Spectrophotometric Analysis of Oxytetracycline Brands Available Over-the-Counter for Veterinary Use in South Western Nigeria

SABA, A.B.*, OLATOYE, I.O. and ORIDUPA, O.A.

Department of Veterinary Physiology, Biochemistry & Pharmacology, University of Ibadan, Ibadan, Nigeria, Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria. *Corresponding author: Email: bensaba2011@hotmail.com

Abstract
Chemotherapy with oxytetracycline in livestock is reportedly faced with increasing therapeutic failure and resistant bacteria strains circulating in humans, animals and the environment. This study determined the actual concentrations in some dosage forms of oxytetracycline available in Southwest Nigeria labelled for veterinary use by spectrophotometric method of analysis. Eight 5% (50mg/ml) and four 20% (200mg/ml) preparations of injectable oxytetracycline were purchased from veterinary pharmacies in Ibadan. The mean concentration of oxytetracycline obtained from formulations ranged between 0.484mg/ml and 0.757 mg/ml. All the commercial formulations contained less than the labelled concentration when 1mg/ml of these samples was compared with 1mg/ml of the analytical grade of oxytetracycline. Therapy failures and development of bacterial resistance to oxytetracycline could therefore result from proliferation of fake or sub-standard drugs and indiscriminate use or abuse. There is need for strict regulation and quality control of importation, marketing and use of veterinary drugs in Nigeria. Also, there is need for pharmaco-vigilance and pharmaco-epidemiological investigation of chemotherapeutic agents, which is recommended to ensure their efficacy for animal health and food safety.

Introduction
Oxytetracycline is obtained from Streptomyces rimosus, a soil actinomycete and is one of the first two members of the tetracycline group of antibiotics ever discovered (Kim et al., 1994). Oxytetracycline hydrochloride (Syn: 5-Hydroxytetracycline hydrochloride) is chemically recognized as [4S-(4alpha,4alpha,5alpha,5alpha,6beta,12alpha)-4-(Dimethylamino) 1,4,4a,5,5a,6,11,12a-octahydro-3,5,6,10,12a-hexahydroxy-6-methyl-1,11-dioxo-2-naphthacenecarboxamide monohydrochloride (Fig 1). Tetracyclines act by inhibition of bacterial protein synthesis through prevention of the association of the bacterial ribosome with aminoacyl tRNA (Chopra et al., 1992; Schnappinger and Hillen, 1996). Tetracyclines are widely administered for prophylactic and therapeutic purposes, as well as at sub-therapeutic doses for growth promotion in livestock (Gustafson and Kiser, 1985; Karimuribo et al., 2005). Up till the 1950s, about 98% of commensals and pathogenic bacteria were reported sensitive to tetracycline (Levy, 1992). Resistance to tetracycline has since been on the increase and recent studies showed that about 85 to 91% of food-borne...
Pathogens were resistant to tetracycline (Ojo et al., 2009; Olatoye, 2010). Resistance to tetracycline have occurred due to their indiscriminate use and abuse in medical, veterinary and agricultural practices (Dina and Arowolo, 1991; Chopra and Roberts, 2001; Dipeolu, 2002).

In Nigeria, like in most developing countries, antibiotics are widely available over-the-counter and mostly used without prescriptions (Dina and Arowolo, 1991; Ezenduka et al., 2011). Withdrawal periods are not usually observed and residues have been reported in tissues of food animals and their products (Kabir et al., 2004; Olatoye and Ehinmowo, 2010). Several brands of tetracycline imported and sold in veterinary shops, livestock markets and by drug peddlers are routinely used by farmers without veterinary diagnosis or prescriptions (Dina and Arowolo, 1991; Fagbamila et al., 2010). Most of these drug formulations have been reported ineffective against tetracycline susceptible organisms (Ojo et al., 2009).

WHO (2006) estimated that about 30% of medicines sold in Africa are counterfeit of which antimicrobial agents being the most popular target. Substandard products with lower-than-stated doses promote resistance, and those containing no antimicrobial drug at all promote microbial dissemination (Okeke et al., 2007). The proliferation of fake or substandard drugs could contribute to widespread resistance to numerous antibiotics with tetracycline resistance being one of the most common (Shakoor, et al., 1997). There is a large market for drugs in Nigeria with about 130 existing pharmaceutical manufacturers. Only 60 of these are actively manufacturing, while up to 70% of drugs are imported into the country (Okoli, 2000). The suspected sharp practices by some drug manufacturers and importers in the production and packaging of drugs, and obvious therapy failures on the field necessitated this study. The study was designed to evaluate the concentrations of oxytetracycline in some formulations (brands) available in Nigeria for veterinary application using the spectrophotometric analytical method.

![Molecular structure of oxytetracycline hydrochloride](image)

Fig 1: Molecular structure of oxytetracycline hydrochloride

Molecular Formula $C_{22}H_{24}N_{2}O_{9}$ HCl

MATERIALS and METHODS

Chemicals and reagents

Analytical grade of oxytetracycline hydrochloride was purchased from Sigma-Aldrich St. Louis, MO, USA. Random samples of commercially available injectable oxytetracycline brands for veterinary use [5% (50mg/ml) (n = 8) and 20% (200mg/ml) (n = 4)] were purchased from veterinary pharmacies in Ibadan, Nigeria and these were used at least six months before their expiry dates. The drug samples included in the study were all imported brands with National Administration of Food and Drug Administration (NAFDAC) registration identifications and designated as A, B, C, D, E, F, G and H for 5% formulations, while the 20% formulations were designated as I, J, K, and L. HPLC-grade of methanol was also purchased from Sigma-Aldrich (USA).

Preparation of Standard curve

Laboratory grade analytical standard
Oxytetracycline were accurately weighed and dissolved in methanol to produce different concentrations of 1, 0.75, 0.50, 0.25 and 0.1mg/ml. The absorbances of these concentrations were measured in triplicate at 540nm on a spectrophotometer (SM22PC Surgienfield Instrument, England) after obtaining zero absorbance with methanol. The calibration curve used in this study (Fig. 2) was prepared by obtaining linear relationship between these known concentrations of the standard and their absorbance.

Sample preparation and test protocol
Dosage forms (commercial preparations) of injectable oxytetracycline (1mg/ml each) were dissolved in methanol and the absorbances of these solutions on the spectrophotometer at 540nm were recorded. The concentrations of these solutions were determined using the linear equation obtained from the known concentrations and corresponding absorbance of the standards curve of oxytetracycline. The procedure was repeated four times for each brand, and the mean values and standard error of mean were calculated. The method was validated using relative standard deviation (RSD) obtained from the standard oxytetracycline and the correlation coefficient (R^2) of the standard curve.

Statistical analysis
The results obtained were expressed as mean values ± standard deviation (SD). Data were analysed using one way analysis of variance (ANOVA) on GraphPad Prism 4.0 version. The statistical significant difference between the mean values were determined at $p<0.05$.

RESULTS
The 5% formulations of oxytetracycline were presented as brands A, B, C, D, E, F, G or H, while the 20% formulations were presented as brands I, J, K or L. The mean concentrations of oxytetracycline obtained for the 5% (50mg/ml) formulations ranged between 36.2mg/ml (3.6%) and 37.9mg/ml (3.8%) which is between 24.3 - 27.5% less than the standard oxytetracycline as shown in Table I, while the mean concentration of the 20% (200mg/ml) oxytetracycline samples ranged between 96.8mg/ml (9.7%) and 101.2mg/ml (10.1%) (Table II). All the formulations contained less than the labelled oxytetracycline concentration indicated values. Significantly lower concentrations were obtained in drugs A, E, G, I, J and K. Most of the 20% oxytetracycline brand samples contained less than 50% of the concentrations indicated by their manufacturers, while the 5% oxytetracycline brands had about 30% less than the expected concentrations (Table 1).
TABLE I: Mean absorbance of 5% oxytetracycline brands (1mg/ml) with their corresponding concentrations.

<table>
<thead>
<tr>
<th>Oxytetracycline Brands</th>
<th>Mean absorbance</th>
<th>Concentration (mg/ml)</th>
<th>% concentration present</th>
<th>Concentration (mg/ml) of oxytetracycline relative to 5% labelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.446±0.006</td>
<td>0.7471</td>
<td>74.71</td>
<td>37.4 (3.7%)</td>
</tr>
<tr>
<td>B</td>
<td>1.440±0.004</td>
<td>0.7386</td>
<td>73.86</td>
<td>36.9 (3.7%)</td>
</tr>
<tr>
<td>C</td>
<td>1.446±0.005</td>
<td>0.7476</td>
<td>74.76</td>
<td>37.4 (3.7%)</td>
</tr>
<tr>
<td>D</td>
<td>1.446±0.003</td>
<td>0.7471</td>
<td>74.71</td>
<td>37.4 (3.7%)</td>
</tr>
<tr>
<td>E</td>
<td>1.429±0.003</td>
<td>0.7247</td>
<td>72.47</td>
<td>36.2 (3.6%)</td>
</tr>
<tr>
<td>F</td>
<td>1.451±0.003</td>
<td>0.7538</td>
<td>75.38</td>
<td>37.7 (3.8%)</td>
</tr>
<tr>
<td>G</td>
<td>1.436±0.012</td>
<td>0.7332</td>
<td>73.32</td>
<td>36.7 (3.7%)</td>
</tr>
<tr>
<td>H</td>
<td>1.454±0.003</td>
<td>0.7574</td>
<td>75.74</td>
<td>37.9 (3.8%)</td>
</tr>
</tbody>
</table>

TABLE II: Mean absorbance of 20% oxytetracycline brands (1mg/ml) with their corresponding concentrations.

<table>
<thead>
<tr>
<th>Oxytetracycline Brands</th>
<th>Mean absorbance</th>
<th>Concentration (mg/ml)</th>
<th>% concentration present</th>
<th>Concentration (mg/ml) of oxytetracycline relative to 20% labelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.258±0.005</td>
<td>0.4944</td>
<td>49.44</td>
<td>98.9 (9.9%)</td>
</tr>
<tr>
<td>J</td>
<td>1.260±0.013</td>
<td>0.4962</td>
<td>49.62</td>
<td>99.2 (9.9%)</td>
</tr>
<tr>
<td>K</td>
<td>1.251±0.006</td>
<td>0.4841</td>
<td>48.41</td>
<td>96.8 (9.7%)</td>
</tr>
<tr>
<td>L</td>
<td>1.267±0.003</td>
<td>0.5061</td>
<td>50.61</td>
<td>101.2 (10.1%)</td>
</tr>
</tbody>
</table>

DISCUSSION

The values of oxytetracycline concentration obtained for all drug formulations evaluated in this study were found lower than what is indicated on their labels. The method used was found to be linear ($R^2 > 0.94$), the linear relationship in the calibration curve of the standard oxytetracycline, while accuracy and precision of the method was shown by RSD <4.21% obtained from standard oxytetracycline. The result of this study therefore implies that most of the commercially available oxytetracycline brands for veterinary use in the studied area were sub-standard as they contained lower concentrations of the active ingredients below the manufacturer's claims. The sub-standard antibiotic formulations imply that there is an
ongoing widespread administration of sub-therapeutic doses of antibiotics to sick animals which has its attendant problems including but not limited to; therapy failure, development and spread of resistant strains of micro-organisms in human and animal populations (Okonko et al., 2008; Nkang et al., 2010).

Several years of medical exploitation of antimicrobial chemotherapy, particularly in treatment of human infections, has imposed an enormous selection pressure on formerly sensitive bacteria to acquire genetic elements that code for resistance to antibiotics (Prescott et al., 2000; Nkang et al., 2010). Administration of sub-therapeutic doses to sick animals will no doubt serve to increase incidences of diseases and elevate the virulence of the microorganisms that evolve after such exposure. Severe economic losses are usually the fall out of uncurtailed disease outbreaks due to unmitigated increased morbidity and mortality (Okeke et al., 2007). Aside this, development of resistance by microorganisms to antibiotics lead to heavy loss of revenue by genuine drug manufacturers due to evolvement of resistance in what was formerly sensitive organisms (Okeke and Sosa, 2011).

The reduction in the concentrations of the antibiotic formulations could also have been as a result of degradation of the active compounds in the storage process as appropriately manufactured drugs could also become substandard due to improper storage. The storage methods adopted by manufacturers and retailers of these drugs should be evaluated for possible contributions to degradation of drugs on the shelf. Okeke et al., (2007) stated that antibiotics are unstable at ambient tropical conditions, but shelf lives and packaging are not adapted to preserve drug potency or mark their degradation in countries where these drugs are most needed. Proper storage in the tropics requires expensive electrical equipment, a constant storage temperature, pharmaceutical handling expertise, and an efficient supply chain, which do not exist in many parts of Africa. Storage methods should be standardized to ensure drug quality is maintained and prevent future re-occurrence of diminishing quality. The environmental temperature of the tropical region should also be considered for drugs exported from temperate regions.

The low quality of these drugs could have encouraged the practices of indiscriminate use, abuse and overuse of antibiotics in food-producing animals to achieve growth promotion and therapeutic results from these drugs. This has become of enormous concern in recent times due to increase in resistant bacterial strains in humans (National Research Council, 1999; Okesola and Oni, 2009; Okonko et al., 2009). Policies regulating antibiotic use vary from one country to another. Many countries have highlighted the need for better control of licensing of antibiotics and codes for prudent use by veterinary practitioners and farmers. In most developed countries, antibiotics intended for animal use are assessed for their potential to compromise human health. In such countries there is control-of-use legislation that restricts antibiotics registered for therapeutic or prophylactic use to registered veterinary surgeons, but allows over-the-counter sales to farmers or stock-feed companies of products registered for use as growth promoters (Barton, 2000). In Nigeria there is a palpable preponderance of sub-quality pharmaceutical products and all veterinary antibiotics are sold over the counter. Osibo (1998) posited a strong and urgent need for stricter regulation and
quality control of importation, marketing and use of veterinary drugs in Nigeria. Regulatory organs of the government such as National Administration of Food and Drug Administration (NAFDAC) must strive to enforce the extant laws in order to evaluate and monitor the quality of veterinary drugs manufactured or imported into Nigeria. The establishment of functional veterinary directorate in NAFDAC as approved by the Federal Government of Nigeria could be a positive step towards addressing these problems. This may appear a daunting task considering the low level of requisite technology in the country, but it pales into insignificance when compared to likely adverse outcome on both human and animal populations.

In conclusion, since a higher percentage of drugs used in this Nigeria are either imported wholly or merely packaged in the country, routine pharmaco-epidemiological studies are necessary. All the drugs sampled in this study are imported drugs. It does appear that uncontrolled importation of drugs in Nigeria has encouraged sharp practices which place commercial motive or gain over ethical considerations. There is therefore an urgent need for enforcement of appropriate drug regulations and pharmaco-epidemiological surveillance of veterinary drugs in Nigeria to ensure their consistent efficacy for effective animal health and human safety.

REFERENCES

WORLD HEALTH ORGANIZATION (WHO) (2006). Counterfeit