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Disease Geography and Dynamics 
 

Zoonotic diseases represent significant 

challenges for veterinary and public health 

initiatives, and the field of spatial 

epidemiology sets out to characterize risk 

of transmission of these diseases across 

landscapes. Frequently, these diseases are 

quiescent for extended periods, and then 

“emerge,” causing major outbreaks or 

isolated cases, with serious consequences 

for human and animal well-being (indeed, 

humans are affected both by the diseases 

directly, and by the negative effects on 

their domestic animals). Unfortunately, 

however, zoonotic diseases also frequently 

remain poorly known, poorly documented, 

incompletely diagnosed, and thereby 

underappreciated as to the significant role 

that they play in human well-being. 

 

Zoonotic diseases represent interacting 

systems of elements of biodiversity. 

Pathogens (bacteria, protozoans, viruses, 

etc.) circulate in populations of some host 

or hosts (often mammals or birds), and 

may be transmitted among hosts either 

directly, by vectors (mosquitoes, sandflies, 

ticks, fleas, etc.), or via the environment 

(e.g., soil in anthrax transmission). In 

general, then, if any of these elements is 

lacking, transmission ceases, and the 

disease is likely not to circulate further in 

the region (Peterson, 2007). This 

framework of thinking emphasizes a vital 

linkage between spatial epidemiology as a 

field and the area termed biogeography in 

biodiversity science.  

 

This contribution offers a general 

perspective on paths toward improving this 

scenario, and transforming spatial 

epidemiology into a more synthetic, 

predictive, and functional science. That is, 

spatial epidemiology at present is based on 

a poor data infrastructure and inadequate 

system of archiving important samples, 

and then interprets those data within two 

different, but both largely inappropriate 

analytical frameworks. Solutions exist, but 

require some rather radical changes in how 

the field “does business.” 

 

Present Situation in Disease Geography 

and Spatial Epidemiology 

 

Data formats and content.—All disease 

occurrences carry some sort of geographic 

reference, but these references can be quite 

heterogeneous in form. The present system 

in most regions is based chiefly on 

reference to areas (e.g., states, provinces, 

counties) rather than points, and offers no 

summary of likely precision or certainty of 

that locality (e.g., Fang et al., 2006). The 

first point—that of reference to areas (i.e., 

some sort of polygon) immediately 

constrains the results of the analysis to 

resolutions that are coarser than the area of 

that polygon—no detail of mapping risk of 

this disease will be possible at finer 

resolutions, because the disease occurrence 
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information offers no information at finer 

resolutions.  

 

The second point (that of estimating 

uncertainty of disease occurrences) 

requires an example: imagine two 

domestic animals on the same farm, each 

of which contracts a particular disease. 

One animal has spent its entire lifetime on 

that farm, and thus must have contracted 

the disease in the immediate vicinity, 

whereas the other might be a work animal 

that has ranged broadly over the entire 

region in recent weeks. The difference in 

implications of these two disease 

occurrences for mapping disease 

transmission risk is dramatic—one leaves 

a quite specific record of where a disease 

is transmitted, whereas the other only a 

vague impression. 

 

In the present system of recording disease 

occurrence, however, none of these details 

is captured and expressed in summary data 

records. That is, two case occurrences may 

fall into very similar or radically different 

environmental situations, but this 

information may be masked by the 

imprecise spatial specification of the 

locality (e.g., a particular state or a 

particular county). Worse still, in the 

example, the two animals living on the 

same farm would appear identical in most 

epidemiological data sets, even though one 

pinpoints the site of exposure much more 

precisely than the other, and the imprecise 

point may prove positively misleading 

(i.e., the animal might have been infected 

in a very different environmental situation 

in a different state). 

 

The biggest problem, at the end of the day, 

is that analyses are constrained to the base 

resolution of the occurrence data available. 

With the current system, that base 

resolution is unknown, which can bias 

results in unknown ways. When 

occurrence data are accompanied by 

precision estimates, they can be filtered to 

yield those cases that are sufficiently 

precisely known to be informative to a 

given analysis. In this way, a given data 

record can be “recycled,” and used 

productively for other analyses not 

envisioned when the data point was 

originally captured. 

 

Lack of data and specimen 

infrastructure.—Data in veterinary and 

public health applications are stored in an 

odd, eclectic, and often ad hoc system, 

which does not in any way foster recycling 

and reuse of data for future applications. 

Too frequently, indeed, such data are 

considered personal research resources, 

and as such never become openly 

available. In other cases, data sets are 

maintained in local, regional, provincial, 

national, or international agencies, in 

formats that are not necessarily 

interoperable or interchangeable. Only 

high-profile diseases (e.g., H5N1 avian 

influenza) are tracked in databases that see 

more careful attention and integration 

(O.I.E., 2009). 

 

This system, if it can be called as such, 

acts generally to limit analyses to the goals 

of the study for which a data point was 

originally collected. When presented with 

a new challenge, such as a disease 

emergence event or an intriguing case, 

quite frequently, existing data are either 

unavailable or accessing them is overly 

cumbersome. Too often, these obstacles 

are sufficiently large as to prevent reuse of 

existing data, and synthetic analyses must 

await accumulation of new data. To 

complicate the situation further, existing 

data are shared only relatively rarely, and 

(when shared) are shared in cumbersome, 

inefficient formats (e.g., O.I.E., 2009) that 

in no way support and promote creative 

exploration of the data. 

 

In parallel to the data challenge goes a 

series of issues regarding diagnostic 

specimen materials (Peterson, 2010). 

These specimens include both what can be 

termed “voucher specimens” (i.e., 
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specimens of hosts or vectors to document 

identifications) and diagnostic tissue 

specimens, which are collected specifically 

for testing for presence of pathogens. Such 

materials, however, have the potential to 

document distributions across space and 

across potential hosts of pathogens once an 

emerging threat is identified, and yet rarely 

are referenced in veterinary or public 

health publications, and diagnostic 

materials in disease surveillance are rarely 

organized in formal, permanent, curated 

collections. 

 

Inappropriate approaches to analysis.—

Even when data are collected and stored 

appropriately, and become available to a 

researcher for analysis, the analyses that 

are standard in spatial epidemiology are 

frequently neither fully appropriate, nor as 

powerful as they could be. The weakest 

such analyses are developed in spatial 

dimensions only, and as such ignore 

environmental variation that underlies the 

spatial pattern (see, e.g., Fang et al. 

2006)—that is, although zoonotic diseases 

frequently show broad spatial trends, the 

details of their behavior are invariably 

driven by environmental variation. This 

environmental variation is not manifested 

in results based on exclusively spatial 

analyses, which presents a serious 

limitation. 

 

Even when environmental factors are 

considered, however, analyses in spatial 

epidemiology are nonetheless not always 

developed appropriately. Any spatial 

prediction exercise must manage two types 

of error: omission error (predicting areas 

of known presence as absent) and 

commission error (predicting areas of 

actual absence as present). Multivariate 

statistical approaches are often employed, 

but with overall optimizations that weight 

these two error components equally, and 

minimize overall error. Species’ 

geographic distributions, however, present 

rather odd challenges—omission error is 

almost always genuine error (except for 

sink populations, erroneous geographic 

references, and/or erroneous taxonomic 

identifications), but commission “error” is 

usually only partly error. That is, areas 

from which a disease is not known are 

counted as areas of absence, yet may 

simply be areas of presence from which 

the disease has not been reported, where 

humans and associated animals may not be 

present, where no studies have been 

developed, etc.—as such, commission 

error rates will often appear to be quite a 

bit higher than they really are. As a 

consequence, in such analyses, omission 

error must be accorded a significantly 

greater weight than commission error, or 

optimization efforts may be seriously 

biased (Anderson et al., 2003). 

 

Specifically, if an algorithm is allowed 

simply to minimize overall error (be it 

omission or commission), it will weight an 

omission and a commission equally. The 

omission represents a real case of a known 

occurrence of a disease being left out of 

the predicted area, while the commission 

represents an area from which a disease 

has not been recorded proving, in reality, 

to be suitable for the disease. Clearly, the 

former case is much more serious than the 

latter, and yet currently accepted modeling 

approaches do not take these differences 

into account, perhaps owing to a statistical 

modeling focus, as opposed to a more 

biogeographic approach focused on 

reconstructing full geographic distributions 

of species. 

 

Overall picture.—Taking this rather 

broad-spectrum view of data and analyses 

towards mapping disease transmission 

risk, it becomes clear that current 

infrastructures and approaches will 

produce an incomplete picture. Because of 

structural considerations for data, certain 

spatial resolutions will prove inaccessible 

to mapping efforts, and because data and 

samples are stored and/or shared only 
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rather ineptly, much information will be 

off-limits to researchers desiring to 

develop maps. Finally, because the 

analyses per se are not developed in a 

biogeographic context, considering real 

features of species’ geographic 

distributions and how they are 

characterized, the results will frequently 

not be useful.  

 

The “Fixes” 

 

The situation characterized above is 

complex, and fixing its problems will 

require a number of serious changes in 

how disease reporting is achieved in 

veterinary science and human public 

health. Many of these fixes represent 

improvements that will require additional 

time and attention, but the reward will be 

greatly improved risk maps, and greater 

flexibility in developing novel analyses. 

As such, the reward for these investments 

will take some time to perceive, as a data 

infrastructure must be constructed, but will 

be significant. Many of the solutions 

detailed below are drawn from the world 

of biodiversity science, where the same (or 

parallel) issues have been explored for 

some years (Soberón & Peterson, 2004). 

 

Data formats and content.—A first step 

that would make a world of difference in 

veterinary and public health spatial 

epidemiology work is that of developing a 

standardized data framework. In 

biodiversity science, early in the 

development of biodiversity informatics, 

the Darwin Core was developed to 

summarize crucial data fields that express 

taxonomic identification, place of 

occurrence, time of occurrence, and some 

specifics of the record; the Darwin Core 

has now been approved as an official 

metadata standard for biodiversity data by 

the Taxonomic Database Working Group.  

 

Spatial epidemiological data take much the 

same form—describing the occurrence of a 

particular pathogen at a particular site at a 

particular point in time, but would require 

careful thought as to which additional 

fields would prove necessary (e.g., relation 

to host and/or vector, method of 

determination of taxonomic identification, 

titres or prevalences, etc.). 

 

For expression of geographic references, 

only a point-based system will be able to 

take full advantage of the detail available 

in some records. Linking these point-based 

records with measures of uncertainty 

(usually expressed as a radius around the 

point) provides additional critical 

information that can be used to decide the 

suitability of particular points for inclusion 

in particular analyses (Wieczorek et al., 

2004). This point-radius method is simple, 

and could easily be adapted for data 

recording, even by non-specialists. When 

privacy concerns are an issue, which is 

more common with human disease, these 

point-radius georeferences can easily be 

“dumbed down” and returned back, e.g., to 

county-level spatial resolution, for public 

data sharing. 

 

Effective data and specimen 

infrastructure.—Development of an 

appropriate and effective data 

infrastructure represents a major and 

important challenge for spatial 

epidemiology. A major question has been 

that of centralizing data sets (or not)—in 

the centralized case, data are sent to a 

central repository, where they are stored 

and served. This data structure has the 

advantage of simple management (i.e., 

changes can be made globally to the entire 

data set) and simple data serving (i.e., one 

dataset placed for search online), but can 

result in “divorcing” data sets from the 

institutions and organizations that produce 

them and care for them. In the latter case, 

the currency and integrity of the data may 

decline over time (e.g., mosquitoes 

identified as Anopheles gambiae, now 

recognized as a complex of species, so the 

data records might refer to any of A. 

gambiae sensu lato, A. arabiensis, A. 
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bwambae, A. merus, A. melas, A. 

quadriannulatus, or A. gambiae sensu 

stricto). A distributed data architecture, in 

which data reside at the “home” 

institution, but that are shared via the 

Internet to form a single virtual database, 

represents a potential solution to this 

challenge, and also functions to preserve 

institutional “ownership” of the data. 

 

An effective system of specimen 

documentation and archiving is a further 

challenge. One important partnership that 

can constitute an easy and immediate “fix” 

is that of linking veterinary and public 

health efforts to the broader biodiversity 

community. The latter has a well-

established system of effectively 

permanent archiving of biological 

specimen resources, which would be more 

than pleased to receive documentary 

specimens in deposit, as the same 

specimens can be important to their own 

research in systematics. Biodiversity 

institutions also have well-established 

unique references to individual specimens 

that can and should be cited in veterinary 

and public health publications (Peterson, 

2010), and these references are in the 

process of considerable refinement (Clark 

et al., 2004). Diagnostic (tissue) specimens 

can be maintained at veterinary or public 

health institutions (which often have better 

biosecurity capabilities), or at biodiversity 

institutions, and can be catalogued and 

data served to permit effective and 

efficient access by researchers. 

 

Improving approaches to analysis.—

Analyses of spatial distributions of 

biological phenomena should be based on 

direct measures of the environmental 

factors that determine them. This approach 

has been termed “ecological niche 

modeling,” emphasizing the critical link 

between spatial models and the set of 

environmental conditions within which a 

species can maintain populations without 

immigrational subsidy (modified from the 

original definition from Joseph Grinnell). 

Niche modeling emphasizes the realities of 

unequal weighting of presence versus 

absence information, in a clear 

biogeographic context.  

 

In niche modeling, a first priority is full 

characterization of ecological niches of 

species (or biological phenomena, such as 

disease transmission cycles), which 

requires data on occurrences across the 

entire spatial distribution of the 

phenomenon. A second requirement is that 

of characterizing the arena that is 

appropriate for analysis, taking into 

account the geographic factors that 

constrain the distributional potential of 

species—effectively the area within which 

analyses should be carried out. This area is 

that which has likely been “sampled” by 

the species for possible colonization (i.e., 

present distributional area + dispersal 

distance, and taking into account past 

distributional shifts), and can represent a 

serious challenge for analyses. 

 

Once data are assembled and 

environmental arenas of analysis defined, 

the analyses may begin. In these analyses, 

it is crucial to ponder (1) what rates of 

error likely characterize the occurrence 

data set (e.g., an animal or human infected 

in one site, but diagnosed and 

“georeferenced” in another site), which has 

been quantified as the parameter E 

(Peterson et al., 2008), and (2) what 

relative weights should be applied to 

omission and commission errors. The 

weights assigned to different error 

components can be used directly in many 

niche modeling algorithms, several of 

which have built-in means of prioritizing 

omission error over commission error 

(Anderson et al., 2003). Once the raw 

model is in hand, its interpretation requires 

further thinking, beginning with 

establishing thresholds for separating 

prediction of presence (or at least 

suitability) from prediction of likely 
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absence (Peterson et al., 2007)—in 

general, the appropriate solution will be to 

select a threshold that includes (100 - E)% 

of the presence data set on which the 

model was based. This threshold will take 

into account error inherent in the presence 

data, and sets a point of separation 

between presences and absences that is 

most appropriate biogeographically for 

characterizing spatial distributions of 

biological phenomena. 

 

CONCLUSIONS 
The goal of spatial epidemiology is to 

offer a predictive view of spatial and 

environmental dimensions of disease 

transmission risk. That is, the objective of 

the field is to process existing information 

into useful, predictive interpretations of 

disease risk in terms of space (i.e., 

identifying “hotspots” of disease 

transmission) and in terms of environment 

(i.e., identifying environmental risk 

factors), and any possible interactions 

between these two suites of factors. This 

emerging field, however, has had what 

would best be termed marginal success in 

these endeavors—the data infrastructure 

for the field is inefficient and frequently 

requires duplication of effort, and the 

analytical approaches used often fail to 

reconstruct distributions of biological 

phenomena realistically. 

 

In this perspective, I offer a series of 

reflections and suggestions regarding paths 

forward for this field, with the goal of 

achieving an infrastructure of data and 

tools that meet the goals of the field. These 

“fixes” involve significant investment of 

time, logistics, and thinking, and almost 

certainly cannot all be followed by a single 

institution or for a single region. However, 

the hope is that some portion of this 

framework of thinking will prove useful to 

some sectors that look to spatial 

epidemiology for adequate risk mapping 

regarding disease transmission. 
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