Finite Element Simulation of a Taylor Bubble in Two-Phase Gas-Liquid Slug Flows using Petrov-Galerkin Formulation
Abstract
Petrov-Galerkin finite element scheme for systematic analysis of the dynamics of a rising Taylor bubble and general free surface flow problems is derived and implemented. The validity of the scheme is confirmed by simulating the buoyancy-driven motion of a Taylor bubble through a stagnant Newtonian liquid in a vertical pipe characterised by dimensionless inverse viscosity number and Eötvös number of magnitude 111 and 189, respectively. Comparison of the numerical results for the steady state features defining the nose, film, and bottom regions around the bubble with the experiment shows a good agreement between the numerical simulation and the experiment. The percentage deviation of the numerical computed rise velocity, equilibrium film thickness, and stabilisation length ahead of the bubble from the experimental determined values are 8.4%, 2.3%, and 9.5%, respectively.
In accordance with the Copyright Act of 1976, which became effective January 1, 1978, the following statement signed by each author must accompany the manuscript submitted: "I, the undersigned author, transfer all copyright ownership of the manuscript referenced above to the Nigerian Journal of Technological Development, in the event the work is published. I warrant that the article is original, does not infringe upon any copyright or other proprietary right of any third party, is not under consideration by another journal, and has not been published previously. I have reviewed and approve the submitted version of the manuscript and agree to its publication in the Nigerian Journal of Technological Development." A copyright transfer form may be downloaded from the NJTD Website (http://njtd.com.ng/index.php/njtd). Author(s) will be consulted, whenever possible, regarding republication of material. All authors must have access to the data presented and the authors and sponsor (if applicable) must agree to share original data with the editor if requested.