
64 NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 13, NO. 2, DECEMBER 2016

*Corresponding author’s e-mail address: nazeez@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v13i2.4

ABSTRACT: Data compression is the process of reducing the size of a file to effectively reduce storage space and

communication cost. The evolvement in technology and digital age has led to an unparalleled usage of digital files in

this current decade. The usage of data has resulted to an increase in the amount of data being transmitted via various

channels of data communication which has prompted the need to look into the current lossless data compression

algorithms to check for their level of effectiveness so as to maximally reduce the bandwidth requirement in

communication and transfer of data. Four lossless data compression algorithm: Lempel-Ziv Welch algorithm,

Shannon-Fano algorithm, Adaptive Huffman algorithm and Run-Length encoding have been selected for

implementation. The choice of these algorithms was based on their similarities, particularly in application areas. Their

level of efficiency and effectiveness were evaluated using some set of predefined performance evaluation metrics

namely compression ratio, compression factor, compression time, saving percentage, entropy and code efficiency.

The algorithms implementation was done in the NetBeans Integrated Development Environment using Java as the

programming language. Through the statistical analysis performed using Boxplot and ANOVA and comparison made

on the four algorithms, Lempel Ziv Welch algorithm was the most efficient and effective based on the metrics used

for evaluation.

KEYWORDS: Data compression, lossless, evaluation, entropy, algorithm

[Received July 11 2016; Revised December 13 2016; Accepted December 20 2016]

I. INTRODUCTION

The need for data and information sent through various

means of communication needs to be depressed to a reduced

and yet compact form in very important. Compression of data

is the process of reducing the size of a data into a smaller but

yet a compact form. It is also the process of sinking large

storage of data in a way of reducing its communication cost.

Data compression which is also known as source coding

revolves around the reduction of bits in the original file size as

compared to the original state.

There are two forms of data compression; Lossless data

compression which exploits redundancy in a text data to

represent the data in a compact form without data loss e.g. text

data. Lossy data compression allows for the loss of data during

the process of compression.

In 1970s, software compression came to live in the advent

of Internet and subsequently online storage with the Huffman

encoding (invented by David Huffman who was studying

information theory at MIT) which is similar to Shannon-Fano

coding but different as its probability tree is built in a top-down

form(Mohammed and Ibrahiem , 2007). Abraham Lempel and

Jacob Ziv in 1977 came up with Lempel-Ziv algorithm which

was the first algorithm to use dictionary in compressing data

(Arup, et al., 2013). Since then, many variants of Lempel-Ziv

algorithm have grown from LZ77, LZ78, LZMA and LZX for

which most have faded after its invention.

The advent of this various compression techniques begs for

the need to evaluate Lempel-Ziv Welch algorithm, Shannon-

Fano algorithm, Adaptive Huffman algorithm and Run-Length

encoding for a proper test on their efficiency and effectiveness.

Against this backdrop, this work aims at providing

comprehensive details on the effectiveness and efficiency of

the algorithms base on the selected metrics for their evaluation.

II. DESCRIPTION OF LOSSLESS COMPRESSION ALGORITHMS

A. Entropy Based Encoding

This type of lossless data compression algorithm tallies

the number of occurrence of each character/symbol in the

original document. These unique characters are represented

with a new set of symbol generated by the algorithm. The

length of the newly generated symbols depends on the level of

occurrence of each symbol in the original document

(Kodituwakkuand Amarasinghe, 2015). Entropy based

encoding algorithm is also based on the statistical information

of the source file – looking at the rate of occurrence of a

particular character (Manas, et al., 2012). An example of this

algorithm is Shannon Fano encoding.

Entropy is the randomness of occurrence for a set of string

at a particular time.

Entropy can be defined as:

 𝐻(𝑠) = ∑(𝑃(𝑆)𝑙𝑜𝑔2
1

 𝑃(𝑆)
) (1)

N. A. Azeez*, A. A. Lasisi

Empirical and Statistical Evaluation of the

Effectiveness of Four Lossless Data Compression

Algorithms

Department of Computer Sciences, University of Lagos, Nigeria.

AZEEZ and LASISI: EMPIRICAL AND STATISTICAL EVALUATION OF THE EFFECTIVENESS OF ALGORITHMS 65

*Corresponding author’s e-mail address: olubunmimokuolu@yahoo.com doi: http://dx.doi.org/10.4314/njtd.v13i1.1

(Wang, 2011) where “S” is the set of probable states, and

P(S) is the likelihood of state

P(S) =
Compressed File Size

Length of Chracter
 (2)

B. Adaptive Huffman Encoding

Huffman encoding algorithm was invented by David

Huffman in the year 1951. This algorithm is an entropy based

algorithm mainly for lossless data compression. Character of

fixed length codes are substituted with variable length codes.

Huffman Encoding Algorithm is the process of using the

probability of occurrence of a symbol in the original source

document to create a code word for each character(Tamanna

and Sonia , 2014). Adaptive Huffman algorithm which is a

branch of Huffman Encoding algorithm creates a tree in a

bottom up form during the process of calculating characters

occurrence (Pooja, et al., 2015).

C. Shannon Fano Coding

Shannon Fano data compression algorithm was named

after Claude Shannon and Robert Fano after their efforts to

create an encoding procedure that will generate a binary code

treein a top-down form (Kannanand Murugan, 2012). The

algorithm which is entropy based and similar to Huffman

encoding algorithm evaluates a characters reoccurrence and

allocates a code word with corresponding code length.

D. Dictionary Based Encoding

This algorithm is also known as substituting encoding. It holds

a data structure called "dictionary" which contains strings. The

encoder of the algorithm in the process of compression

matches a substring in the original file to the string in the

dictionary (Manas, et al., 2012). If a match is found, the

encoder replaces the substring with a reference to the

dictionary.

E. Lempel Ziv Welch

Lampel Zev Welch was named after Abraham Lampel and

Jacob Zev worked on an LZ78 algorithm in 1977; Terry Welch

modified it in 1984 for implementation in an extraordinary

performance disk (Pooja, et al., 2015). It is a substitution

compression algorithm which creates an active dictionary with

a set of strings and thereby substitutes each corresponding

substring in the original files with the string in the dictionary.

The string in the dictionary acts as a reference to the substring

in the original document.

F. Run Length Encoding

Run Length encoding can be regarded as the simplest

lossless data compression algorithm. It processes a document

on number of “Runs” and “Non-Runs” (Shrusti, et al., 2013).

It simply counts the number of times a character occurs

repeatedly in the source file, for example, BOOKKEPPER will

be encoded as 1B2O2K1E2P1E1R. (Sebastian, 2003).

III. RELATED WORKS

 Arup, et al. (2013) presented a paper which was set with

the objective of examining the performance of various lossless

data compression based on different test files. Various metrics

were used to determine the level of performance of each

algorithm. Three lossless data compression algorithm, namely

Huffman encoding, Shannon Fano and LampelZiv Welch

(LZW) were implemented and examined. From the various

performance evaluation metrics carried out (compression ratio,

compression factor, entropy and code efficiency), LZW was

said to be slower, Shannon Fano has a higher average

decompression time. It was concluded that depending on the

various performance metrics, their performance varies. It was

recommended that more Lossy and lossless data compression

algorithm be examined in future while they should also be

tested on larger test files.

 Barath, et al. (2013) designed software, Domain "Sun Zip"

developed with Java programming language with the aim of

reducing the number of bit and byte representation of a

character. The software works by reducing the bit

representation of source file, lessens the disk storage space of

such data and thereby allows easy transmission over a network.

It was noted that other third party software such as WinRAR,

WinZip etc. poses some disadvantages and difficulties. The

software was developed using a lossless data compression

algorithm named Huffman encoding Algorithm. Some major

drawbacks were identified in the previous existing third party

software which are; Data insecurity, higher compression time

and monopoly in file extension.

 It was observed by SubhamastanRao, et al. (2011) that

speed (processing time) is the main challenge during the

separate process of data compression and encryption. The

paper focused on the need to combine these two processes

together thereby lessening the challenges. The idea behind this

combination was to add to data compression a pseudo random

shuffle. Shuffling of nodes in the tree of Huffman algorithm is

done to produce a single mapping of the Huffman table.

Decompression cannot be done once the Huffman table is

encrypted thus simultaneous encryption and compression is

achieved.

 Challenges facing the separate process of compression

and encryption ranges from low sped, acquiring more cost and

the computer having more processing time. These challenges

were the main reason behind combining compression and

encryption algorithms. Execution time of both process reduced

drastically and the new algorithm was deemed as good as other

common algorithm such as DES, RC5, etc.

 The approach improved the speed and also provided more

security. Enhancement is encouraged on this approach to

achieve more efficiency and the algorithm was said to be prone

to security attack. Hanaa, et al. (2015) observed that images

contain multiple redundancies from high correlation between

pixels which occupies a lot of space. Many algorithms have

been designed and developed to compress images. This

66 NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 13, NO. 2, DECEMBER 2016

*Corresponding author’s e-mail address: nazeez@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v13i2.4

research was based on analyzing all the image compression

algorithms and identifying the advantages and shortfalls. The

main objective of this research was to find a way of reducing

the amount of power consumed by redundant images.

 In the source data, three major types of data redundancy

were observed; Spatial redundancy, temporal redundancy and

spectral redundancy. Various processes involved in its image

compression included mapper, quantizer and entropy

encoding. The performance metrics used to measure the level

of efficiency of image compression were quality of image,

compression ratio, power consumption and speed of

compression which can be divided into two; computational

complexity and memory resources. During the course of

evaluation, it was reached that SPIHT is the best technique due

to its compactness and generation of low bit rate. Adaptation

of SPIHT for Wireless Media Sensor Network (WMSN) was

encouraged as an area to be researched upon.

 Suarjaya (2012) proposed a new data compression

algorithm "J BIT ENCODING" (JBE) which manipulates

every bit in a source file to minimize the data size without

losing any information. The algorithm was considered to be a

lossless data compression algorithm. The developed algorithm

was also compared with other algorithms to measure the level

of effectiveness and efficiency.

 Other algorithms used for the comparison are Run Length

encoding, Burrows wheeler transform, Move to Front (MTF)

and Arithmetic coding. The proposed algorithm with other four

algorithms were tested with five different data files. The results

were inconclusive due to the hybrid nature of test files used

e.g. document content included audio, text, and video. The

author recognizes the need for more review and research into J

Bit encoding algorithm.

 Lempel ZivWelch which was "incorporated as the

Standard of the consultative committee on International

telegraphy and telephony" was implemented with a little

modification. Simrandeep and Sulochana in 2012 designed the

dictionary of the algorithm based on "content addressable

memory array". Xilinx ISE simulation tool was used to derive

accurate performance measures. The algorithm which was

evaluated by a finite state machine technique achieved a

compression rate of 30.3% with 60.25% reduction in disk

storage. The result of the developed LempelZiv Welch data

compression algorithm assigned 5 bit to each character instead

of 7 bits. Various test data were used for the analysis.

 Pooja, et al. (2015) proposed a two stage data compression

algorithm OLZWH which used both Lempel Ziv Welch and

Adaptive Huffman encoding algorithm at the optimal level. In

the algorithm, dictionaries are formed for input character

symbols in two modes; set of indices and set of ASCII. OLZW

was applied to set of indices while Adaptive Huffman was

applied to ASCII code. The analysis were however unclear as

there is no detailed explanation and statistical interpretation of

the results obtained.

IV. DATA COMPESSION EVALUATION

TECHNIQUES/METRICS.

Various performance evaluations metric were used to

evaluate the four lossless data compression algorithms. The

implication of these values with respect to -114 dBm defined

by FCC as the criteria of the empty spaces for TV white space

(Nasir et. al., 2013) is that FCC has chosen additional sensing

margins of 27.3 dB and 3.3 dB in both cases of channel 31, but

the margin is 2.7 dB in the case of channel 10.

A. Compression Ratio

This was calculated by finding the ratio between the

compressed and original file.

Compression Ratio =
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝑆𝑜𝑢𝑟𝑐𝑒 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑆𝑖𝑧𝑒
 (3)

Source: Kodituwakkuand Amarasinghe, 2015

B. Compression Factor

This is the inverse of compression ratio which can be

calculated as:

Compression Factor =
𝑆𝑜𝑢𝑟𝑐𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑆𝑖𝑧𝑒
 (4)

C. Saving Percentage

According to Kodituwakku and Amarasinghe (2015),

Saving Percentage =
𝑆𝑜𝑢𝑟𝑐𝑒 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒−𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐹𝑖𝑙𝑒 𝑆𝑖𝑧𝑒

𝑆𝑜𝑢𝑟𝑐𝑒 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑆𝑖𝑧𝑒
% (5)

D. Compression and Decompression Time

This calculates the time taken for each algorithm to

compress file of a particular size and also to decompress same

file back to its original form. The time will be calculated in

Nanoseconds (Ns).

E. Entropy

Generally, entropy refers to disorder or uncertainty.

Entropy is used if the data compression algorithm is based on

statistical information of the source file. Two events happen in

a source document; an event that occurs rarely and the other

which occurs repeatedly. Entropy can be calculated

(Kodituwakku and Amarasinghe, 2015) as:

 𝐻(𝑠) = ∑(𝑃(𝑆)𝑙𝑜𝑔2
1

 𝑃(𝑆)
) (6)

where S is the set of probable states, and P(S) is the

likelihood of state.

F. Code Efficiency

Code efficiency can be defined as the percentage in ratio

between the source file entropy and the average code length of

the source file. It can be calculated as:

 𝐸 =
H(S)

L
 (7)

where E is the code efficiency, H(S) is the entropy and L is the

average code length.

Source: Kodituwakku and Amarasinghe, 2015.

AZEEZ and LASISI: EMPIRICAL AND STATISTICAL EVALUATION OF THE EFFECTIVENESS OF ALGORITHMS 67

*Corresponding author’s e-mail address: olubunmimokuolu@yahoo.com doi: http://dx.doi.org/10.4314/njtd.v13i1.1

G. Average Code Length

This can be defined as the average number of bits expected

to represent a single code word. For the length of the code word

in the source file is known, the average code length can be

calculated as (Kodituwakkuand Amarasinghe, 2015):

 L = ∑ p, l (8)

where p is the likelihood of occurrence of a particular symbol;

l is the length of a code word for a particular symbol.

V. IMPLEMENTATION, FINDINGS AND RESULTS

Four lossless data compression algorithms; two of

Entropy based data compression algorithm (Adaptive Huffman

compression algorithm and Shannon Fano compression

algorithm), Run Length encoding data compression algorithm

based on repetitive and redundancy values and a Dictionary

based data compression algorithm - Lempel Ziv Welch have

been implemented with Java programming language in the

NetBeans Integrated Development Environment (IDE) and are

tested against 10 text data with varied sizes. The data files are

in 145813 bytes, 3814642 bytes, 96166 bytes, 147456 bytes,

242819 bytes, 27031 bytes, 62976 bytes, 451793 bytes,

200438 bytes and 2928078 bytes. The test data also varies in

content as some are programming languages codes, numbers,

eBooks, previous past project and normally text data. The text

files are with the extension .doc, .docx, .txt, .pdf and .rtf

Also graphics and audio documents are tested for

Adaptive Huffman and Lempel Ziv Welch data compression

algorithm. The files are of 63101 bytes, 4568712 bytes, and

1122430 bytes for the graphics in .jpeg, .gif and .jpg format

and 8340775 bytes, 2279529 bytes for audio in .mp3

extension. Shannon Fano and Run Length data compression

algorithms do not work well for graphics and audio files. This

has been done to determine the algorithm with the most

maximal level of efficiency and effectiveness. Table 1

provides analysis of the four lossless compression algorithms

using various metrics for performance evaluation.

Going by the result in Table 1, Run Length compression

algorithm did not work well with the test data. Run Length

works well on repeated character and since all the data have

little or few repeated values, the compressed data increased

from that of the original data which isn’t the desired result

expected. The compressions ratio and factor are over the mark

while the saving percentage is negative all through. In File 1,

the compressed file size almost doubled the original file size.

LampelZiv Welch data compression algorithm makes use of a

dynamic dictionary. The result in Table 2 shows a very good

compression ratio. File 10 of Table 2 gives a saving percentage

of 78.19%. All the files compressed have a reduction in size as

compared to Run Length which increased in size. The lowest

saving percentage is 26.59%.The compression ratio and factor

of all files are quite good. The saving percentage is still

positive in the compression of picture and graphics. The

compression time is also within satisfaction. With this

algorithm, communication cost and storage space will be

reduced.

Implementation of Adaptive Huffman algorithm as shown

in Table 3 shows a dynamic tree for the traversal of nodes with

a relatively average saving percentage. The saving percentage

for the text document was as high as 63.53%. The algorithm

doesn’t work well with tabs as the compression of .docx file

has shown a low saving percentage. For example, File 3 has

0.21% while File 8 has- 0.13%. Adaptive Huffman

compression ratio of picture and audio file is very high as

shown in File 11 to File 15. The saving percentage for audio is

a bit higher than that of picture. Adaptive Huffman helps in

reducing file size of compressed data which helps to reduce

communication cost and storage space.

Shannon Fano which is a variant of Huffman Algorithm

has quite been known not to have a better code efficiency to

Adaptive Huffman. Results obtained as shown is Table 4 gives

all the files compression ratio to be above 100% which isn’t

efficient. The saving percentage is also in the negative state.

The compression factor is far low while the entropy is in the

range 7.0 to 8.0 bit per character. The algorithm doesn’t works

well with the test data.

Original/Source File Compressed File

File

No

File Type File Size

(byte)

No of

Characters

File Size

(byte)

Compression

Ratio

Compression

Factor

Saving

Percentage

Compression

Time (Ns)

1 Text.txt 145813 119498 280096 192.092612 0.520582 -92.092612 117805320

2 Text.pdf 3814642 190632 3960402 103.821066 0.963 -3.821066 28574764776

3 Text.docx 96166 134812 194907 202.677662 0.493394 -102.677662 265030951

4 Text.doc 147456 119903 245432 166.444227 0.600802 -66.444227 46255635

5 Text.pdf 242819 28735 451610 185.986270 0.537674 -85.986270 61262819

6 Text.txt 27031 21743 52942 195.856609 0.510578 -95.856609 74430256

7 Text.doc 62976 27542 87153 138.390816 0.722591 -38.390816 43526813

8 Text.docx 451793 885240 578932 128.140985 0.780390 -28.140985 76893549

9 Text.rtf 200438 40530 381690 190.427962 0.525133 -90.427962 77116678

10 Text.rtf 2928078 1985544 5747092 196.275224 0.509489 -96.275224 404530274

Table 1: Results for Run length encoding algorithm base on the metrics used.

68 NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 13, NO. 2, DECEMBER 2016

*Corresponding author’s e-mail address: nazeez@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v13i2.4

Original/Source File Compressed File

File

No

File Type File Size

(byte)

No of

Characters

File Size

(byte)

Compressi

on Ratio

Compressi

on Factor

Saving

Percentage

Compression

Time (Ns)

Entropy Code

Efficiency %

1 Text.txt 145813 119498 213557 146.459506 0.682783 -46.459506 632008452 6.2761 82.8753

2 Text.pdf 3814642 190632 5160402 135.278802 0.739214 -35.278802 37574764776 6.7655 84.6129
3 Text.docx 96166 134812 2578961 268.178046 0.037289 -168.178046 6660258056 7.9999 75.9012

4 Text.doc 147456 119903 158347 107.385932 0.931220 -7.385932 685743578 7.3829 84.8726
5 Text.pdf 242819 28735 356273 146.723691 0.681553 -46.723691 728021577 7.0912 80.8452

6 Text.txt 27031 21743 49894 184.580667 0.541769 -84.580667 189032759 7.7432 82.0126

7 Text.doc 62976 27542 117696 186.890244 0.535073 -86.890244 779840189 7.8921 82.8721
8 Text.docx 451793 885240 764562 169.228386 0.590917 -69.228386 867324476 7.8921 83.8710

9 Text.rtf 200438 40530 354252 176.738942 0.565806 -76.738942 314077893 7.9232 80.1939

10 Text.rtf 2928078 1985544 4744516 162.035164 0.617150 -62.035164 4104947185 7.6729 82.8907

Table 4: Results for Shannon Fano algorithm base on the metrics used.

Original/Source File Compressed File

File

No

File Type File

Size

(byte)

No of

Characters

File

Size

(byte)

Compression

Ratio

Compression

Factor

Saving

Percentage

Compression

Time (Ns)

1 Text.txt 145813 119498 58537 40.145255 2.490954 59.85 1818280253

2 Text.pdf 3814642 190632 2160402 56.634463 1.765709 43.37 18574764776

3 Text.docx 96166 134812 66322 68.966163 1.449986 31.03 901233950

4 Text.doc 147456 119903 47058 31.913249 3.133495 68.08 1612183652

5 Text.pdf 242819 28735 78166 32.191056 3.106453 67.80 1517335876

6 Text.txt 27031 21743 12257 45.344234 2.205352 54.66 307013484

7 Text.doc 62976 27542 25080 39.824695 2.511005 60.18 414828744

8 Text.docx 451793 885240 289979 64.184040 1.558019 35.82 2309066572

9 Text.rtf 200438 40530 66263 33.059100 3.024886 66.94 818822983

10 Text.rtf 2928078 1985544 638574 21.808640 4.585339 78.19 12503148589

11 Picture .jpg 63101 NA 46323 73.410881 1.362196 26.59 1336731046

12 Picture.jpeg 4568712 NA 2834401 62.039389 1.611879 37.96 27124451524

13 Picture.gif 1122430 NA 683645 60.907584 1.641832 39.09 4373213534

14 audio.mp3 8340775 NA 4627141 55.476152 1.802576 44.52 40555952684

15 audio.mp3 2279529 NA 1386837 60.838752 1.643689 39.16 11450106158

Table 2: Results for Lempel Ziv Welch algorithm base on the metrics used metrics used.

Table 3: Results for Adaptive Huffman Algorithm base on the metrics used.

Original/Source File Compressed File

File
No

File Type File Size

(byte)

No of

Characters

File Size

(byte)

Compression

Ratio

Compression

Factor

Saving

Percentage

Compression

Time (Ns)

1 Text.txt 145813 119498 90001 61.723577 1.620126 38.28 297175620

2 Doc.pdf 3814642 190632 3647056 36.47056 1.045951 63.53 1081429949

3 Text.docx 96166 134812 95971 99.797225 1.002032 0.21 51938673

4 Text.doc 147456 119903 79477 53.898790 1.855329 46.11 331428722

5 Text.pdf 242819 28735 155586 64.074887 1.560674 35.93 81607140

6 Text.txt 27031 21743 18014 66.642003 1.500555 33.36 32092003

7 Text.doc 62976 27542 44807 71.149327 1.405495 28.86 30690993

8 Text.docx 451793 885240 452383 100.1306 0.998696 -0.13 146173646

9 Text.rtf 200438 40530 138969 69.332661 1.442322 30.67 129791786

10 Text.rtf 2928078 1985544 1859653 63.511047 1.574529 36.49 714729168

11 Picture .jpg 63101 NA 63530 100.679862 0.993247 -0.67 190259256

12 Picture.jpeg 4568712 NA 4565140 99.921816 1.000782 0.08 1381189336

13 Picture.gif 1122430 NA 1123425 100.088647 0.999114 -0.08 436710648

14 audio.mp3 8340775 NA 8171960 97.976027 1.020658 3.03 2243053531

15 audio.mp3 2279529 NA 2274598 99.783683 1.002168 0.22 716609976

AZEEZ and LASISI: EMPIRICAL AND STATISTICAL EVALUATION OF THE EFFECTIVENESS OF ALGORITHMS 69

*Corresponding author’s e-mail address: olubunmimokuolu@yahoo.com doi: http://dx.doi.org/10.4314/njtd.v13i1.1

-200

-150

-100

-50

0

50

100

P
e
r
c
e
n

ta
g

e
 %

Test Data

RUN LENGTH LEMPEL ZIV WELCH ADAPTIVE HUFFMAN SHANNON FANO

VI. COMPARISON OF THE FOUR LOSSLESS DATA

COMPRESSION ALGORITHMS

The four lossless data compression algorithms which

results have been shown in Table 2 were compared based on

their saving percentage, compression ratio, compression time,

entropy and code efficiency. With the comparison shown in

Table 5 and graphical comparison result in Figure 1, it is shown

that Lempel Ziv Welch clearly has a better saving percentage

than the other algorithm compared though Adaptive Huffman

has a better saving percentage in Text2.pdf only.

 The closer the compression ratio is to “1%”, the more efficient

the algorithm is. In the result shown in Table 6 and its graphical

representation in Figure 2, Lempel Ziv Welch algorithm has a better

compression ratio in all test data except in Text2.pdf where

Adaptive Huffman algorithm has a better compression ratio. It can

be deduced that Lempel Ziv Welch has a better compression ratio

to other algorithm.

Table 7 shows the Analysis of Variance which was used to

deduce that there are significant difference in the mean value

of each of the algorithms. The above boxplot graph shows

Lempel Ziv Welch algorithm with a better saving percentage.

A. Comparison Based on Compression Ratio

The closer the compression ratio is to “1%”, the more

efficient the algorithm is. In the result shown in Table 6 and its

graphical representation in Figure 2, Lempel Ziv Welch

algorithm has a better compression ratio in all test data except

in Text2.pdf where Adaptive Huffman algorithm has a better

compression ratio. It can be deduced that Lempel Ziv Welch

has a better compression ratio to other algorithm.

B. Comparison Based On Compression Time

In the result shown in Table 7 and its graphical

representation in Figure 3, Adaptive Huffman has a better

compression time. The average compression rate of

524,325,363.1 Nanoseconds is regarded as the best. Lempel

Ziv Welch algorithm which has a better compression ratio and

saving percentage has the least good average compression time

of 8,374,475,588 Nanoseconds.

C. Comparison between Original and Compressed File

Sizes

In the result comparison showed at Table 8 and its

graphical representation in Figure 4, the original file sizes are

compared with the their corresponding compressed file sizes.

Lempel Ziv Welch algorithm has the lower rate of compressed

file size as compared to other in all test files.

Table 5: Comparison of the four lossless algorithms based on saving.

percentage.
 File Type RUN

LENGTH

LEMPEL

ZIV WELCH

ADAPTIVE

HUFFMAN

SHANNON

FANO

Text1.txt -92.092612 59.85 38.28 -46.459506

Text2.pdf -3.821066 43.37 63.53 -35.278802

Text3.docx -102.677662 31.03 0.21 -168.178046

Text4.doc -66.444227 68.08 46.11 -7.385932

Text5.pdf -85.98627 67.8 35.93 -46.723691

Text6.txt -95.856609 54.66 33.36 -84.580667

Text7.doc -38.390816 60.18 28.86 -86.890244

Text8.docx -28.140985 35.82 -0.13 -69.228386

Text9.rtf -90.427962 66.94 30.67 -76.738942

Text10.rtf -96.275224 78.19 36.49 -62.035164

Picture11 .jpg NA 26.59 -0.67 NA

Picture12.jpeg NA 37.96 0.08 NA

Picture13.gif NA 39.09 -0.08 NA

audio14.mp3 NA 44.52 3.03 NA

audio15.mp3 NA 39.16 0.22 NA

Figure 1: Graphical Comparison of saving percentage for the four lossless algorithms.

70 NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 13, NO. 2, DECEMBER 2016

*Corresponding author’s e-mail address: nazeez@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v13i2.4

VI. CONCLUSION

A study and evaluation of four lossless data compression

algorithm was done. The algorithms were implemented and

tested with different test data of different sizes. A comparison

of all four algorithms was done to know their level of

efficiency and effectiveness. By working on their result

analysis and graphical representation while considering the

compression factor, compression ratio, saving percentage and

ability to compress audio and graphics file effectively, the

Lempel Ziv Welch algorithm which is based on using

dictionary is considered to be the most effective and efficient

of the four data compression algorithm evaluated. The result

and values are very good and acceptable. Since an efficient

and effective compression algorithm has been identified this in

turn allows optimal usage of storage space and also reduction

in communication cost. Great knowledge has been contributed

to the world of computer science as an efficient data

compression algorithm has been identified.

A system should be put in place that will recognize a file

type and subsequently assign it to a suitable data compression

algorithm. Research should be focused towards Context

Mixing Algorithm such as PAQ which is efficient in its

compression ration but slow due to usage of multiple statistical

prototypes. The speed should be improved upon. Use of

compression via substring enumeration (CSE), a compression

technique should be research more into to improve its level of

efficiency.

File Type RUN LENGTH LEMPEL

ZIV

WELCH

ADAPTIVE

HUFFMAN

SHANNON

FANO

Text1.txt 117805320 1818280253 297175620 632008452

Text2.pdf 28574764776 18574764776 1081429949 37574764776

Text3.docx 265030951 901233950 51938673 6660258056

Text4.doc 46255635 1612183652 331428722 685743578

Text5.pdf 61262819 1517335876 81607140 728021577

Text6.txt 74430256 307013484 32092003 189032759
Text7.doc 43526813 414828744 30690993 779840189

Text8.docx 76893549 2309066572 146173646 867324476

Text9.rtf 77116678 818822983 129791786 314077893
Text10.rtf 404530274 12503148589 714729168 4104947185

Picture11 .jpg NA 1336731046 190259256 NA

Picture12.jpeg NA 27124451524 1381189336 NA
Picture13.gif NA 4373213534 436710648 NA

audio14.mp3 NA 40555952684 2243053531 NA

audio15.mp3 NA 11450106158 716609976 NA
AVERAGE 2,974,161,707.Ns 8,374,475,588

Ns

524,325,363.1

Ns

5,253,601,894Ns

0

50

100

150

200

250

300

P
e

rc
e

n
ta

ge
 %

Test Data

RUN LENGTH LEMPEL ZIV WELCH ADAPTIVE HUFFMAN SHANNON FANO

Figure 2: Graphical comparison of compression ratio of the four lossless algorithms.

Table 6: Comparison of the four lossless algorithms based on saving

percentage.

AZEEZ and LASISI: EMPIRICAL AND STATISTICAL EVALUATION OF THE EFFECTIVENESS OF ALGORITHMS 71

*Corresponding author’s e-mail address: olubunmimokuolu@yahoo.com doi: http://dx.doi.org/10.4314/njtd.v13i1.1

File Type RUN LENGTH LEMPEL ZI V

WELCH

ADAPTIVE

HUFFMAN

SHANNON

FANO
Text1.txt 117805320 1818280253 297175620 632008452

Text2.pdf 28574764776 18574764776 1081429949 37574764776

Text3.docx 265030951 901233950 51938673 6660258056

Text4.doc 46255635 1612183652 331428722 685743578

Text5.pdf 61262819 1517335876 81607140 728021577

Text6.txt 74430256 307013484 32092003 189032759

Text7.doc 43526813 414828744 30690993 779840189

Text8.docx 76893549 2309066572 146173646 867324476

Text9.rtf 77116678 818822983 129791786 314077893

Text10.rtf 404530274 12503148589 714729168 4104947185

Picture11 .jpg NA 1336731046 190259256 NA

Picture12.jpeg NA 27124451524 1381189336 NA

Picture13.gif NA 4373213534 436710648 NA

audio14.mp3 NA 40555952684 2243053531 NA

audio15.mp3 NA 11450106158 716609976 NA

AVERAGE 2,974,161,707.Ns 8,374,475,588 Ns 524,325,363.1 Ns 5,253,601,894Ns

Table 7: Comparison of the four lossless algorithms based on saving

percentage.

Figure 3: Graphical comparison of compression time of the four lossless algorithms.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Ti
m

e
 in

 N
an

o
Se

co
n

d
s

(N
s)

x
1

0
0

0
0

0

Test Data

RUN LENGTH LEMPEL ZIV WELCH ADAPTIVE HUFFMAN SHANNON FANO

72 NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 13, NO. 2, DECEMBER 2016

*Corresponding author’s e-mail address: nazeez@unilag.edu.ng doi: http://dx.doi.org/10.4314/njtd.v13i2.4

ORIGINAL

FILE SIZES

(bytes)

RUN LENGTH

(COMPRESSED)

LEMPEL ZIV

WELCH

(COMPRESSED)

ADAPTIVE

HUFFMAN

(COMPRESSED)

SHANNON FANO

(COMPRESSED)

145813 280096 58537 90001 213557

3814642 3960402 2160402 3647056 5160402

96166 194907 66322 95971 2578961

147456 245432 47058 79477 158347

242819 451610 78166 155586 356273

27031 52942 12257 18014 49894

62976 87153 25080 44807 117696

451793 578932 289979 452383 764562

200438 381690 66263 138969 354252

2928078 5747092 638574 1859653 4744516

63101 NA 46323 63530 NA

4568712 NA 2834401 4565140 NA

1122430 NA 683645 1123425 NA

8340775 NA 4627141 8171960 NA

2279529 NA 1386837 2274598 NA

Table 8: Comparison between original file size and compressed file size of the four lossless algorithms.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

C
o

m
p

re
ss

e
d

 s
iz

e
 in

 b
yt

e
s

Original file size in bytes

RUN LENGTH LEMPEL ZIV WELCH ADAPTIVE HUFFMAN SHANNON FANO

Figure 4: Graphical comparison of original file size against compressed file size.

AZEEZ and LASISI: EMPIRICAL AND STATISTICAL EVALUATION OF THE EFFECTIVENESS OF ALGORITHMS 73

*Corresponding author’s e-mail address: olubunmimokuolu@yahoo.com doi: http://dx.doi.org/10.4314/njtd.v13i1.1

REFERENCES

Anandhi, G. G. and Satthiyaraj, S., (2013). VC Using

Lempel-Ziv-Welch Algorithm. International Journal of

Engineering and Advanced Technology (IJEAT), 2(3): 60 - 64.

Anitha, S., (2015). Lossless image compression and

decompression using huffman coding. International Research

Journal of Engineering and Technology (IRJET), 2(1): 240 -

247.

Arup, K. B.; B. Tanumon and A. Saheb (2013).
Comparison Study of Lossless Data Compression Algorithms

for Text Data. IOSR Journal of Computer Engineering (IOSR-

JCE), 11(6): 15-19.

Barath, C. K.; M. K. Varun and T. Gayathri (2013).
Technique of Data Analysis and File Compression Using

Huffman Algorithm. International Journal of Advanced

Research in Computer Science and Software Engineering,

3(11): 346 - 348.

Blelloch, G. E., (2013). Introduction to Data

Compression. Berkeley: Computer Science Department,

Carnegie Mellon University.

Hanaa, Z.; A. E. Mostafa and A. A. Hesham (2015).
Image compression algorithms in wireless multimedia sensor

networks: A survey. Ain Shams Engineering Journal, 6: 481 -

490.

Howard, P. G., (1993). The Design and Analysis of

Efficient Lossless Data Compression Systems. Rhode Island:

Department of Computer Science, Brown University.

Kannan, E. and Murugan, G., (2012). Lossless Image

Compression Algorithm for Transmitting Over Low

Bandwidth Line. International Journal of Advanced Research

in Computer Science and Software Engineering, 2(2): 242 -

256.

Kodituwakku, S. and Amarasinghe, U. S., (2015).
Comparison of Lossless data compression algorithms for text

data. Indian Journal of Computer Science and Engineering,

1(4): 416-425.

Manas, K. M.; K. M. Tapas and K. Alok, K (2012).
Parallel Lempel-Ziv-Welch (PLZW) Technique for Data

Compression. (IJCSIT) International Journal of Computer

Science and Information Technologies, 3(3): 4038 - 4040.

Mohamed, S. S. and Kumar, P. S., (2013). Evaluating

Effectiveness of Data Transmission and Compression

Technique in Wireless Sensor Networks. International Journal

of Advanced Research in Computer Science and Software

Engineering, 3(1): 70 - 73.

Mohammed, A. and Ibrahiem, E. M., (2007).
Comparative Study between Various Algorithms of Data

Compression Techniques.in Proceedings of the World

Congress on Engineering and Computer Science, San

Francisco, USA. 326-336.

Pooja, J.; J. Anurag and A. Chetan (2015). Improving

data compression ratio by the use of optimality of LZW and

adaptive Huffman algorithm (OLZWH). International Journal

on Information Theory (IJIT), 4(1): 11 - 19.

Pooja, S. (2015). Lossless data compression techniques

and comparison between the algorithms. International

Research Journal of Engineering and Technology (IRJET),

2(2): 383 - 386.

Sebastian, D. (2003). Universal lossless data compression

algorithms. Silesian University of Technology Faculty of

Automatic Control, Electronics and Computer Science

Institute of Computer Science. Poland: Silesian University of

Technology. PhD Thesis, 1-214.

Shrusti, P.; C. Yashi and M. J. Jitendra (2013). Data

Compression Methodologies for Lossless Data and

Comparison between Algorithms. International Journal of

Engineering Science and Innovative Technology (IJESIT),

2(2): 142 - 147.

Simrandeep, K. and Sallekhana, V. V., (2012). HDL

implementation of data compression: LZW algorithm.

International Journal of Advanced Technology and

Engineering Research (IJATER), 2(2): 115 - 120.

Suarjaya, A. D., (2012). A New Algorithm for Data

Compression Optimization. (IJACSA) International Journal of

Advanced Computer Science and Applications, 3(8): 14 - 17.

SubhamastanRao, T.; M. Soujanya, T. Hemalatha and

T. Revathi (2011). Simultaneous Data Compression and

Encryption. International Journal of Computer Science and

Information Technologies, 2(5): 2369-2374.

Tamanna, G. and Sonia, V., (2014). Research paper on

enhancing data compression rate using steganography.

International Journal of Computer and Mathematical Sciences,

3(4): 29 - 40.

Wang, W.-Y., (2011). A Unique Perspective on Data

Coding and Decoding. Entropy, 13: 53 - 63.

