Estimation of Cardiothoracic Ratios in Thoracic Radiographs of the West African Dwarf Goat

UKAHA, R.O.

Department of Veterinary Surgery & Theriogenology, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria.
Correspondence: ukarock1@yahoo.com +2348061530565

SUMMARY
An enlarged heart almost always indicates the presence of cardiac or pericardial disease. Radiographic assessment is an invaluable and practical method of evaluating patients with cardiothoracic disease. Cardiac ratios of twelve clinically healthy West African Dwarf Goats (WADGs) were studied. The aim of this research was to estimate reference values for cardiothoracic ratios (CTRs) of normal goats. Cardiac and thoracic diameters were measured in dorsoventral (DV) and ventrodorsal (VD) thoracic radiographs and recorded in centimetres. Means ± standard errors of means (M±SEM) cardiothoracic ratios, CTRs, were 0.66±0.02 for DV views and 0.60±0.01 for VD projections. There was significant CTR difference between DV and VD views but the difference between male and female DV CTRs was not significant. CTRs correlated highly and positively with cardiac diameter. For clinical practice, CTRs are easily and objectively applicable in the radiographic evaluation of cardiac sizes.

KEYWORDS: Radiographic measurement, Heart, Thorax, Dorsoventral, Ventrodorsal, Dwarf goats

INTRODUCTION
In veterinary radiology, various cardiac and thoracic indices have been reported for pets and a few other animals. But none of these indices is ever found faultlessly suitable for general clinical and field use as a result of differences in thoracic conformations among animal species and breeds (Lamb and Boswood, 2002; Litster and Buchanan, 2000). For this reason, determination of breed-specific reference parameters for various animals becomes very necessary. CTR is a relationship derived by adding the horizontal distances from the midline to the most lateral aspect of the left heart border and most lateral aspect of the right heart border, and dividing that sum by the maximum horizontal diameter of the thorax, measured from left pleural surface to the right pleural surface (taken at the level of the diaphragmatic apices) in a posteroanterior chest radiograph in humans and DV thoracic projection in animals. Mathematically, \(CTR = (d_u + d_l) / w_t \), where \(d_u \) and \(d_l \) are respectively measured distances of the most rightward and most leftward borders of the cardiac silhouette to the spinal column, and \(w_t \) is the maximum transverse width of the thoracic cavity (Baron, 2004; Miller et al., 2000).

Literature does not only reveal a dearth of diagnostic imaging reports on the caprine species, but also discloses that no radiological research has been published in this field for WADGs. Therefore, the present work was
performed to estimate reference radiographic values for size of the cardiac silhouette of clinically normal WADGs for use by veterinary radiologists, veterinary surgeons, and veterinary clinicians in the imaging of cardiac and thoracic diseases of this breed of goats.

MATERIALS and METHOD

Twelve WADGs (8 females) with body weights 4.8kg to 14kg were kept together for a week to acclimatize. Physical and clinical examinations carried out at the end of the period were normal in all the goats, and so the animals were adjudged healthy and suitable for this work (Struab et al., 2002). Survey DV and VD thoracic projections of each experimental animal were obtained. Cardiac and thoracic diameters were measured on the radiographs in centimeters as follows: (a) sum of the horizontal distances measured from the spine to the most rightward and most leftward cardiac borders was taken as the cardiac diameter (Baron, 2004; Miller et al., 2000). (b) Horizontal width of thorax, from inner surfaces of ribs, measured at the diaphragmatic apices, was taken as the thoracic diameter (Baron, 2004; Miller et al., 2000).

Results of this study were presented as means plus or minus standard error of means (M±SEM). Statistical comparisons of variables were made using Pearson’s Product Moment Correlation Coefficient and Student’s t-test. Probabilities less than 0.05 were considered significant.

Plate 1: Standard Method of Measuring CTR.
CTR = (A+B)/C.

Key:
A = most rightward distance from the spine; B = most leftward distance from the spine; C = maximum transverse width of thoracic cavity.
RESULTS

Table 1: Comparison of CTRs in DV versus VD Views

<table>
<thead>
<tr>
<th>S/N</th>
<th>DV Views</th>
<th>VD Views</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD</td>
<td>TD</td>
</tr>
<tr>
<td>A</td>
<td>7.5</td>
<td>12.0</td>
</tr>
<tr>
<td>B</td>
<td>7.2</td>
<td>10.9</td>
</tr>
<tr>
<td>C</td>
<td>7.9</td>
<td>11.2</td>
</tr>
<tr>
<td>D</td>
<td>7.4</td>
<td>10.4</td>
</tr>
<tr>
<td>E</td>
<td>7.8</td>
<td>11.4</td>
</tr>
<tr>
<td>F</td>
<td>7.8</td>
<td>12.1</td>
</tr>
<tr>
<td>G</td>
<td>5.2</td>
<td>8.2</td>
</tr>
<tr>
<td>H</td>
<td>7.8</td>
<td>11.5</td>
</tr>
<tr>
<td>I</td>
<td>4.6</td>
<td>8.7</td>
</tr>
<tr>
<td>J</td>
<td>5.5</td>
<td>7.8</td>
</tr>
<tr>
<td>K</td>
<td>10.1</td>
<td>7.1</td>
</tr>
<tr>
<td>L</td>
<td>6.6</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Mean = 0.66*

*Difference between mean CTRs significant (P<0.05)

Key: CD = Cardiac Diameter; TD = Thoracic Diameter

Table II: Sex Difference in DV CTRs

<table>
<thead>
<tr>
<th>S/N</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD</td>
<td>TD</td>
</tr>
<tr>
<td>A</td>
<td>7.5</td>
<td>12.0</td>
</tr>
<tr>
<td>B</td>
<td>7.2</td>
<td>10.9</td>
</tr>
<tr>
<td>C</td>
<td>7.9</td>
<td>11.2</td>
</tr>
<tr>
<td>D</td>
<td>7.4</td>
<td>10.4</td>
</tr>
<tr>
<td>E</td>
<td>7.8</td>
<td>11.4</td>
</tr>
<tr>
<td>F</td>
<td>7.8</td>
<td>12.1</td>
</tr>
<tr>
<td>G</td>
<td>5.2</td>
<td>8.2</td>
</tr>
<tr>
<td>H</td>
<td>7.8</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Mean = 0.69*

*No significant difference in sex mean CTRs (p>0.05)

DISCUSSION

Several factors should be considered before cardiomegaly is diagnosed. For instance, cardiac silhouette may be enlarged without heart enlargement as observed commonly in obese animals where fat is deposited within the pericardium; infants have larger hearts relative to their body sizes; breed conformation causes tremendous variation in cardiac size and shape; and dilation and hypertrophy cannot be differentiated by radiography. However, there are certain radiographic signs that seem to correlate well with specific cardiac lesions (Bonagura, 1989; Moon, 2006; Waters, 1979). In the lateral view, right atrial enlargement may cause dorsal bowing of the terminal portion of
trachea, causing the caudal trachea (over the cranial portion of the heart base) to assume a distinct hook shape. The carina remains in its normal location unless there is concomitant left atrial or left ventricular enlargement. Right ventricular enlargement causes increased cranial convexity, resulting in a more vertically directed cranial border if severe; increased sternal contact; elevation of cardiac apex (because of hypertrophy rather than dilation); and elevation of trachea cranial to its bifurcation. In most instances, right ventricular enlargement has little obvious effect on the position of structures at the heart base (Moon, 2006; Root and Bahr, 2002).

In theVD or DV view, the enlarged atrium bulges from 9 to 11 o’clock position on the right cranial border of the heart. Enlargement and rounding of right ventricle cause increased convexity to the right border forming a reversed “D”, decreased distance between heart border and thoracic wall, and apex shift to the left (Moon, 2006; Root and Bahr, 2002). Right heart enlargement is usually associated with the following conditions: pulmonic stenosis, heartworm disease, tricuspid insufficiency, ventricular septal defect, cardiomyopathy, and chronic pulmonary disease (Moon, 2006).

The normal left atrium is situated immediately ventral to, and roughly between, the left and right main stem bronchi. Left atrial enlargement causes dorsal deviation of the left main stem bronchus as viewed in the lateral projection. The left ventricle is relatively thick-walled and for this reason, hypertrophy causes little distortion of its contour in the lateral view; rather it tends to elongate displacing the trachea dorsally (Suter, 1984). The dorsal displacement involves the intra-thoracic portion of the trachea, from the thoracic inlet to the carina, resulting in a decrease in the angle between the trachea and the thoracic vertebrae (Root and Bahr, 2002). Pleural effusion may cause similar tracheal displacement even in the absence of significant cardiomegaly (Snyder et al., 1990). Therefore, when the cardiac silhouette is obscured by the presence of pleural effusion, the tracheovertebral angle is probably not a reliable sign of left ventricular elongation.

In theVD or DV view, left atrial enlargement causes the left and right main stem bronchi to diverge. The normally straight cardiac border will become more convex with decreased distance to the left thoracic wall; the apex may be rounded, and may shift to the midline. Left heart enlargement may be associated with mitral insufficiency, patent ductus arteriosus, aortic stenosis, cardiomyopathy, and ventricular septal defect. (Moon, 2006; Root and Bahr, 2002)

Decreased heart size relative to thoracic volume is termed microcardia and is due to cachexia (wasting diseases), hypovolaemic states (shock, severe blood loss, dysentery, burn), asthenia, constrictive pericarditis, hypoadrenocorticism, and senile atrophy (Blood and Studdert, 1990; The Merck Veterinary Manual, 1997; Preuter, 1993; Reeder and Bradley, 1993).

Accurate heart assessment, especially in borderline and equivocal situations, can be made by the application of, or comparison with, the normal cardiothoracic indices and scales for the breed concerned (Herring and Ostrum, 2003; Lupow et al., 2002; Gardner et al., 2005; Struab et al., 2002). Other causes of a CTR ratio greater than normal value include cardiac failure and inability to take deep breath due to obesity, pregnancy, pectus excavatum deformity, and ascites (The Merck Veterinary Manual, 1997; Herring and Ostrum, 2003).

In the dog, Schnelling (1995) reported a reference CTR range of 0.60 – 0.65. In flying fox species, Gardner et al. (2005) published a CTR value of 0.55. According to Herring and Ostrum (2003) and Baron (2004), normal CTR in man is < 0.50 - < 0.60. Records of radiographic studies in the goat are very scanty and literature is silent on CTR report in the WADG. However, in this study, we found a significant difference (p<0.05) between mean DV CTR and mean DV CTR (i.e., 0.66±0.02 and 0.60±0.01) but no significant sex DV CTR difference (p>0.05) (Tables I and II). The
difference between DV and VD mean CTRs was due to variation in shape of the heart in DV versus VD radiographs. DV heart image was “globoid” but the VD cardiac shadow appeared the normal gourd-shape. This positional change in shape of heart silhouette may be due to the influence of sternopericardial ligament on the cardiac apex. Chibuzo and Sivachelvan (1994) reported that this ligament is short and attaches caprine heart firmly to the sternum. This means that the heart cannot be displaced downwards, by pulmonary pressure when animal is sterno-recumbent, but bulges out in response to the pressure. In the dog, heart apex is connected loosely by a long ligament (phrenicopericardial ligament) to the sternal part of the diaphragm, and since the cardiac apex is free, DV positioning results in apical shift towards the diaphragm and retention of normal heart shape (Dyce et al., 1987; Carlisle and Thrall, 1982; Ticer, 1975). But in the goat, the firm cardiac attachment prevents apical displacement so that the heart bulges into globoidness (without distinction between upper and lower cardiac chambers) when the animal is in DV recumbency. CTR correlated positively with cardiac diameter in both sets of radiographs (highly in DV views, but moderately in VD silhouettes).

CTRs of animals are often determined using DV projections of the patient. But in the WADG, the author recommends that DV views be used rather than DV radiographs because, in the DV/VD plane, cardiac silhouette assumes its normal gourd shape only when the animal is dorsally recumbent. In the light of case history, physical, clinical and laboratory findings, CTR is a diagnostic tool for the evaluation of cardiothoracic diseases. Application of CTR is easy and objective. Results of the present work now offer veterinarians a useful radiographic guide for the evaluation and diagnosis of cardiothoracic disease in the WADG, and for monitoring of patients’ response to treatment. Determination of cardiothoracic indices and scales in other breeds of goat awaits research.

ACKNOWLEDGEMENT
The author expresses his gratitude to senior colleagues and mentors, Prof R. O. C. Kene and Dr O. E. Gbonko, both of the Department of Veterinary Surgery, University of Nigeria,Nsukka, for their technical assistance.

REFERENCE
LITSTER, A. and BUCHANAN, J.W. (2000): Vertebral scale system to measure heart size in