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ABSTRACT: In June 2018, iCog Labs held its second annual robosoccer competition which featured groups of 

humanoid robots playing soccer against each other. The authors were members of a team called upon to represent 

Nigeria with the University of Lagos at the competition which took place in Ethiopia. The work here presents a review 

of the approach taken to address the problem of automating robot coordination in real-world soccer applications. The 

design methodology relies on the Robot Operating System (ROS) as the platform upon which an asynchronous 

communication network between each robot and a central server is built. On the network, each robot is a node that 

consists of sub nodes for object detection and motion control. For object detection the work makes use of the you only 

look once (YOLO)v2 deep learning algorithm, and a simple decision-making algorithm for controlling vcv the robot 

based on the objects detected is devised. To quantify the object detection results, the common objects in context 

(COCO) evaluation metric is used. The results indicate an average recall and precision of 84% across different IOU. 

For qualitative results on the robot coordination in the ball’s direction, a reference to the open-source implementation 

of the work has been provided. 
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I. INTRODUCTION 

The 2018 iCog Makers Robo-Soccer Competition is one 

of a series of competitions held by the iCog Labs in Ethiopia 

with the aim of encouraging Africans to work towards the 

RoboCup goal of making robots capable of playing soccer 

against the FIFA 2050 World Cup human champions (Ferrein 

and Steinbauer, 2016). The competition (iCog Labs, 2018) 

required that participating groups hack RoboSapiens – human-

like toys designed by Mark W. Tilden – and by incorporating 

artificial intelligence, teach the robots to play soccer 

autonomously. 

The competition setup (iCog Labs, 2018) had teams from 

5 universities in Ethiopia, Kenya and Nigeria playing against 

one another. Each match had two teams of two robots each play 

against each other. The soccer pitch was artificial and green in 

colour with colour-coded posts and markers around the field. 

The ball was also coloured red for easy identification by robots. 

A game winner was decided by the number of goals scored in 

the match. If the match ended in a draw, then penalties were 

played without goalkeepers. 

For the hardware, the work makes use of the WowWee 

RoboSapien X, a bi-pedal robot capable of a range of human-

like actions like dancing, walking and other neck, arm or waist 

motions. The robot was designed as a toy by the WowWee 

Group Ltd. The robot was hacked and a Raspberry Pi 3 board 

was inserted for autonomous control of the robot, a Raspberry 

Pi camera for vision, and a servo motor to allow the robot to 

turn its camera around for a wider range of sight. For the 

software, the Robot Operating System (ROS) is used, an 

abstraction layer which provides libraries to handle 

communication among the robots. 

Recent work in robot coordination revolves around the 

use of reinforcement learning for training the robots in a 

simulated environment. In such studies, robot coordination 

relies on a reinforcement learning algorithm to make the right 

decision during a coordination task (Wang et al, 2020). Other 

studies address the coordination problem starting from the 

design and modelling phase of the robot, where consideration 

such as the anatomy of the robot is taken into consideration 

(Spensieri et al, 2021).  

The work presented in this paper approaches the problem 

by training the robots to detect objects in their environment, 

and communicate the detected objects to a master node. This 

master node is then tasked with directing their movements 

towards the detected object. After collating the inputs from the 

different robots, the master node would decide on what each 

robot should do as its next step. The communication between 

the master nodes and the robots was carried out using ROS. 

This paper describes the design, the implementation and 

results during the iCog Labs RoboSoccer competition. The 

paper also includes problems that were faced during 

implementation and suggest approaches to solve them.    

 
II. LITERATURE REVIEW 

A)  Robot Coordination 

While a lot of consideration must be put into the design 

of the individual humanoid robot in order to make it 

autonomous and human-like, the robots also must be designed 

in such a way that they are able to communicate, as soccer is a 
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Figure 1: Architecture of an artificial neural network showing various architectures including the convolutional neural network and recurrent 

neural networks. 

team game. This coordination might include passing, avoiding 

collision and electing who should go for the ball. Achieving 

coordination among robot players can be done by making them 

able to communicate over a network as well as visually by 

placing markers on teammate robots for identification (Xin et 

al, 2020). 

B)  Deep learning 

Deep learning is a subset of Machine learning (Lecun et 

al, 2015), that involves the design of artificial neural networks 

that are stacked in hierarchical layers. The “deep” in deep 

learning highlights the need to stack these neural network 

layers into many layers. Deep learning architectures have 

proven to be the state-of-the-art in computer vision tasks (such 

as object detection and classification) and natural language 

processing. An artificial neural network architecture consists 

of an input, a set of hidden layers and output (see Figure 1). 

Each hidden layer consists of weights that define output of the 

neural network (Zhang et al, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can summarize the working of a neural network with Eqn. 

(1). 

𝑦 = 𝑥𝑊𝑇 + 𝑏                                   (1)

       

In Eqn. (1), x is the input vector, W is the weight vector 

from the hidden layers, b is the bias needed to normalize the 

output y. Eqn. (1) describes the forward propagation of the 

neural network, the process of propagating the input through 

the neural network to get the output. One can view the neural 

network as a large function approximator that maps the input x 

to an output y. The goal, therefore, is to adjust the weights of 

the neural network so that it can correctly approximate the 

output y, given the input x. The backpropagation (backprop) 

algorithm provides a means to do this (Lecun et al 1988), one 

can summarize backprop with Eqns. 2, 3 and 4 below   

𝑒 = 𝑔(𝑥𝑊𝑇 + 𝑏)                  (2) 
𝜕𝑒

𝜕𝑥
=

𝜕𝑒

𝜕𝑦

𝑑𝑦

𝑑𝑊
                                                 (3) 

𝑤𝑖 ← 𝑤𝑖 − 𝛼
𝜕𝑒

𝜕𝑥
𝐿𝑜𝑠𝑠(𝑤𝑖)                                           (4) 

 

Using Eqn. (1), one can calculate the predicted output y. 

Then, using Eqn. (2), one can calculate the loss which gives us 

an empirical means of measuring how different the predicted 

output is from the ground truth. In Eqn. (2), the cost function 

g(y) enables us to compute the loss e. In Eqn. (3), one can 

compute the proportion to which each parameter of our neural 

network in Eqn. (1), contributes to the overall loss e. This 

process is achieved (using the chain rule of calculus) through 

the backprop algorithm where one can calculate the partial 

derivative of the loss with respect to the neural network 

parameters in Eqn. (3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, it is important to have a means by which one can 

adjust our neural network parameters once the proportion to 

which they contribute to the loss e has been found. One can use 

an optimization algorithm such as gradient descent to adjust 

the neural network parameters (Schmidt et al, 2021). In Eqn. 

(4), the weights of the neural network are adjusted by 

subtracting the partial derivative from Eqn. (3) from the current 

weight value. 
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C.  Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of 

neural network architecture that makes use of the convolution 

operator in its hidden layers (Lindsay, 2021). It takes 

advantage of the fact that the input consists of 2-dimensional 

data structure, and they constrain the architecture in a more 

sensible way. Unlike a regular Neural Network, the layers of a 

CNN have neurons arranged in 3 dimensions: width, height, 

depth. The word depth here refers to the third dimension of an 

activation volume, not to the depth of a full Neural Network, 

which can refer to the total number of layers in a network. In 

general, a CNN consists of 3 layers. 

 

 1) Convolutional 

Convolutional layers consist of a rectangular grid of 

neurons. It requires that the previous layer also be a rectangular 

grid of neurons. Each neuron takes inputs from a rectangular 

section of the previous layer; the weights for this rectangular 

section are the same for each neuron in the convolutional layer. 

Thus, the convolutional layer is an image convolution of the 

previous layer, where the weights specify the convolution filter 

(Zhou, 2020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, there may be several grids in each 

convolutional layer; each grid takes inputs from all the grids in 

the previous layer, using potentially different filters. 

 

2) Max-pooling  

After each convolutional layer, there may be a pooling 

layer. The pooling layer takes small rectangular blocks from 

the convolutional layer and subsamples it to produce a single 

output from that block. There are several ways to do this 

pooling, such as taking the average or the maximum, or a 

learned linear combination of the neurons in the block. 

 

3) Fully connected  

Finally, after several convolutional and max pooling 

layers, the high-level reasoning in the neural network is done 

via fully connected layers. A fully connected layer takes all 

neurons in the previous layer (be it fully connected, pooling, or 

convolutional) and connects it to every single neuron it has. 

Fully connected layers are not spatially located anymore, so 

there can be no convolutional layers after a fully connected 

layer. 

 

D. You Only Look Once (YOLO) Object detection 

YOLO is an object detection neural network architecture 

that is trained to identify viewpoint objects in an image 

(Redmon et al, 2016). The basic idea behind YOLO (Figure 3), 

is that the input image is divided into an S x S grid of cells. For 

each object that is present on the image, one grid cell is said to 

be “responsible” for predicting it. That is the cell where the 

center of the object falls into. 

Each grid cell predicts B bounding boxes as well as C 

class probabilities. The bounding box prediction has 5 

components: (x, y, w, h, confidence). The (x, y) coordinates 

represent the center of the box, relative to the grid cell. These 

coordinates are normalized to fall between 0 and 1. The (w, h) 

box dimensions are also normalized to [0, 1], relative to the 

image size. It is also necessary to predict the class probabilities, 

𝑃𝑟(𝐶𝑙𝑎𝑠𝑠(𝑖) | 𝑂𝑏𝑗𝑒𝑐𝑡). This probability is conditioned on the 

grid cell containing one object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2: Illustrating Gradient descent. 

 

Figure 3: An illustration of how the YOLO algorithm works (Redmon et al, 2016). 
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III.    METHODS 

The process of creating the robots for the iCog Labs 

RoboSoccer competition involved hacking into 3 WowWee 

Robosapiens X robots. The hardware setup (see Figure 4) for 

each included a Raspberry Pi 3 computer, 2 Raspberry Pi 

cameras (top and bottom), a power bank for power supply, a 

servo motor for turning the camera around to give a wider 

range of view, and a breadboard and jumper cables. 

 

 

 

 

 

 

 

 

 

 

 

The software setup involved installing the Raspbian OS on 

the Raspberry Pi computer on each robot, connecting them to 

a Wi-Fi network and installing ROS to handle networking. The 

ROS package was set up on a laptop to handle communication 

between the laptop and the robots. The following subsections 

discuss other components of our system in the following 

sections. 

A. Dataset Preparation 

To train an object detector to detect the ball and the goal 

post, a large dataset is required to train the YOLO model. Steps 

taken in the dataset preparation includes: 

1) Gathering the images 

The images for the dataset must be realistic with respect 

to the robot’s view of the ball and goal post. Therefore, to 

gather these images, multiple snapshots of the objects was 

taken using the camera strapped to the robot. This was done 

while controlling the robots to simulate a typical gameplay. 

As the robots moved around, the camera took snapshots of 

the objects on the field. Figure 5 shows examples of some of 

the gathered images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2) Preprocessing  

The preprocessing task is executed on the gathered images. 

The YOLO algorithm requires an XML file describing the 

coordinates of the desired object in the image. Thus, each 

image in the dataset was formatted using an XML file 

describing the coordinates of the ball and goal post in the 

image. The total dataset contained 3000 images. See figure 6 

for results from the object detection training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The hacking process involved bypassing the in-built 

Robosapiens microcontroller (shown in the image) and installing our 

own raspberry pi controller. 

Figure 5: Sample images gathered from the robot’s camera. 

 

Figure 6: Sample results from our object detection module for 

detecting the ball and goal post. 
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B. Object Detection Module 

The task for the object detection module is to identify the 

objects that are present in an image frame. With respect to the 

problem of robot soccer, this means that there is a need to be 

able to identify when a ball or a goal post is in an image frame. 

This task is non-trivial and involves a tedious process of 

preparing a training dataset, then training a deep neural 

network to perform the task.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The primary object detection technique used is the 

YOLOV2 algorithm (Redmon et al, 2017), algorithm 1 

outlines how YOLOv2 was used for the custom ball and goal 

post detection algorithm. 

In line 1 the compressed image frame is read and a call to 

the YOLOv2 object detection class is made in order to detect 

the objects in the image. Line 4 checks if the label for the object 

is “ball” or “post”, and the confidence is greater than 0.3. If 

line 4 is true, then the bounding box dictionary containing the 

coordinates of the bounding box for the object is created.  

 

C. Behaviour Control and Localization 

The behaviour control and localization of robots was 

handled by the master node. To determine the position of a 

robot, the data from the images captured by the robot were 

used. First, the robot captures its environment with its camera 

and then sends this data to the master node. The master node 

then performs object detection using OpenCV to detect the 

markers present in the image. Due to the 160-degree field of 

view of the Raspberry Pi camera, the robot is always able to 

see at least one marker. 

The master node uses the colour of the marker and the 

robot’s distance from it to determine where the robot is on the 

field. The master node also searches for the ball using the 

bottom camera. If the ball is in view, then the robot tries to 

move in the direction of the opponent’s post. Otherwise, the 

robot is sent a command to rotate around its axis and search for 

the ball again. 

To make the ball move towards the post, images from the 

top camera were analysed. If the post is detected in the image, 

then the robot is sent a command to move forward a few steps, 

then take new images to recalibrate its path. If the post is not 

in the image captured, then the robot is sent commands to 

rotate around the ball until the post is in view. 

To have higher chances of scoring, both teammates were 

allowed to go after the ball so that even if one robot lost the 

ball, the other would try to repossess it. When the ball was lost 

(out of reach of the robot or collected by the opponent), both 

teammates would also go towards it and try to get it back. 

 

D. Communication 

To make the robots communicate, ROS is installed on the 

Raspberry Pi 3 computer as well as on a master computer (a 

laptop). Each robot served as a node on the ROS network and 

sent image data to the master node at intervals. The master 

node used the received information to detect the objects around 

the robot and then plot a course of action for each robot. 

 
IV. RESULTS AND DISCUSSION 

  This section presents pictorial results of the robots during 

the testing stages of implementation and a few snapshots from 

the actual Robosoccer competition. The software 

implementation of the results can be found at the github 

repository (Repository, 2022). 

 

A. Robot Movement 

Figure 8 shows a snapshot of the robot movement on the 

field in the testing environment. The robot movement is guided 

by the detection of the ball. In the figure the robot closest to 

the ball (on the left) has detected the ball and is moving towards 

it while the robot on their far end of the pitch is searching for 

the ball. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

B. Robot Ball Passing 

The task of passing the ball was quite challenging for the 

robots because of the anatomy of the Robosapeian robots. 

However, it was possible for one robot to knock the ball in the 

direction of the other robot as illustrated in Figure 9. 

Sometimes the ball is knocked way out of the path of the 

receiving robot as shown in Figure 8. In such a scenario the  

Figure 7: An Algorithm describing the Object detection Module. 

 

Figure 8: Snapshot of the robots moving on the field. 
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receiving robot will have to resume searching for the ball and 

try to take possession of the ball once more.  

 

C. Robot Scoring 

In the competition as is that case in real-life soccer, a goal 

is scored when the ball is out over the goal line by the 

opponent. The competition also had the penalty option where 

the robot must move the ball over the goal line or successfully 

knock the ball over the goal line. Most matches were decided 

on penalties. Figure 10 shows one of the robots in the process 

of taking a penalty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This section presents pictorial snapshots of the robots 

during the testing stages of our implementation and a few 

snapshots from the actual Robosoccer competition. 

  

D.  Object Detection Performance 

So far in the previous subsections A through C, a pictorial 

representation of our results, Table 1 presents a quantitative 

analysis of results pertaining to the object detection task. In 

Table 1, the average precision and average recall are calculated 

using the COCO evaluation metrics (Lin et al, 2014). The 

results show that at a max detection of 100, the average 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

precision is above 84% across different Intersection of 

Union(s) (IOUs). This indicates that the model can accurately 

localize and detect the correct object in an image on average 

84 times out of 100 detections. The results for the average 

recall tell a similar story describing how accurate localization 

and detection across the object classes vary at different max-

detections. In summary both the average precision and recall 

indicate a very good performance for the object detection 

model. 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

This work presents a holistic overview of the various 

mechanisms implemented for the “ICog Labs Robosoccer 

competition”. To achieve robot coordination, an object 

detection driven mechanism is adopted that aims to first enable 

the robot to detect the ball then move in the direction of the 

ball. Thus, the robot is either in a ball searching phase where it 

is trying to detect the ball or a goal searching phase where after 

detecting the ball it attempts to move the ball to the goal post 

for a goal.  

The object detection modules guiding the behaviour of the 

robot rely on the efficiency of the YOLOv2 object detection 

model for detecting objects on the field such as the ball and 

goal post. Other challenges lay with the robot's anatomy where 

control of the ball was difficult because of the robot's curved 

feet, however due to the rule constraints of the Robosoccer 

competition, very little alterations could be done to the 

specified robots used in the work. Future work would focus on 

implementing an efficient tracking mechanism and a path 

planning mechanism. Regarding the competition, the current 

implementation was however relatively successful as the team 

was able to finish in the top 3 in the competition. 

 

Figure 9: The robots can pass to one another by knocking the ball 

in the direction of the other robot. 

Figure 10: The robot in the process of taking a penalty (in the 

competition). 

Metric IOU Area Max-

detection 

Value 

Average Precision 0.50:0.95 All 100 0.85 

Average Precision  0.50 All 100 0.80 

Average Precision 0.75 All 100 0.88 
Average Recall 0.50:0.95 All 1 0.79 

Average Recall 0.50:0.95 All 10 0.85 

Average Recall 0.50:0.95 All 100 0.89 

 

Table 1: A performance evaluation (COCO) of the YOLOv2 object 

detection showing the average precision and average recall 
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