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Figure 1: Gas well experiencing liquid loading (Waltrich et al., 2015). 

 

ABSTRACT: Liquid loading is an undesired phenomenon in gas wells that occurs when producing wells attain a flow 

rate below which liquid will not be able to flow to the surface. The inability of the energy from the gas to transport the 

liquid to the surface causes back flow and eventual accumulation of liquid at the wellbore. This is characterised by 

intermittent flow, which, if left unchecked, can eventually kill the well. An effective and reliable predictive method 

must therefore, be employed. In this study, improved models based on data set from condensate/water in a gas well 

were developed by applying firefly (FA) and particle swarm optimisation (PSO) algorithms. The results showed that 

the model developed outperform many of the existing models. The models predicted liquid loading in gas well at 86% 

level of accuracy compared to the 81% highest possible from published models. Although, the FA and PSO models 

predicted liquid loading at higher accuracy compared with Turner and Coleman models for higher wellhead pressure 

systems, the Coleman model appeared to perform better in the prediction of critical gas rate for low-pressure systems. 

However, the developed model can significantly improve the prediction of liquid loading in gas wells at a higher 

reliability and accuracy levels. Thus, the proposed models can be a veritable tool for accurately predicting liquid 

loading in gas wells. 
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I. INTRODUCTION 

Gas wells experience decline in production during their 

lifetime due to reservoir pressure depletion. As the natural 

energy keeps depleting the gas flow from the wells decreases 

and a point is reached when the gas will be unable to transport 

the co-produced liquid, resulting in back flow and the liquid 

accumulates down hole. This phenomenon  has been described 

as liquid loading (Lea et al., 2008). The accumulated liquid 

sometimes flows backward to the formation when the 

bottomhole pressure is greater than the pressure near wellbore 

area. As the near wellbore pressure becomes sufficiently lower, 

the fluid starts to flow again to the surface thereby causing the 

well to start producing again. This cyclic phenomenon is as 

shown in Figure 1. It is undesirable and can cause intermittence 

production which is unfriendly to topside facilities. 

Liquid loading negatively affects gas wells production 

capacity and thus should be diagnosed early enough and 

adequate measures deployed for its mitigation. The production 

impairment occurs as liquid accumulates leading to increased 

bottomhole pressure. This eventually cause production to cease 

and ultimately kill the well and significant volume of gas then 

remain unproduced. It can also lead to increased operational 

cost in unloading the liquid. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

 

The mechanism for the initiation of liquid loading has 

been extensively studied. Turner et al. (1969) posited that 

liquid loading is a consequence of backward flow through the 

tubing which occurs either as liquid film or entrained droplet. 

They conducted series of tests and analysis with field data and 

concluded that the backward flow was anticipated when 

entrained droplet occurs. Turner et al. (1969) model, hereafter 

referred to as Turner Model, gives the following critical 

velocity: 
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 𝑉𝑐(𝑤𝑎𝑡𝑒𝑟) = 5.304
 (67−0.0031𝑃)

1
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√0.0031𝑃
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  𝑉𝑐(𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒) = 4.03
 (45−0.0031𝑃)

1
4⁄

√0.0031𝑃
 𝑓𝑡/ sec              (2) 

Where Vc is the critical velocity, P is the pressure. 

However, some researchers proposed that liquid will flow 

backward as film droplet rather than the entrained droplet (Luo 

et al., 2014; Westende et al., 2007). Veeken et al. (2010) and 

Belfroid et al. (2008) assumed that loading will start when a 

film droplet occurs in the wellbore while Shekhar (2017) 

considered backward fall of liquid film as the initiator of liquid 

loading. This view was supported by Waltrich (2015)  who 

investigated liquid behaviour in the tubing system and reported 

that a film when formed will fall backwards as the gas rate 

changes in the wellbore. 

Coleman et al. (1991) predicted the critical rate to 

maintain low-pressure gas wells from loading without the 20 

% adjustment by Turners model, hereafter referred to as 

Coleman Model. They suggested that gas wells having gas-

liquid ratios below 22.5 bbl/MMscf have no impact in 

determining when liquid loading starts.  

More recently, attention has been given to liquid loading 

in deviated wells. Chen et al. (2016) examined deviating wells 

and assumed that tubing is composed of gas at the centre and 

film deposited on the walls of the tubing. They analysed the 

force acting in the tubing and therefore developed a correction 

term to compare their model with Turner and Belfroid models. 

Their model was reported to outperform both Turner and 

Belfroid models. Ming & He (2017) performed an experiment 

in deviated and horizontal wells. They reported that film will 

be formed in such wells and that the film will drop down in the 

tubing to initiate loading. They considered that the influence of 

inclination angle and Reynold number will affect the critical 

rate. Thus, they developed another model that determines the 

critical rate for deviated wells in transition or turbulence 

regime. Wang et al. (2010) used the shape model of the 

entrained droplet with a different drag coefficient value to 

deduce a new formula for the calculation of critical rate.  

The use of nodal analysis for liquid loading prediction has 

been extensively researched. Nallaparaju (2012) predicted 

liquid loading using nodal analysis by comparing the critical 

velocity graphs obtained by Turner et al. (1969), Coleman et 

al. (1991), Nosseir (1997) and Shekhar et al. (2017). They 

concluded that the Turner model gave an accurate critical 

velocity compared to others and that Turner model also gave a 

better prediction of liquid loading. Also, Izuwa et al. (2015) 

used the Nodal system analysis approach by considering the 

operating conditions such as tubing head flowing pressure, 

gas-liquid ratio in their study and later discovered that the gas 

velocity is affected by these conditions. Pagan & Waltrich 

(2016) recommended a simplified transient model which 

makes use of nodal technique without considering critical 

velocity concept. This model predicted liquid loading and its 

characteristics.  

Although significant progress has been made in the 

prediction of liquid loading, it appears little or nothing has been 

done in the application of data-driven techniques. Data driven 

approaches have continued to gain application in the oil and 

gas studies. This is because they provide opportunity of using 

computational intelligence to establish connections between 

the system state variables without overt knowledge of the 

physics behind such phenomenon unlike mechanistic models. 

They can also provide intelligent, cost-efficient and robust 

alternative and demonstrate superior performance to several 

empirical correlations and mechanistic models 

(Mohammadpoor et al., 2010).   Few authors have used 

artificial neural network models for the prediction of liquid 

loading in gas wells (Khamehchi et al., 2014;Osman et al., 

2002; Ghadam and Kamali, 2015).  

Firefly algorithm is a nature-inspired and intelligent 

technique developed based on the natural behaviour and 

luminary flashing patterns of fireflies (Yang, 2010). 

Inherently, fireflies are attracted to one another by their flash 

signals and the brighter the flash, the stronger the attraction. 

The brightness is evaluated as objective function. FA is based 

on two important parameters, first is the variation in light 

intensity and second is the formulation of attractiveness. It is 

assumed that attractiveness of firefly 𝛽 is determined by its 

brightness which is connected with the objective function. 𝛾 - 

light absorption coefficient plays a crucial role in determining 

the speed of convergence and how FA algorithm behaves. It 

also characterizes the variation of the attractiveness and it 

varies from 0.1 to 10. If 𝛾 is zero, the attractiveness and 

brightness of all fireflies is constant and there is no decrease in 

attractiveness. However, as higher values of 𝛾 are applied the 

attractiveness and brightness of each individual firefly 

decreases significantly over quite small distances. 𝛼 – 

randomization, essentially control the randomness or the 

diversity of solutions (Arora and Singh, 2013).  

 On the other hand, Particle Swarm Optimisation (PSO) 

is a random search optimisation that is based on movement, 

intellect behaviour and patterns of swarms. It is a population-

based stochastic optimization algorithm  (Wang et al., 2018; 

Talukder, 2011). Optimization-based data-driven algorithms 

have been reported to possess superior performance compared 

with other classes of data driven techniques (Ehinmowo et 

al.,2019).Despite the reported advantages of data-driven 

models, optimization algorithms such as Fire fly algorithm 

(FA) and particle swarm optimization techniques (PSO) have 

not been previously explored. Hence, the need to explore them 

for phenomenon like liquid loading. In this study, the 

predictive capability of these techniques was investigated and 

new models developed 
 

II. MATERIALS AND METHODS 

      This study aims at developing data driven optimised 

models to determine the critical gas rate for 106 data sets used 

by Turner et al. (1969) from a condensate/water gas well. This 

study employed 56 data sets from  Coleman et al. (1991)  to 

validate the new model proposed in this study. The original 

equations used to evaluate the fitness function are presented 

here as Eqs. (3) and (4) and the critical rate as Eq. (5). 

𝑉𝑐(𝑤𝑎𝑡𝑒𝑟) = 𝐵1

 (67 − 0.0031𝑃)
1

4⁄

√0.0031𝑃
                      (3)   

 

𝑉𝑐(𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒) = 𝐵2

 (45 − 0.0031𝑃)
1

4⁄

√0.0031𝑃
               (4) 
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Figure 2: Flowchart of Firefly algorithm. 

   𝑄𝑔 =  
3060 ×𝑃 ×𝐴 × 𝑉𝑐

(𝑇 +460)×𝑍
                                       (5) 

 

where Qg is the critical gas flow rate, MMSCFD 

 

Firefly algorithm and Particle Swarm Optimisation are both 

used in this study. Both algorithms are applied to determine the 

optimal values of parameters B1 and B2 in equation (3) and (4) 

that minimises the difference in the error (i.e. MSE) between 

the actual 𝑄𝑗𝑔.𝑎𝑐𝑡𝑢𝑎𝑙 and predicted 𝑄𝑗𝑔.𝑝𝑟𝑒𝑑 critical rate and n 

is the number of flow data. The mean square error (MSE) is 

given as: 

           𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑄𝑗𝑔.𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑄𝑗𝑔.𝑝𝑟𝑒𝑑)2𝑛

𝑗=1                (6)  

 

A.  Optimization algorithms 

1.) Firefly algorithm  

Firefly algorithm is based on behaviour and patterns of fireflies 

(Yang 2010). The firefly’s flash produces a signal that attracts 

other fireflies; brighter fireflies are more attractive to other 

fireflies. The brightness is evaluated as objective function.  

After initialisation, the light intensities of each of the fireflies 

are determined to evaluate the brightness (or attractiveness) of 

all the fireflies which are then shortened and ranked based on 

the intensity of the light. After ranking of the fireflies, the 

position of the fireflies are updated. Finally after updating,  the 

limit is checked as there might be new position of fireflies 

outside the defined limit (Kumar et al., 2018). The workflow 

for the implementation of firefly algorithm is shown in Figure 

2. 

 

The distance between fireflies is given as (Arora & Singh, 

2013): 

                                𝑟𝑘,𝑙 =  ‖𝑿𝑘 −  𝑿𝑙‖                               (7) 

 

The movement of fireflies due to their difference in brightness 

is given as (Arora & Singh, 2013):  

 

                 𝑋𝑘
𝑚+1 =  𝑿𝑖

𝑚 +  𝛽𝑜𝑒−𝛾𝑟𝑘,𝑙
2

(𝑿𝑘 − 𝑿𝒍) +  𝛼𝜖𝑖       (8) 

 

 

2). Particle swarm optimization 

Particle Swarm Optimisation (PSO) is a random search 

optimisation that is based on movement, intellect behaviour 

and patterns of swarms (Talukder, 2011). PSO was originally 

discovered by Kennedy and Eberhart (1995). Particle Swarm 

Optimisation has p population size. Each population has its 

own position 𝑋𝑗
𝑚, velocity 𝑉𝑗

𝑚, personal and global best (𝑃𝑏𝑗
𝑚 

and 𝐺𝑏𝑗
𝑚). The parameters assigned to the PSO are the 

acceleration elements 𝑎1 and 𝑎2 and the inertia weight 𝜔. The 

population are then initialised in a search space by random 

generation. After initialisation, the position, velocity, personal 

and global bests are updated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to Alam (2016) the updated position 𝑋𝑗
𝑚+1  

and velocity 𝑉𝑗
𝑚+1 are given as: 

 

𝑉𝑗
𝑚+1 =  𝜔 ∗ 𝑽𝑗

𝑚 + 𝑎1 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑃𝑏𝑗
𝑚 − 𝑿𝑗

𝑚) +

                           𝑎2 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ (𝐺𝑏𝑗
𝑚 −  𝑿𝑗

𝑚)                    (9)  

 

                  𝑋𝑗
𝑚+1 =  𝑿𝑗

𝑚 + 𝑉𝑗
𝑚+1                                          (10) 

                             

The workflow for the implementation of PSO is shown in 

Figure 3. 

 

B.  Field data used for this study 

The data used for this study were the 106 data sets used by 

(Turner et al., 1969) from a condensate/water gas well and 56 

data sets from  Coleman et al. (1991)  were used to validate the 

new model proposed in this study. Statistical analysis of the 
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Figure 3: Flowchart of Particle Swarm Optimisation (Wang et al., 2018). 

Table 1: Statistical Summary of the 106 Data Sample of the Condensate/Water Gas Well. 

Parameter 
Production 

depth (ft) 

Wellhead 

pressure (psia) 

Condensate yield 

(bbl/MMScf) 

Water yield 

(bbl/MMScf) 

Test flow 

(MSCfd) 

Mean 7503.55 2336.76 28.74 2.58 3920.83 

Median 7410.5 2193.5 12.20 0 3406 

S.D 2273.76 1452.94 35.63 8.02 2531.34 

Minimum 2250 108 0 0 400 

Maximum 11850 8215 130.80 45.10 11767 

Range  9600 8107 130.80 45.10 11367 
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data points from the tests was performed using the IBM SPSS 

statistical software package (2017) and the results are 

summarized in Tables 1 and 2.  The mean test flow rate of the 

test data is 3920.83 MSCF/D with a standard deviation of  

 

 

 

 

 

 

 

 

 

 

2531.341 MSCF/D. The detailed data set can be found in 

Turner et al. (1969) and Coleman et al. (1991).  

 

C.  Procedure for Critical Rate Prediction using Firefly 

Algorithm/Particle Swarm Optimization Algorithm 
 

Implementing firefly/particle swarm optimisation 

algorithm to optimize Eqs. (3) and (4) consist of the following 

steps:  

Step 1: The FA/PSO parameters were selected 

Step 2: The predicted critical rate was calculated for each 

sample data in the FA/Swarm population applying the 

optimal values 𝐵1 𝑎𝑛𝑑 𝐵2. 

Step 3: The fitness function for each sample data was 

calculated. MSE is the objective function FA/PSO is 

aimed to minimise. 

Step 4: Each sample was ranked in the population ascending 

according to its fitness function and the firefly/swarm 

position updated. 

Step 5: Steps 2 to 4 were repeated for the next and subsequent 

iterations until all the specified iterations are completed. 

Step 6: The lowest MSE and the best optimal values obtained 

in the last iteration were recorded and used to calculate 

equation (3) and (4) to evaluate the critical rate. 

Step 7:  The algorithm was repeated several times to verify it 

is converging to a stable solution. 

Step 8: The FA/PSO codes were run and values of 𝛾, 𝛼, 𝛽 ,𝑁 

and 𝑇 were varied to establish the best outcome. 

Matlab codes were developed to implement these algorithms. 

In summary,  the Turner data sets was used by the 

optimization algorithms to estimate the values of the 

parameters B1 and B2 by minimizing MSE between the Turner 

data sets and the prediction from equation 5. Afterwards, the 

estimated parameters are then used in equations 3 and 4 to 

predict the Coleman data sets, and comparison is made with 

the actual field data. 

 

D. Statistical Analysis for the Determination of Model 

Accuracy  

In this study, confusion matrix measures were evaluated 

to determine the accuracy, uncertainty of the FA and PSO 

models for predicting liquid loading. This technique is best 

suited for summarizing the performance of a classification 

algorithm. The confusion matrix shown in Table 3 and other 

statistical measures presented in Tables 5 and 8 were used to 

characterise the performance of the developed models. Eqs. 

(11) - (17) were used to obtain the statistical measures. They 

help in confirming if the well predicted as loaded is indeed 

loaded or not. 
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Table 2: Statistical summary of the 56 data sets for validation. 

Parameter Production 

depth (ft) 

Wellhead 

Pressure (psia) 

Condensate yield 

(bbl/MMScf) 

Water yield  

(bbl/MMScf) 

Test Flow  

(MScfd) 

Mean 6868.70 149.43 2.71 4.28 524.29 
Median 6652 130 2.40 3.05 538 

S.D 1174.91 101.31 2.77 4.73 190.87 

Minimum 4680 39 0 0 90 
Maximum 9445 495 14.8 17.6 1072 

Range  4765 456 14.8 17.6 982 

 
Table 3: Confusion matrix table. 

 Actual 

Positive Negative  

Predicted Positive TP FP 

Negative  FN TN 

 

 

Table 4: Firefly algorithm parameters used to 

predict the critical gas rate. 

Parameter Value 

𝛼 0.2 

𝛽 1 

𝛾 2 

Varmin 1.5 

Varmax 1.9 

𝑁 40 

𝑇 500 

 

Table 5: Statistical indices for FA model. 

Measures FA Turner 

et al. 

Coleman 

et al 

Error rate (ERR) 0.144 0.267 0.188 
Accuracy 0.856 0.733 0.811 

Sensitivity 0.784 0.378 0.676 

Specificity (or selectivity) 0.906 0.981 0.906 

Precision (Positive 

predictive value) 

0.853 0.933 0.833 

False positive rate 0.094 0.019 0.094 
False negative rate 0.216 0.622 0.324 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

ERR =  
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
                                     (11) 

 

ACC =   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
                                      (12) 

 

 

SN =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
                                                                  (13)  

 

SP =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                (14) 

 

 

PREC =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                              (15) 

 

        FPR =  
𝐹𝑃

𝑇𝑁+𝐹𝑃
                                                                (16)  

 

FNR =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
                                                                 (17) 

 

where TP is the true positive, TN is the true negative, FP is 

false positive and FN is false negative. 
 

III. RESULTS AND DISCUSSION 

A. An improved Model using Firefly Algorithm 

For the firefly algorithm model, the parameters assigned 

to the FA were the absorption coefficient 𝛾, randomisation 

coefficient 𝛼, maximum attractiveness 𝛽, number of 

fireflies 𝑁, Varmin (lower bound of unknown variables), 

Varmax (upper bound of unknown variables) and maximum 

generation 𝑇. These parameters have significant effects on the 

performance of FA. A detailed study on their effects has been 

carried out by Arora and Singh (2013). In this study, after 

various trial, the performance was analysed by evaluating the 

fitness function in terms of the mean square error (MSE) in 

finding the optimal values of the unknown variables in the 

critical gas rate equation and the parameters employed are 

shown in Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result obtained suggested the optimal values for 

𝐵1 𝑎𝑛𝑑 𝐵2 coefficient and the resulting model for FA are 

presented as Eqs. (18) and (19). 

  𝑉𝑐(𝑤𝑎𝑡𝑒𝑟) = 4.1747
 (67 − 0.0031𝑃)

1
4⁄

√0.0031𝑃
 𝑓𝑡/𝑠𝑒𝑐          (18) 

𝑉𝑐(𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒) = 3.733
 (45 − 0.0031𝑃)

1
4⁄

√0.0031𝑃
 𝑓𝑡/ sec    (19) 

The developed model predicted liquid loading at 86% 

percent accuracy level compared with 73% and 81% for Turner 

et al. (1969) and Coleman et al. (1992) respectively as shown 

in Table 5 while the error rate for the FA model was 14% the 

Turner and Coleman models are 27% and 19%  

correspondingly. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows the comparison of the developed FA model 

with Coleman et al. (1991), Turner et al. (1969) models and the 

actual field data used by Coleman et al. (1991. The figure 

revealed that the values of critical gas rate predicted by the 

Turner’s model was the highest compared to the FA and 

Coleman models. This is in consonance with Chen et al. (2016) 

that reported that the Turners model overpredicts critical gas 

velocity. Although the critical gas velocity predicted by the FA 
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Figure 4: Validation of FA prediction of critical rate compared with published models and field data. 

 

Figure 5: Liquid loading prediction by Firefly algorithm (FA) modelbased on Turner et al. (1969) data. 

 

Table 6: Confusion matrix for FA model liquid 

loading. 

 Actual rate 

Loading  Unloading  

Predicted 

rate 

Loading  29 5 

Unloading  8 48 

 

 

model was higher than the Coleman’s, its liquid loading 

predictive capability was superior.  

Figure 5 shows that indeed some wells predicted to be 

loaded are not and those predicted to be unloaded were loaded. 

Table 6 shows that the model predicted 29 loaded wells 

correctly compared with 14 wells for Turner et al. The 

remaining 16 data were categorised as questionable. The 

results were observed to be better than the results from Chen et 

al. (2016) where 28 wells were correctly predicted. This  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

confirms that Turner model over predict the critical gas 

velocity (Chen et al.2016; Coleman et al.1991). 

 

B. An improved Model using Particle Swarm Optimization 

Algorithm 

For the Particle Swarm Optimisation model, the parameters 

assigned to the PSO were the number of swarm size 𝑁, Varmin 

(lower bound of unknown variables), Varmax (upper bound of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unknown variables) maximum generation 𝑇, acceleration 

elements 𝑎1 and 𝑎2 and the inertia weight 𝜔. These parameters 

have significant effects on the performance of PSO. A detailed 

study on their effects has been reported in Wang et al. (2018). 

In this study, after various trials, the performance was analysed 

by evaluating the fitness function in terms of the mean square 

error (MSE) in finding the optimal values of the unknown  
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Table 7: PSO parameters used to predict the critical gas rate. 

Parameter Value 

𝑎1 2 

𝑎2 2 

𝜔 1 

Varmin 0 

Varmax 4 

𝑁 40 

𝑇 500 

 

 

 

Table 8: Statistical indices for PSO model. 

Measures PSO Turner 

et al. 

Coleman 

et al 

Error rate (ERR) 0.144 0.267 0.188 

Accuracy 0.856 0.733 0.811 
Sensitivity 0.784 0.378 0.676 

Specificity (or selectivity) 0.906 0.981 0.906 

Precision (Positive 
predictive value) 

0.853 0.933 0.833 

False predictive value 0.094 0.019 0.094 

False negative rate 0.216 0.622 0.324 
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Figure 6: Validation of PSO prediction of critical rate compared with published models and field data. 

variables in the critical gas rate equation and the parameters 

used are shown in Table 7. 

 

 

 

 

 

 

The result obtained suggested the optimal values for 

𝐵1 𝑎𝑛𝑑 𝐵2 coefficient, which are used to obtain the PSO 

model given as equations (20) and (21): 

 

𝑉𝑐(𝑤𝑎𝑡𝑒𝑟) = 4.1747
 (67 − 0.0031𝑃)

1
4⁄

√0.0031𝑃
 𝑓𝑡/𝑠𝑒𝑐           (20) 

 

 𝑉𝑐(𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒) = 3.716
 (45 − 0.0031𝑃)

1
4⁄

√0.0031𝑃
 𝑓𝑡/ sec   (21) 

 

Interestingly, the PSO model and the FA models were 

identical and their performance same. This may be due to the 

similarity in both algorithms as a little change in the 

constitutive equation of FA corresponds to the PSO and their 

abilities to minimise the MSE. Table 8 shows the statistical 

indices for the various models with PSO having the least error 

rate 14.4 % followed by Coleman et.al 18.8% and Turner et. al 

26.7%.  The better results obtained for PSO and FA models in 

this study may be due to the superior performance of 

optimization-based data-driven algorithms compared with 

other classes of techniques (Ehinmowo et al., 2019).  

Figure 6 shows the comparison of the developed PSO 

model with Turner et al. (1969), Coleman et al. (1991) model 

and the actual field data used in Coleman. The trend here is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

similar to Figure 4 and as can be seen, the PSO and Coleman 

models predicted the critical gas rate lower than the Turner 

model which had earlier been reported to overpredict the gas 

critical rates. Although, the Coleman model prediction of the 

critical gas rate appears closer compared with the FA and PSO, 

this can be traced to the significant difference in the wellhead 

pressure and tubing sizes of the wells from where the Turners’ 

and Colemans’ data were obtained. The average tubing size of 

0.084ft2 and 0.033ft2 and Pressure values of 2336.76 and 

149.43 Psia for Turner and Coleman respectively.  

Figures 7(a), (b) and (c) show the test flow rate compared 

to the predicted critical rate of the PSO, Turner and Coleman 

models respectively The area above the diagonal line is the 

unloading region while the area below the line is the loaded 

region. Turner model predicted 24 wells incorrectly; Coleman 

model predicted 19 wells incorrectly, while the Particle Swarm 

Optimisation models predicted 13 wells incorrectly when 

compared to the test flow model. The well is said to be loaded 

up if the test rate is less than a model’s critical rate when the 

well status is loaded or both are in the same status (as in loaded 

up) else, said to be unloaded. The model developed in this 

study performed at the same level as Guo et al. (2006) where 

13 wells were incorrectly predicted. 
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Figure 7 (a): Liquid loading prediction by PSO model. 

Figure 7(b): Liquid loading prediction by Coleman et al. model. 

Figure 7 (c): Liquid loading prediction by Turner et al. model. 
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IV. CONCLUSION 
The proficiency of data–driven model to predict liquid 

loading in gas wells was examined and the model developed 

based on the 106 data sets point adopted by Turner et al. (1969) 

and validated using the 56 data sets employed in Coleman et 

al.(1991). The data-driven model uses mean square error 

(MSE) as the objective function to minimise the error between 

the predicted and actual critical rate. Based on the findings 

from this work, the following conclusions can be drawn: 

a) The data-driven models can serve as useful tools in 

predicting liquid loading in gas wells. 

b) These models can outperform some published models 

with 86% accuracy compared with 81 and 73% accuracy 

for previous models, Coleman and Turner respectively 

and are at par with Guo et al. (2006). 

c) The FA and PSO models developed in this study 

performed at the same accuracy level of 86%. 

d) Although, the FA and PSO models predicted liquid 

loading at higher accuracy compared with Turner and 

Coleman models for higher wellhead pressure systems, 

the Coleman model appeared to perform better in the 

prediction of critical gas rate for low-pressure systems. 

e) Comparing the data-driven model with previous models, 

the data-driven model developed in this study can greatly 

improve the prediction of liquid loading in gas wells at a 

higher reliability and accuracy levels. The data-driven 

model could therefore be used as veritable alternatives for 

liquid loading prediction in gas wells.  

f) The application of these models may be useful for liquid 

loading prediction in deviated wells and this is a subject 

of further studies. 

 
NOMENCLATURE 

FA - firefly algorithm 

PSO - particle swarm optimization 

bbl – barrel                          

𝑉𝑐 – critical velocity 

𝜎 – interfacial tension 

𝜌𝑙  – liquid density 

𝜌𝑔 – gas density 

𝑋𝑗
𝑚- particle position 

 𝑉𝑗
𝑚 -  particle velocity 

𝑃𝑏𝑗
𝑚 - personal best 

𝐺𝑏𝑗
𝑚- global best  

𝑎1 and 𝑎2 - acceleration elements  

𝑋𝑗
𝑚+1  - updated position  

 𝑉𝑗
𝑚+1- updated velocity 

𝑄𝑔- critical rate 

𝑃 – pressure 

𝑇 – temperature 

𝑍 – compressibility factor 

MSE = Mean Squared Error 

n – Number of data set 

𝑄𝑗𝑔.𝑎𝑐𝑡𝑢𝑎𝑙 – measured critical rate 

𝑄𝑗𝑔.𝑝𝑟𝑒𝑑 – predicted critical rate 

IBM – International Business Machines 

SPSS – Statistical Package for the Social Sciences 

TP - number of correct predictions that an instance is positive 

TN - number of correct predictions that an instance is negative 

FP - number of incorrect predictions that an instance is positive 

FN - number of incorrect predictions that an instance is 

negative 

ERR - Error rate  

ACC - Accuracy  

SN - Sensitivity  

SP - Specificity  

PREC - Precision  

FPR - False Positive Rate  

FNR - False Negative Rate  

S.D – Standard Deviation 

𝐵1 𝑎𝑛𝑑 𝐵2 – empirical coefficient 

𝛾 - absorption coefficient  

𝛼 - randomization coefficient  

𝛽 - maximum attractiveness  

𝑁 - number of fireflies/swarms  
Varmin - lower bound of parameters 

Varmax - upper bound of parameters  

𝑇 - maximum generation 

𝜔 - inertia weight 
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