that from (4) we obtain 

 

𝑧(0) = −𝜎0(0)          (19) 

 

Let 𝑓1 and 𝑓2 be the estimates of 𝑓1 and 𝑓2 respectively. Then 

(18) can be rewritten as 

 

𝑢 = −(
𝐾𝜎0+�̂�1+𝜆3�̂�2+𝜆1𝑥3+𝜆2𝑥4+𝑄𝑠𝑖𝑔𝑛(𝜎)

𝑔1+𝜆3𝑔2
)        (20) 

where  

𝑓1 =
1

∆
(𝑏𝑐𝑔 sin 𝑥1 + 𝑐𝜇𝑥4 cos 𝑥1 − 0.5𝑐2𝑥3

2 sin 2𝑥1) 

and  

𝑓2 =
1

∆
(𝑎𝑐𝑥3

2 sin 𝑥1 − 𝑎𝜇𝑥4 − 0.5𝑐2𝑔 sin 2𝑥1) 

 

To check for the reachability of the control law, we introduce 

a Lyapunov function of the integral sliding variable as 

 

𝑉 =
1

2
𝜎2          (21) 

 

To take the sliding variable to zero in finite time by means 

of a control 𝑢, condition (22) has to be achieved. 

 

�̇� ≤ −𝜂|𝜎|          (22) 

 

where 𝜂 is a positive real scalar. 

The time derivative of (21) yields 

 

�̇� = 𝜎�̇� = 𝜎[𝑓1 + 𝜆3𝑓2 + 𝜆1𝑥3 + 𝜆2𝑥4 + (𝑔1 +
𝜆3𝑔2)𝑢 + �̇�]           (23) 

 

If we substitute (10) and (20) into (23) and if we let  

|𝑓1 − 𝑓1| ≤ 𝐹1 and |𝑓2 − 𝑓2| ≤ 𝐹2 then we can write 

 

�̇� ≤ |𝜎|(𝐹1 + 𝜆3𝐹2) − |𝜎|𝑄        (24) 

 

If the modulation gain 𝑄 is selected to satisfy the condition: 

 

𝑄 ≥ 𝐹1 + 𝜆3𝐹2 + 𝜂         (25) 

 

where 𝜂 > 0 is a real valued scalar, then we have from (24) 

that 

�̇� ≤ −𝜂|𝜎| < 0, 𝜎 ≠ 0         (26) 

 

Thus, reachability of the control law given in (22) is 

guaranteed. 

1) Design of sliding surface  

The choice of the switching constants ( λ1, λ2, and λ3) 

must be carefully made since the stability of the sliding motion 

depends on these parameters. 

From (1a), we may eliminate the control input so that we can 

write 

𝑔2�̇�3 − 𝑔1�̇�4 = 𝑔2𝑓1 − 𝑔1𝑓2        (27) 
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From the conventional sliding manifold, the sliding condition 

is �̇�0 = 0. Thus, from Eq. (5) we have 

 

�̇�3 + 𝜆3�̇�4 = −𝜆1𝑥3 − 𝜆2𝑥4        (28) 

 

Solving Eq. (27) and (28) simultaneously for �̇�3 and �̇�4 yields 

 

�̇�3 =
𝑔1(𝜆1𝑥3+𝜆2𝑥4)−𝜆3(𝑔2𝑓1−𝑔1𝑓2)

−(𝑔1+𝜆3𝑔2)
       (29) 

�̇�4 =
𝑔2(𝜆1𝑥3+𝜆2𝑥4)+𝑔2𝑓1−𝑔1𝑓2

−(𝑔1+𝜆3𝑔2)
       (30) 

Now, a Jacobian linearization (Perruquetti and Barbot, 

2002) of the system of nonlinear equations about the unstable 

equilibrium position yields 

 

𝛿�̇�1 = 𝐴1𝛿𝑋1          (31) 

 

where the Jacobian matrix 𝑨1 is obtained as 

 

𝑨1 =

[
 
 
 
 
 

0 0 1 0

0 0 0 1
−𝜆3𝑐𝑔

𝑐−𝜆3𝑎
0

−𝑐𝜆1

𝑐−𝜆3𝑎

−𝑐𝜆2

𝑐−𝜆3𝑎

𝑐𝑔

𝑐−𝜆3𝑎
0

𝑎𝜆1

𝑐−𝜆3𝑎

𝑎𝜆2

𝑐−𝜆3𝑎]
 
 
 
 
 

       (32) 

 

Let 𝑰𝜖ℝ4×4  be an identity matrix and let 𝑠  be the Laplace 

variable. Then, the characteristic equation is obtained as 

 

|𝑠𝑰 − 𝑨1| = 𝑠3 +
𝑐𝜆1−𝑎𝜆2

𝑐−𝜆3𝑎
𝑠2 +

𝑐𝑔𝜆3

𝑐−𝜆3𝑎
𝑠 +

𝑐𝑔𝜆2

𝑐−𝜆3𝑎
= 0

            (33) 

Using the Routh-Hurwitz approach (Burns, 2001) the 

stability conditions are obtained as follows: 

 

i. 
𝑐

𝑎
> 𝜆3 

ii. 
𝜆2

𝜆1
<

𝑐

𝑎
 

iii. 
𝜆2

𝜆1
< 𝜆3 

Conditions (i)-(iii) may be effectively combined to yield 

 
𝜆2

𝜆1
< 𝜆3 <

𝑐

𝑎
          (34) 

 

To swing the pendulum from its stable equilibrium 

position, the cart-pendulum system has to be destabilized to 

increase the oscillation of the pendulum about the stable 

equilibrium. Again, the Jacobian linearization of the nonlinear 

system about the stable equilibrium is 

𝛿�̇�2 = 𝐴2𝛿𝑋2          (35) 

where the Jacobian matrix 𝐴2 is found to be 

𝑨2 =

[
 
 
 
 
 

0 0 1 0

0 0 0 1
−𝜆3𝑐𝑔

𝑐+𝜆3𝑎
0

−𝑐𝜆1

𝑐+𝜆3𝑎

−𝑐𝜆2

𝑐+𝜆3𝑎

𝑐𝑔

𝑐+𝜆3𝑎
0

−𝑎𝜆1

𝑐+𝜆3𝑎

−𝑎𝜆2

𝑐+𝜆3𝑎]
 
 
 
 
 

       (36) 

Thus, the characteristic polynomial equation is  

|𝑠𝑰 − 𝑨2| = 𝑠3 +
𝑐𝜆1+𝑎𝜆2

𝑐+𝜆3𝑎
𝑠2 +

𝑐𝑔𝜆3

𝑐+𝜆3𝑎
𝑠 +

𝑐𝑔𝜆2

𝑐+𝜆3𝑎
= 0 (37) 

Using the Routh-Hurwitz approach, we observe that the 

system will be destabilized if 

𝜆3 <
𝜆2

𝜆1
           (38) 

The signum function described in (14) causes control 

chattering and the system may become unstable. One solution 

to this problem is to approximate the signum function by some 

smooth function (Shtessel et al., 2014). Thus, a saturation 

function is chosen to replace the signum function so that the 

control law in (20) is approximated to 

𝑢 = −(
𝐾𝜎0+�̂�1+𝜆3�̂�2+𝜆1𝑥3+𝜆2𝑥4+𝑄𝑠𝑎𝑡(𝜎)

𝑔1+𝜆3𝑔2
)       (39) 

where 𝑠𝑎𝑡(𝜎) is a saturation function of the sliding variable 𝜎 

and is described by 

𝑠𝑎𝑡(𝜎) = {
𝜎,                        𝑖𝑓 |𝜎| ≤ 1

𝑠𝑖𝑔𝑛(𝜎),            𝑖𝑓 |𝜎| > 1
       (40) 

 

2) Optimization of the ISMC using PSO Algorithm 

In the design of the ISMC (39), any choice of 

𝜆1, 𝜆2, 𝜆3, 𝐾, 𝑄 ∈ ℝ+  (such that 𝑄  is greater than the 

magnitude of the disturbance and 
𝜆2

𝜆1
< 𝜆3 <

𝑐

𝑎
) will guarantee 

stability of the system. However, optimal selection of these 

parameters will help to improve the overall system 

performance. Thus, in this paper, PSO algorithm is used to 

optimize the ISMC parameters to suit the peculiarities of the 

cart-inverted pendulum. The objective function in this 

optimization problem incorporates ISE, IAE, ITSE, and ITAE 

so that both errors that persist for a long duration and those 

occurring for a short duration are equally penalized. Thus, the 

objective function in this optimization problem is formulated 

as: 

𝐹 = ∫ (𝑤1𝑒
2(𝑡) + 𝑤2|𝑒(𝑡)| + 𝑤3𝑡𝑒

2(𝑡) +
𝑇

0

𝑤4𝑡|𝑒(𝑡)|)𝑑𝑡          (41) 

 

where 𝑇 is the time when the response reaches steady state and  

𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 ∈ [0, 1]  are positive real constants which 

denote the weighting factors. The tracking error in the angle of 

the pendulum is:  

𝑒1(𝑡) = 𝑥1 − 𝑥1𝑑          (42) 

 

and the tracking error in the position of the cart is 

 

𝑒2(𝑡) = 𝑥2 − 𝑥2𝑑          (43) 
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The optimization objective is to minimize F subject to 

𝜆1 > 0, 𝜆2 > 0, 𝜆3 > 0, 𝑄 > 0, 𝐾 > 0, and (𝜆2 𝜆1⁄ ) < 𝜆3 <
(𝑐 𝑎⁄ ). Specifically, the chaos-based PSO algorithm, proposed 

by Hong et al.(2016), is used in this work. In this algorithm, 

the velocity and the position of a particle are updated as in (44) 

and (45), respectively. 

 

𝑣𝑖(𝑡 + 1) = 𝜒[𝜔𝑣𝑖(𝑡) + 𝑐1(𝑃𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑥𝑖(𝑡)) +

𝑐2(𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))]        (44) 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)        (45) 

 

where 𝑃𝑏𝑒𝑠𝑡(𝑡) is particle’s previous best position, and 𝑔𝑏𝑒𝑠𝑡  is 

the global best position in the swarm. The parameters 𝜒, 𝜔, 

𝑐1, and 𝑐2 are the constriction coefficient, the inertia weight, 

the cognitive coefficient, and the social coefficient, 

respectively, and are expressed as follows: 

 

𝜒 = 2 (𝜙 − 2 + √𝜙2 − 4𝜙)⁄         (46) 

 

𝜔 = 0.5 × 𝑟𝑎𝑛𝑑(⋅) + 0.5 × 𝑧(𝑡 + 1)       (47) 

 

𝑐1(𝑡) = 𝑐1𝑓 −
t

maximum iterations
(𝑐1𝑓 − 𝑐1𝑖)       (48) 

 

𝑐2(𝑡) = 𝑐2𝑖 +
t

maximum iterations
(𝑐2𝑓 − 𝑐2𝑖)       (49) 

 
where  

𝜙 = 𝑐1 + 𝑐2          (50) 

 

and 𝑧 is the sine chaotic map given by 

 

𝑧(𝑡 + 1) = |sin (
𝜋𝑧(𝑡)

𝑟𝑎𝑛𝑑()
)|         (51) 

 

Table 1 shows the values of the parameters used in the 

algorithm while the algorithm of the PSO variant used is 

described by the flowchart of Figure 3. 

III. RESULTS AND DISCUSSION 

 

In this section, the performance of the proposed control 

scheme on the control of the cart-inverted pendulum system is 

evaluated and the control scheme is validated by comparing its 

performance with that of the classical ISMC. The cart-inverted 

pendulum system whose parameters are shown in Table 2 was 

considered. 

 

A. Performance Evaluation of the PSO-ISMC 
 

The parameters 𝜆1, 𝜆2, 𝜆3, 𝑄, and 𝐾 formed the variables 

for the optimization. In order to constantly satisfy the 

stabilization condition in (34), the boundary conditions of the 

variables are chosen as [𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 𝑄𝐿 𝐾𝐿] =
[2 0.1 0.5 0 0]  and [𝜆1𝑈 𝜆2𝑈 𝜆3𝑈 𝑄𝑈 𝐾𝑈] =
[10 0.9 (𝑐/𝑎) − 0.0001 100 100]  

Table 1: PSO parameters used. 

S/No Parameter name Value used 

1. 

2. 
3. 

4. 

5. 

Cognitive factor (𝑐1) 

Social factor (𝑐2) 

Maximum iteration 

Number of variables 

Number of particles 

4.5 to 2.5 

2.5 to 4.5 
150 

5 

50 

 

 
 

Table 2: Parameters of the CIP (Yih, 2013) 

Parameter Symbol Value 

Mass of the cart 

Mass of the pendulum 
Acceleration of gravity 

Coefficient of friction on the wheels 

of the cart 
Moment of inertia of the pendulum 

Length of the pole 

𝑚2 

𝑚1 

𝑔 

 

𝜇 

 

𝐽 

𝑙 

12.5 𝑘𝑔 

2.5 𝑘𝑔 

9.81 𝑚/𝑠 

 

0.5 𝑁𝑠/𝑚 

 

0.099 𝑘𝑔𝑚2 

0.5 𝑚 

 

Start

Initialize control parameters (46), 

(47), (48), (49) and (51)

Initialize population of particles with 

random positions and velocities

Evaluate initial fitness of each particle 

and select Pbest and Gbest

Set iteration count t=1

Update the cognitive and social learning 

coefficients using (48) and (49)

Update velocity and position of 

each particle (44), (45)

Evaluate fitness of each particle 

and update Pbest and Gbest

Update the sine chaotic map and chaos 

random inertia weight (51), (47)

t=t+1

Return Gbest and optimum values 

of variables

End

Is t<=Maxite?
Yes

No

 

Figure 3: Flowchart of  PSO algorithm (Hong et al., 2016). 
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where the subscript 𝐿  denotes the lower boundary and the 

subscript 𝑈 denotes the upper boundary. A maximum of 150 

iterations were performed and the PSO algorithm converged to 

the best fitness function value of 39.24. The convergence 

characteristic of the PSO algorithm for the first 110 iterations 

is shown in Figure 4. 

For the stabilization of cart-inverted pendulum system, 

the PSO converged to optimal values 𝜆1 = 3.8794 , 𝜆2 =
0.4191 , 𝜆3 = 0.8288 , 𝑄 = 83.2513 , and 𝐾 = 99.5374  for 

the ISMC parameters while for the swing-up control, 𝜆1 = 2, 

𝜆2 = 12, and 𝜆3 = 2.5  was selected for the sliding surface to 

satisfy condition (38). The disturbance signal 𝑤 =
2 sin 50𝑡  𝑁 was created to test for robustness of the control 

scheme.  

     The results of the proposed PSO-ISMC for the control of 

the cart-inverted pendulum system are shown in Figures 5 and 

6. Figure 5(a) illustrates that the proposed control scheme can 

stabilize the pendulum at 𝜃 = 0 radians once the pole is found 

near the unstable equilibrium point. Figure 5(b) shows that the 

control scheme can simultaneously move the cart to its 

reference position even in the presence of matched 

uncertainties. In Figure 5(c), it is observed that a sliding mode 

is initiated from the beginning of the response of the system. 

     This ensures insensitivity of the system to uncertainties 

throughout the response of the control system. The use of the 

saturation function has also attenuated the chattering 

phenomenon as shown in Figure 5(d). 

 

 

 
Figure 4: Convergence characteristic of the PSO algorithm. 

Table 2: Parameters of the CIP (Yih, 2013). 

Parameter Symbol Value 

Mass of the cart 

Mass of the pendulum 

Acceleration of gravity 

Coefficient of friction on the wheels 

of the cart 

Moment of inertia of the pendulum 

Length of the pole 

𝑚2 

𝑚1 

𝑔 

 

𝜇 

𝐽 

𝑙 

12.5 𝑘𝑔 

2.5 𝑘𝑔 

9.81 𝑚/𝑠 

 

0.5 𝑁𝑠/𝑚 

0.099 𝑘𝑔𝑚2 

0.5 𝑚 

 

 

Figure 5: PSO-ISMC for stabilization of the CIP system 

(𝒙𝟏 (𝟎) = 𝝅/𝟑 rads). 
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(a) 

 

For swing-up and stabilization of the cart-inverted 

pendulum system, the two sets of parameters are used so that 

the controller switches from the swing-up parameters to the 

stabilization parameters when 𝜃 ≈ 0 radians and stabilizes the 

pendulum at the unstable equilibrium position (Figure 6(a)). 

Again, Figure 6(b) shows that the cart is returned to its initial 

position as desired. 

 

B. Validation of the Proposed PSO-ISMC 

To validate the proposed control scheme, the 

performance of the designed PSO-ISMC is compared with that 

of the classical ISMC on the control of a chosen cart-inverted 

pendulum system.  

In this comparison, the swing-up parameters 𝜆1 = 2 , 

𝜆2 = 12, and 𝜆3 = 2.5 are used for the two controllers. For 

stabilization control, however, the optimal parameters 𝜆1 =
3.8794, 𝜆2 = 0.4149, 𝜆3 = 0.8288, 𝑄 = 83.2513, and 𝐾 =
99.5374 are utilized for the PSO-ISMC while the parameters 

𝜆1 = 5 , 𝜆2 = 0.5 , 𝜆3 = 0.4  (selected to satisfy the 

stabilization condition (39)), 𝑄 = 5, and 𝐾 = 40 are used for 

the classical ISMC. The magnitude of the input disturbance is 

also maintained at 𝑤 = 2 sin 50𝑡  𝑁 . Figure 7 and Figure 8 

compare the performances of the ISMC and PSO-ISMC on the 

control of the cart-inverted pendulum system whose 

parameters are listed in Table 2. 

On the stabilization of the pendulum at 𝜃 = 0  radians 

(Figure 7(a)), the settling time with the proposed PSO-ISMC 

is 1.5 seconds while the ISMC achieves the same stabilization  

task with a settling time of 9.6 seconds. Again, on the control 

of the cart position (Figure 7(b)), the PSO-ISMC is able to 

return the cart to its initial position in 4.3 seconds while the 

ISMC attains same steady-state in 12.1 seconds. Figure 8(a) 

illustrates the ability of the controllers to swing the pendulum 

up from 𝜃 = 𝜋 radians and stabilize it at 𝜃 = 0 radians with no 

steady-state error. However, with the basic ISMC, the 

maximum track length requirement for the movement of the 

cart is 8.18 𝑚 whereas the PSO-ISMC requires a maximum 

track length of 2.59 𝑚 for the movement of the cart as shown 

in Figure 8(b). This represents 68.34% reduction in the 

required maximum length of the track. 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 7: Stabilization of the cart-inverted pendulum 

system (𝒙𝟏(𝟎) =
𝝅

𝟑
 rads). 

 
(a) 

 
(b) 

Figure 6: PSO-ISMC for swing-up and stabilization of the CIP 

system. 

 
(b) 
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(b) 

Figure 8: Swing-up and stabilization of the cart-inverted 

pendulum system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

This study proposed a PSO-ISMC scheme for swing-up 

and stabilization of the cart-inverted pendulum system. The 

swing-up and stabilization conditions of the control system are 

determined using the internal dynamics of the cart-inverted 

pendulum system and sliding mode dynamics. Since the 

integral sliding surface design does not specify unique values 

for the parameters of the sliding manifold, particle swarm 

optimization algorithm was used to search for optimal values 

for the ISMC stabilization parameters. Validation results 

revealed that the proposed PSO-ISMC scheme yields 

improvements (in overshoots, settling time and track length 

requirement) over the conventional ISMC on both the swing-

up and stabilization of the cart-inverted pendulum system as 

desired. 
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