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Abstract

Standard Bank, South Africa, currently employs a methodology when developing application
or behavioural scorecards that involves logistic regression. A key aspect of building logistic
regression models entails variable selection which involves dealing with multicollinearity. The
objective of this study was to investigate the impact of using different variance inflation fac-
tor1 (VIF) thresholds on the performance of these models in a predictive and discriminatory
context and to study the stability of the estimated coefficients in order to advise the bank.
The impact of the choice of VIF thresholds was researched by means of an empirical and
simulation study. The empirical study involved analysing two large data sets that represent
the typical size encountered in a retail credit scoring context. The first analysis concentrated
on fitting the various VIF models and comparing the fitted models in terms of the stability
of coefficient estimates and goodness-of-fit statistics while the second analysis focused on
evaluating the fitted models’ predictive ability over time. The simulation study was used to
study the effect of multicollinearity in a controlled setting. All the above-mentioned studies
indicate that the presence of multicollinearity in large data sets is of much less concern than
in small data sets and that the VIF criterion could be relaxed considerably when models
are fitted to large data sets. The recommendations in this regard have been accepted and
implemented by Standard Bank.
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1The variance inflation factor (VIF) quantifies the severity of multicollinearity in least squares regres-

sion. It is basically an index that measures how much the variance of an estimated regression coefficient
is increased because of collinearity.

17

http://orion.journals.ac.za
http://dx.doi.org/10.5784/31-1-162


18 PJ de Jongh, E de Jongh, M Pienaar, H Gordon-Grant, M Oberholzer & L Santana

1 Introduction

Standard Bank’s behavioural scorecard2 building methodology comprises of a definition
phase, a data exploration phase, a characteristic analysis phase, a collinearity diagnostic
phase, and a model fitting and diagnostics phase. The definition phase has to do with
obtaining clarity on the business objectives and, amongst others, the target definitions
(e.g. status of accounts such as defaulted or not), predictor variables, time horizon and the
observation (containing the predictor variables) and performance windows (containing the
future status of accounts). The data exploration phase involves merging of the observation
and performance data sets into one coherent data set, performing data quality procedures
on the data set and general exploratory data analysis to identify aberrant and missing
observations. The characteristic analysis phase involves a detailed weights of evidence3

analysis [20] and the collinearity diagnostic phase a detailed analysis of correlated variables
based on the variance inflation factor (VIF) methodology introduced by Belsley et al. [4]
and implemented in SAS PROC REG / VIF. Variables that do not exhibit discriminatory
power as measured by their weights of evidence are typically eliminated as well as variables
that do not satisfy a pre-specified VIF criterion. After the collinearity diagnostic phase,
stepwise logistic regression, using SAS PROC LOGISTIC, is performed on the variables that
remain after the filtering process has been completed. Finally the fitted model is analysed
in terms of the stated objectives and using business logic checks.

In this paper the research question that needs to be answered is: What VIF threshold
should be used in this methodology? At the time of the study, Standard Bank employed
a strict VIF threshold of 2.5 in the collinearity diagnostics phase of their model building
methodology. Interestingly, the literature is not clear on what VIF threshold to use and
what the impact of these selections is in a prediction context. Although VIF thresholds
of 5 are common, some authors [14, 20] are of the opinion that multicollinearity should
not be of major concern when fitting models to large data sets and using those models
for predictive purposes, therefore suggesting a higher VIF threshold. According to Leahy
[14] “the effects of multicollinearity in reducing the statistical power of a model can be
overcome by using a large enough sample so that the parameter estimates obtained through
ordinary least squares regression will be reliable”.

It is important to emphasize that the bank’s specific research question, the rigid scorecard
building methodology and the SAS software used for development restricted this research
to the classical VIF collinearity diagnostics methodology and logistic regression. Com-
mercial banks typically follow rigorous ‘tried and tested’ procedures in the development,
validation, implementation and monitoring of production models. These procedures are
governed by a set of policies and approval procedures which are tightly controlled by
various committees.

2A behavioural scorecard attempts to predict the default probability of an existing account.
3The Weight of Evidence or WoE value is a widely used measure of the “strength” of a grouping for

separating good and bad risk (default). It is computed from the basic odds ratio: (Distribution of Good
Credit Outcomes) / (Distribution of Bad Credit Outcomes). Using WoE the values of continuous and
categorical predictor variables are recoded into discrete categories, and a unique value assigned to each
category. This recoding produces the largest differences between the recoded groups with respect to the
WoE values.
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Any changes in model building methodology require internal and external approval by
several committees as part of a rigorous and thorough governance process which is often
time consuming and complex. For the development and implementation of production
models, open source software is typically not used by financial institutions. Rather, com-
mercially available software is preferred that has undergone rigorous testing and satisfies
the necessary software related risk and legal requirements of the institution. Due to the
above-mentioned constraints, some of the latest procedures that have been proposed in
the literature were not considered, such as penalised regularisation methods like the Lasso
[21], Elastic Net [22], the extended-VISA approach [1], correlated component regression
[18] and VIF Regression [5, 16, 19]. The latest variable selection techniques in a logistic
regression context [6, 9, 11, 15] were not considered either. The above-mentioned tech-
niques have not yet been implemented in SAS software (version 9.3) which is, at least in
South Africa, very popular in the banking industry. Software algorithms for the above-
mentioned regularisation methods do exist and are mostly available in the open source
language R. For an exposition on scorecard development methodologies in banking the
interested reader is referred to Anderson [3].

The focus of this paper is on the collinearity diagnostic phase of Standard Banks scorecard
development methodology that is based on pre-threshold selection based on the classical
VIF methodology. This phase is necessary because it is well known that the maximum
likelihood methods on which SAS PROC LOGISTIC is based, are known to be affected by
multicollinearity [10]. Other consequences of multicollinearity have been well documented
[4] and analysed in a small data set regression context. However, when large data sets are
considered, the impact of different pre-selected VIF thresholds has not been thoroughly
researched as is revealed by the lack of appropriate references found when conducting
a literature survey. The lack of scholarly publications on the topic could be attributed
to the emergence of the new variable selection methodologies, mentioned earlier, that
automatically caters for or circumvents the multicollinearity problem in a large data set
context.

In order to research the problem a two pronged study was conducted that involved a
simulation study and an empirical study. The objective of the simulation study was
to determine the effect of multicollinearity in a controlled setting. In this study, data
sets are generated assuming a known multicollinearity structure and a comparison made
between the fits obtained using standard logistic regression as implemented in SAS’s PROC
LOGISTIC. In particular, the effect of increasing sample size on the stability of coefficient
estimates was studied as well as the models’ out-of-sample prediction performance. Note
that the objective of this study was not to conduct a comprehensive study in a large data
set context, but rather to provide insight into the comments made by Leahy [14] and
Siddiqi [20] and to assist with the interpretation of the results of the empirical study.

The empirical study had two objectives and was performed on a large transactional account
with a revolving credit facility. The first objective was to study the effect of using different
VIF thresholds in the collinearity diagnostic phase on the discriminatory power of the
resulting models and the stability of the coefficient estimates. This was done by choosing
four different VIF thresholds, execute the collinearity diagnostic phase for each of the
selected thresholds and then performing a standard stepwise logistic regression on the
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four data sets. The four fitted models are then evaluated in terms of the Gini-statistic
obtained, the regression coefficient estimates as well as the standard errors of the regression
coefficient estimates. Note that the Gini-statistic is a measure of discriminatory power
while the standard errors of the coefficients provide a measure of stability. The second
objective concentrated on the predictive ability of the fitted model over time. Again the
same measures of discriminatory power and stability were used in the analyses. Note that
the data set that was used as input to the collinearity diagnostic phase was the result of
executing Standard Bank’s scorecard methodology up to the characteristic analysis phase.
It is well-known that the Gini-statistic depends on the underlying characteristics of the
portfolio and therefore should not be used as a measure of comparison across different
portfolios or of the same portfolio as it evolves through time [17]. However, in the context
of this article, the measure will be used as a relative comparison of the discriminatory
power of the VIF models as obtained on the same portfolio and at a particular point in
time.

The layout of the remainder of the paper is as follows. In the next section the simulation
study is described and the results presented. In §3, the empirical study is described and
the results discussed. Some concluding remarks are made in the final section.

2 Simulation study

For binary response models, the response, Y , of an individual or an experimental unit
can take on one of two possible values, denoted for convenience by 0 and 1 (for example,
Y = 1 if a customer has defaulted, otherwise Y = 0). The probability of default, given
a set of predictor variables X, p = P (Y = 1 | X) may be modelled by a binary logistic
regression model

logit(pi) = ln

(
pi

1− pi

)
= zi = α+

k∑
j=1

βjXj,i for i = 1, . . . , n. (1)

Here zi is the linear predictor function, Xj,i the ith observation of the jth predictor variable,
βj the parameter or coefficient of the jth variable, α an intercept term, n the number of
observations and k the number of predictor variables. Kleinbaum and Klein [13] interprets
the β’s as the change in log odds and α as the log of the background or baseline odds which
is the odds resulting from a logistic model without any predictor variables. Note that in
the credit scoring context, the parameter α relates to the bad rate (proportion of defaults)
in the sample. If the bad rate proportion is small in a particular sample one deals with
what is referred to as rare event logistic regression which necessitates certain corrective
procedures when fitting standard logistic regression models. Frequency weighted sampling
is used as a remedy after which a bias correction is made. For more discussion on this and
related topics see King & Zeng [12]. In a credit scoring context one typically deals with
large samples (in this article more than 300 000 observations) and bad rates in excess of
2% (in this article more than 6 000 defaults) which is generally regarded as a sufficient
sample for fitting standard logistic regression models. Because of this and the fact that α
is generally regarded as a nuisance parameter when fitting logistic regression models [13],
α was taken as 0 in the simulation study below. However, some remarks will be made
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on results obtained from simulation runs where the value of α was changed to correspond
with low bad rate scenarios.

2.1 Monte Carlo design

Using equation (1) it is assumed that k = 5 and α = 0 and data are then generated
according to two models, where in the first model satisfies βj = 1 for j = 1, . . . , 5 and in
the second model it holds that βj = 1 for j = 1, 2, 3 and βj = 0 for j = 4 and 5. The
first model is referred to as Model I and the second as Model II. The observations of the
predictor variables are generated by Xj ∼ N(0, σ2j ) for j = 1, 2, 3. Multicollinearity is

then introduced by setting X4 = X2 + X3 + ε1 and X5 = X4 + ε2, where ε1 ∼ N(0, σ2ε1)
and ε2 ∼ N(0, σ2ε2). Independence is assumed between the error terms and the first three
predictor variables. Note that the standard deviations of Xj for j = 1, . . . , 5 are

σ1 = σ2 = σ3 = 1

σ4 =
√
σ22 + σ23 + σ2ε1

σ5 =
√
σ24 + σ2ε2 .

The choice of σ2ε1 and σ2ε2 will dictate the degree of multicollinearity introduced; in this
study σε1 is set equal to 0.2 and σε2 = 0.1, which seem to yield the ‘desired’ degree of
multicollinearity of interest.

The correlation matrix 
1 0 0 0 0
0 1 0 σ2/σ4

σ2/σ5

0 0 1 σ3/σ4
σ3/σ5

0 σ2/σ3
σ3/σ4 1 σ4/σ5

0 σ2/σ5
σ3/σ5

σ4/σ5 1


follows from this construction and, for the particular choice of error variances, becomes

1 0 0 0 0
0 1 0 0.702 0.698
0 0 1 0.702 0.698
0 0.702 0.702 1 0.995
0 0.698 0.698 0.995 1

 .

The condition number of this matrix is 1 311.98 with corresponding eigenvalues 2.9836, 1,
1, 0.0141 and 0.0023. Training and testing data sets were generated under both models.
The training set was used to fit the model and the testing set to test the predictive
performance of the model. Once the observations of the predictor variables were generated,
the probabilities pi were obtained from (1).

The binary observations were generated as

Yi =

{
1 if ui ≤ pi
0 otherwise

for i = 1, . . . , n,
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where ui ∼ U(0, 1).

Once the training and test data sets were generated according to Model I and II, three
models were fitted to the data, namely a logistic regression containing all five the predictor
variables (referred to as the Full model), a logistic regression incorporating all five of the
predictor variables but using stepwise selection (referred to as the Stepwise model) and a
logistic regression containing only the first three independent predictor variables (referred
to as the Reduced model). SAS’s PROC LOGISTIC was used to fit the three models to
training data sets generated under Model I and II and then to evaluate predictive power
on the test data set. The Full model fit on data sets generated by Model I will be referred
to as I Full and indicated as such in the tables containing the results. Similarly a Stepwise
fit on data sets generated by Model II will be referred to as II Stepwise and so on. This
is summarised in the Table 1.

Model Description

I Full Data generated under Model I, Logistic regression fit with all 5 variables.
II Full Data generated under Model II, Logistic regression fit with all 5 variables.
I Stepwise Data generated under Model I, Stepwise logistic fit with all 5 variables.
II Stepwise Data generated under Model II, Stepwise logistic fit with all 5 variables.
I Reduced Data generated under Model I, Logistic regression fit using the first 3 variables.
II Reduced Data generated under Model II, Logistic regression fit using the first 3 variables.

Table 1: The naming conventions used for simulated data sets and corresponding model fits.

Note that the simulation study has been designed in such a way that the variables in-
ducing the problem of multicollinearity are known. In light of this, Model I represents
defaults generated by a combination of independent and highly correlated predictor vari-
ables whereas Model II is generated by independent variables. Similarly the Full and
Stepwise fits incorporate the independent as well as the correlated variables while the
Reduced model only considers the independent predictor variables.

In order to compare the predictive power of the fitted models, the following four perfor-
mance measures were used:

� the C-statistic (subsequently referred to as C TRAIN and C TEST)

� The proportion of correctly classified observations (subsequently referred to as
CLAS TRAIN and CLAS TEST)

� The mean squared error (MSE) of the fitted versus true probabilities (subsequently
referred to as MSE TRAIN and MSE TEST)

� The Akaike Information Criterion (AIC) (subsequently referred to as AIC TRAIN and
AIC TEST).

The C-statistic and AIC are standard outputs of SAS’s PROC LOGISTIC and the other
two statistics can be calculated easily. A threshold of 0.5 was used to determine the
predicted defaults or “bads” from the estimated probabilities. In practice the choice of
threshold should be based on the data analysed. However, in this case the simulation
design dictates this choice. The predicted defaults are then compared to the generated
observed defaults to calculate the proportion of correct classifications. The MSE was
obtained as the mean sum of squared differences between the fitted and generated “true”
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probabilities. The simulation study was then conducted by using 100 simulation runs with
250, 500, 750 and 1000 observations each. Larger data sets (e.g. 10 000 observations) and
more simulation runs were also experimented with; however, the accuracy obtained did
not improve markedly.

2.2 Results

In order to save space only the results for sample sizes of 250 and 1000 are reported here.
The results for the C-statistic and the proportion of correctly classified observations on
both the training and test sets were particularly interesting. Under Model I and II, all
three fitting procedures fare very well and the performance on the training and test data
sets were very close. This is also true for the other performance statistics although the
mean squared error measure, for all three fitting procedures, consistently indicated slightly
worse performance on the test data set, while the AIC statistic indicated slightly better
performance on the test data set. The latter conclusion could be questioned since Table 2
indicates that the approximate standard error of the fit statistics across the simulation
runs is large in these cases compared to the other performance statistics.

On the other hand, the results in Table 3 indicate that all methods fare well suggesting that
the issue of multicollinearity, at least in a prediction context, is not important, since the
fitted models with all variables included perform as well as the model where the variables
responsible for multicollinearity have been removed. This agrees with the statements made
by Leahy [14] and Siddiqi [20]. This finding suggests relaxing the restrictions on the VIF
criteria.

C TRAIN C TEST CLAS TRAIN CLAS TEST MSE TRAIN MSE TEST AIC TRAIN AIC TEST

250 0.0110 0.0118 0.0197 0.0212 0.0019 0.0025 16.7612 18.4888
I Full

1 000 0.0056 0.0054 0.0096 0.0095 0.0005 0.0006 33.7250 32.1829
250 0.0116 0.0122 0.0200 0.0213 0.0013 0.0019 16.5365 18.1534

I Reduced
1 000 0.0059 0.0057 0.0104 0.0104 0.0004 0.0005 33.9175 32.9285

250 0.0110 0.0113 0.0197 0.0194 0.0015 0.0018 16.4542 16.9947
I Stepwise

1 000 0.0056 0.0052 0.0093 0.0097 0.0005 0.0005 33.4149 31.2972
250 0.0247 0.0231 0.0259 0.0252 0.0027 0.0031 17.2356 16.3705

II Full
1 000 0.0136 0.0138 0.0137 0.0150 0.0006 0.0007 36.2237 35.4964

250 0.0243 0.0235 0.0251 0.0259 0.0019 0.0021 16.7363 16.2881
II Reduced

1 000 0.0137 0.0136 0.0138 0.0146 0.0006 0.0006 36.0423 34.7888
250 0.0251 0.0237 0.0261 0.0287 0.0020 0.0022 16.8917 16.1621

II Stepwise
1 000 0.0138 0.0134 0.0141 0.0141 0.0005 0.0006 36.1161 33.6577

Table 2: Standard deviation of predictive performance statistics over simulation runs under

Model I and II by fitting the full, stepwise and reduced models.

When considering Table 4, Table 5 and Table 6, a number of conclusions may be drawn.

� Parameter estimates are considerably more stable when fitting the Reduced model.
For the Full and Stepwise fit the coefficient estimates are much more unstable as
reflected by their standard errors (refer to Table 6).

� Under Model I, the Reduced model fit ‘automatically corrects’ for the omitted two
correlated variables (X4 and X5) by increasing the estimates of the coefficients of
the variables with which it is correlated (X2 and X3). Refer to Table 4.
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C TRAIN C TEST CLAS TRAIN CLAS TEST MSE TRAIN MSE TEST AIC TRAIN AIC TEST

250 0.958 0.953 0.885 0.878 0.0035 0.0039 140.792 153.344
I Full

1 000 0.956 0.955 0.883 0.880 0.0010 0.0010 543.925 556.237
250 0.954 0.952 0.879 0.876 0.0044 0.0048 142.388 150.786

I Reduced
1 000 0.953 0.953 0.880 0.878 0.0031 0.0031 556.507 565.631

250 0.956 0.954 0.882 0.878 0.0025 0.0026 137.830 145.798
I Stepwise

1 000 0.955 0.955 0.882 0.880 0.0014 0.0014 543.568 552.096
250 0.849 0.837 0.766 0.754 0.0042 0.0045 250.464 263.088

II Full
1 000 0.837 0.837 0.756 0.756 0.0012 0.0012 1 001.888 1006.541

250 0.846 0.840 0.765 0.757 0.0027 0.0028 248.534 256.666
II Reduced

1 000 0.837 0.838 0.755 0.757 0.0008 0.0008 999.972 1 000.113
250 0.844 0.839 0.761 0.756 0.0036 0.0037 248.077 255.709

II Stepwise
1 000 0.835 0.836 0.754 0.756 0.0019 0.0019 1 003.593 1 003.65

Table 3: Average of predictive performance statistics over simulation runs under Model I and

II by fitting the full, stepwise and reduced models.

� As expected, the larger the sample size, the smaller the standard error of the coef-
ficient estimates (see Table 4 and Table 6). We have checked this for the omitted
sample sizes of 500 and 750 as well and this concurs with what is reported here.
Note however that the results for the stepwise fit may be misleading because the
same variables are not included in each of the final fits.

� Some simulation runs were carried out for small sample sizes, e.g. 10, 20 and 50. In
these cases SAS’s PROC LOGISTIC frequently encountered numerical and convergence
problems, especially when fitting all the predictor variables under Model I and II.
This was mostly caused by quasi-complete separation.

� VIF values calculated for the five predictor variables remained relatively constant
over sample sizes and simulation runs for both Model I and Model II (see Table 5).
As expected, the VIF values drop sharply if the correlated variables are removed
from the fitted model.

β1 β2 β3 β4 β5 SE β1 SE β2 SE β3 SE β4 SE β5

250 1.079 1.019 1.047 0.951 1.208 0.273 1.203 1.202 2.603 2.328
I Full

1 000 1.015 1.003 1.035 1.068 0.983 0.128 0.568 0.568 1.237 1.107
250 1.024 3.024 3.055 0.261 0.446 0.449

I Reduced
1 000 0.986 2.957 2.989 0.125 0.214 0.215

250 1.051 1.018 0.913 3.070 3.108 0.264 0.351 0.391 0.425 0.435
I Stepwise

1 000 1.002 2.221 1.334 2.955 3.005 0.127 0.452 0.309 0.214 0.204
250 1.057 0.935 0.959 0.056 0.064 0.195 0.845 0.845 1.817 1.627

II Full
1 000 1.006 0.988 1.009 0.037 −0.035 0.093 0.403 0.403 0.875 0.782

250 1.046 1.044 1.069 0.192 0.192 0.192
II Reduced

1 000 1.004 0.987 1.009 0.092 0.092 0.092
250 1.042 0.762 0.544 1.136 0.781 0.191 0.251 0.236 0.255 0.298

II Stepwise
1 000 0.997 1.141 1.075 0.959 0.815 0.092 0.157 0.150 0.087 0.112

Table 4: Average estimates of betas and average standard errors of betas.

Although the prediction performance of the fitted models does not seem to be adversely
affected by the presence of multicollinearity, on close inspection the estimates of the co-
efficients vary substantially, especially at small sample sizes, sometimes resulting in large
negative estimates for the coefficients related to the collinear variables. The latter prob-
lem, seemingly not serious from a prediction viewpoint, could be considered extremely
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negative from a business interpretation viewpoint. Certainly one would be reluctant to
include a variable in a model if an estimated coefficient ‘does not make business sense’.
To assess the effect of sample size on the stability of coefficient estimation when multi-
collinearity is present, the Mean Squared Error (MSE) of the coefficients of each of the
variables (i.e. the mean of the squared differences of the true parameter value with the
estimated coefficient over simulation runs) was calculated under Model I and Model II.

X1 X2 X3 X4 X5

Full 1.01 26.52 26.80 258.67 207.51
Reduced 1.01 1.01 1.01
Stepwise 1.01 26.52 26.80 258.67 207.51

Table 5: VIF values for the five predictor variables obtained for the different models fitted.

Again, sample sizes of 250, 500, 750 and 1 000 were considered; however, in order to obtain
a more complete assessment, a small sample (100) and very large sample (10 000) were
included as well. Note that all the variables were included in all the logistic regression fits.
The results are shown in Figure 1. Under both models and for all sample sizes considered,
coefficient estimates for X1 had a relatively small MSE relative to the estimated coefficients
of the other variables. In the MSE sense, the behaviour of this variable could be considered
stable. Of course the behaviour is expected due to the construction of the two models.
The other variables, in particular the behaviour of X4 and X5, clearly are unstable at
the smaller sample sizes under both models. Again this is expected due to the way in
which the models were constructed. The effect of increasing sample size is clear from
the graphs showing that at the large sample sizes all of the variables have a low MSE
indicating stable behaviour over the simulation runs. This suggests that very large sample
sizes negate the effect of multicollinearity in that coefficient estimation of highly collinear
variables becomes relatively stable.

β1 β2 β3 β4 β5 SE β1 SE β2 SE β3 SE β4 SE β5

250 0.233 1.181 1.145 2.829 2.482 0.033 0.137 0.135 0.278 0.248
I Full

1 000 0.131 0.627 0.658 1.317 1.129 0.008 0.027 0.029 0.058 0.056
250 0.231 0.469 0.418 0.031 0.075 0.070

I Reduced
1 000 0.131 0.219 0.224 0.007 0.017 0.018

250 0.220 1.461 1.861 0.392 0.540 0.031 0.064 0.095 0.066 0.098
I Stepwise

1 000 0.127 0.853 1.257 0.354 0.192 0.007 0.183 0.192 0.061 0.017
250 0.187 0.797 0.784 1.952 1.849 0.017 0.064 0.063 0.125 0.118

II Full
1 000 0.098 0.435 0.441 0.923 0.763 0.004 0.012 0.013 0.026 0.025

250 0.182 0.189 0.185 0.016 0.018 0.017
II Reduced

1 000 0.097 0.098 0.101 0.004 0.004 0.004
250 0.182 0.000 0.094 1.073 1.385 0.017 0.000 0.021 0.402 0.459

II Stepwise
1 000 0.097 0.336 0.545 0.300 0.596 0.004 0.127 0.117 0.096 0.150

Table 6: Standard deviation of estimated betas and standard deviation of standard errors of

betas.

Some extra simulations were run for α-values corresponding to low bad rate scenarios.
In particular an α-value of −10 that roughly corresponds to a bad rate of 1.75% was
considered. In this extreme case the same conclusions may be drawn, although the stability
of the coefficient estimates is obtained at larger sample sizes as was the case for the 50%



26 PJ de Jongh, E de Jongh, M Pienaar, H Gordon-Grant, M Oberholzer & L Santana

Figure 1: Plots of the mean squared error of coefficient estimates obtained over simulation runs

for Model I and Model II respectively. [Figure can be viewed in colour in the electronic version,

available at http://orion.journals.ac.za .]

bad rate (α = 0). For example, under Model I, when compared to the MSE’s obtained for
a 50% bad rate (α = 0) in a 250 sample (‘�’-marked line in Figure 1), the MSE’s assuming
a 1.75% bad rate (α = −10) in a 1 000 sample are approximately the same for the first
three coefficients and about 50% more for the remaining two coefficients. At a sample
size of 10 000, the MSE’s obtained assuming a 1.75% bad rate are slightly smaller when
compared to the MSE’s obtained under a 1000 sample with a 50% bad rate (‘∗’-marked
line in Figure 1). The results therefore show that when the sample has very small bad
rates the effect of multicollinearity is more severe in that larger samples are needed to
negate the effect of multicollinearity. Multicollinearity effects are expected to be minimal
for the sizes of the samples typically encountered in a credit scoring context.

During personal communication, Prof Trevor Hastie [7] from Stanford University was not
surprised by the results of the simulation study and based on his experience confirmed that
multicollinearity should not play an important role in a prediction context when logistic
regression models are fitted to large data sets. He suggested that models obtained should
also be compared to logistic regression regularisation models based on the Elastic Net
[6, 8]. The Elastic Net is a regularised regression method which overcomes the limitations
of the LASSO (least absolute shrinkage and selection operator) method. Hastie and his
collaborators developed the so-called glmnet routine in R. This includes fast algorithms
for estimation of generalized linear models with the Lasso, ridge regression and mixtures
of the two penalties (the Elastic Net) using cyclical coordinate descent, computed along
a regularisation path [22]. These methods are also widely employed as variable selection
methods.

In order to test the remark by Hastie [7] the above mentioned simulation study was
repeated. Since no Elastic Net regularisation method has been implemented in SAS, the
glmnet routine in R was used. The implementation of the simulation study in R served a
further purpose of independently checking the results of the SAS study. The study differed
from the one reported in Table 2 in that the stepwise selection method was dropped as
well as the AIC. This was due to time constraints and the fact that these routines were

http://orion.journals.ac.za


Impact of VIF thresholds on logistic regression models in credit scoring 27

not readily available in R. The results for the various performance measures appear in
Table 7.
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250 0.958 0.952 0.954 0.951 0.887 0.876 0.880 0.874 0.0038 0.0039 0.0098 0.0101
I Reduced

1 000 0.956 0.955 0.955 0.954 0.883 0.882 0.881 0.880 0.0009 0.0009 0.0042 0.0042
250 0.956 0.950 0.954 0.949 0.882 0.873 0.881 0.871 0.0051 0.0054 0.0120 0.0125

I Stepwise
1 000 0.952 0.952 0.952 0.952 0.877 0.876 0.877 0.875 0.0031 0.0031 0.0062 0.0063

250 0.847 0.830 0.840 0.827 0.765 0.750 0.758 0.744 0.0047 0.0049 0.0128 0.0132
II Reduced

1 000 0.840 0.836 0.837 0.835 0.760 0.753 0.756 0.753 0.0011 0.0011 0.0056 0.0056
250 0.841 0.833 0.840 0.829 0.759 0.751 0.756 0.744 0.0032 0.0032 0.0125 0.0127

II Stepwise
1 000 0.838 0.837 0.838 0.836 0.756 0.755 0.756 0.754 0.0007 0.0007 0.0054 0.0054

Table 7: Average of predictive performance statistics over simulation runs under Model I and

II by fitting the full and reduced models using the glm and glmnet routines in R, where LR denotes

Logistic Regressiona and EN denotes Elastic Net Regularisation.

The Elastic Net method does not outperform the standard logistic regression method. In
fact, when the MSE performance measure is considered, the results are less desirable.

This simulation study provide evidence that, in large data sets, the effect of multicollinear-
ity on the stability of coefficient estimation and prediction in general is minimal suggesting
that the VIF restriction, as used in Standard Bank’s scorecard development methodology,
could be relaxed considerably. Although the parameter estimates of predictor variables
which are highly correlated with each other are rather unstable as expected at the smaller
sample sizes, the models all do well in a prediction context. Also, in large samples the
parameter estimates of highly collinear variables become stable which suggests that the
effect of multicollinearity is much less of a concern, if at all. This conclusion will now be
tested by conducting an empirical study on a typical large credit scoring data set.

3 Empirical study

As stated previously the empirical study was split into two parts. The first part was
concerned with evaluating and comparing the discriminatory performance and parameter
stability of fitted logistic regression models when the same scorecard development method-
ology is applied, but different VIF-thresholds have to be satisfied during the collinearity
diagnostic phase. Standard Bank’s collinearity diagnostic phase is based on the well-
known procedure outlined by Belsley et al. [4] and as implemented in PROC REG of the
SAS Software [2]. This phase may be summarised as follows.

i Specify a VIF threshold that all explanatory variables should satisfy.

ii If the VIF threshold is exceeded by the VIF of any variable, calculate the condition
indices associated with X ′X, and study the proportion of variation that each variable
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contributes to the highest condition indices (these values are produced by using the
COLLINOINT option in PROC REG).

iii Take note of the variables that contribute the most variation to the highest condition
index and retain the ones that have the largest p-values for the Wald Chi-square
statistic (produced by PROC LOGISTIC).

iv Repeat the process ii-iii until all explanatory variables satisfy the specified VIF
threshold.

In the first part of the empirical study (referred to as “Part I”), four specified VIF thresh-
olds (2.5, 5, 10 and 15) result in four variable sets (i.e., variable sets containing those vari-
ables corresponding to the particular VIF threshold selected from the above-mentioned
procedure) which are used in a standard stepwise logistic regression. In the second part
of the study (referred to as “Part II”), the focus shifts to testing the discriminatory and
predictive performance of logistic regression models over time in an out-of-sample setting.
In this second case only three VIF thresholds (2.5, 5 and 10) are used. (The VIF thresh-
old of 15 was omitted from Part II since the results obtained were very similar to using a
VIF of 10.) The predictive and discriminatory performance of the fitted models was then
compared over time.

3.1 Empirical study: Part I

3.1.1 Methodology

The first step involved constructing the development data set on a set of observation data
in a specified time window and a set of performance data in a subsequent time window. The
observation window stretched from July 2010 to June 2011 and the performance window
from July 2011 to June 2012. The data in the observation window comprised of 1 294 811
observations and 802 predictor variables, and the data set in the performance window
comprised of 8 990 876 observations and 6 characteristics from which the target definition
(binary classification variable: good vs. bad) was constructed. The two data sets were
then merged into one coherent development data set. This involved a significant amount
of data manipulation including merging records for the different time periods. After
merging the data, the development data set comprised of 1 294 811 observations and 802
predictor variables. The variable and observation filtering process was then carried out by
first excluding suspect observations and by eliminating variables using business knowledge
and the weights of evidence (WOE) method. This resulted in a development data set
comprising of 335 523 observations and 73 predictor variables. This was then followed by
the collinearity diagnostic phase and the stepwise logistic regression fits as described at
the beginning of this section. This procedure resulted in four fitted models; one for each
of the four variable sets obtained from the four specified VIF thresholds. The performance
of the fitted models was compared to assess whether the different VIF thresholds had any
significant impact on the performance of the models. Thereafter an additional test was
carried out to assess the stability of the coefficient estimates over different sized samples.
As measure of stability the standard error of the coefficient estimates was used. Using
the development data set (that was used as input for the collinearity diagnostic phase),
random samples of different sizes were drawn and a logistic regression model fitted on
each sample. The sizes of the samples used in this study ranged from samples that were
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90% of the size of the original sample down to samples that were only 0.5% of the size of
the original sample. These sample sizes are summarized in Table 9. Logistic regression
models were then fitted to the smaller samples by including the same predictors that
resulted after carrying out the collinearity diagnostic and stepwise regression phases on
the complete data set for each VIF threshold.

Therefore, it is important to note that the collinearity diagnostic phase and stepwise re-
gression was not repeated for each sample. Note again that the model fits that resulted
from the four VIF thresholds were compared in terms of the stability of the parameter
estimates by evaluating the standard errors of the estimated coefficients. The discrim-
inatory power of the models was evaluated by comparing the Gini-statistic. Note that
the PROC LOGISTIC procedure in SAS automatically outputs the estimated coefficients,
standard errors of the estimated coefficients, the Gini-statistic, and more.

3.1.2 Results

Given the above-mentioned development data set that comprised of 335 523 observations
and 73 predictor variables, the step-by-step collinearity diagnostic phase followed by a
stepwise logistic regression, provided the results as depicted in Table 8.

VIF ≤ 15 VIF ≤ 10 VIF ≤ 5 VIF ≤ 2.5

Variables 38 34 29 21
Max VIF 11.85 9.72 4.25 2.39
Gini-statistic 0.829 0.828 0.827 0.814

Table 8: A summary of the results for the models on the full development data set.

From Table 8 it can be seen that 38 (34, 29, 21) predictors remain in the less than 15
(10, 5, 2.5) VIF fit. The “Max VIF” for each fit corresponds to the maximum VIF of the
predictor variables in the fitted model. Note that all of the “Max VIFs” are lower than
the VIF threshold employed. Also note that the Gini-statistic obtained under VIF ≤ 2.5
is clearly lower than those obtained under the other thresholds. This finding is important
since it suggests that a VIF ≤ 2.5 threshold might be too conservative since variables
having predictive power are erroneously excluded. One might argue that the lower Gini-
statistic should be expected due to the fact that 8 fewer variables are used in the VIF ≤ 2.5
model. However, when comparing the VIF ≤ 15 model to the VIF ≤ 5 model, a loss of 9
variables has a minor effect. Next, different sized samples are compared in terms of the
size of the estimates’ standard errors of the estimates and the discriminatory power as
measured by the Gini-statistic.

In Table 9 the different sized samples, the actual bad rate and the number of bads for
each sample are given. The number of “bads” is the actual defaults observed according to
the specified target definition and the actual bad rate is the number of “bads” divided by
the number of observations in the sample. For example, for sample 4 (the 60% sample)
the number of “bads” is 6 252 and the resulting actual bad rate 3.1057%.

It is well-known that the number of “bads” in a sample plays an important role when
studying the performance of the fitted models [10, 20] especially if the number of “bads”



30 PJ de Jongh, E de Jongh, M Pienaar, H Gordon-Grant, M Oberholzer & L Santana

Sample Sample Number of Actual Number
number percentage observations bad rate of “bads”

1 90% 301,971 3.05% 9 212
2 80% 268,418 3.04% 8 153
3 70% 234 866 3.02% 7 083
4 60% 201 314 3.11% 6 252
5 50% 167 762 3.06% 5 132
6 40% 134 209 3.10% 4 163
7 30% 100 657 3.12% 3 144
8 28% 93 946 3.06% 2 874
9 26% 87 236 3.05% 2 657

10 24% 80 526 3.04% 2 447
11 22% 73 815 2.95% 2 180
12 20% 67 105 2.97% 1 994
13 18% 60 394 3.04% 1 834
14 16% 53 684 3.00% 1 608
15 14% 46 973 3.16% 1 482
16 12% 40 263 3.01% 1 214
17 10% 33 552 3.11% 1 043
18 9% 30 197 3.09% 934
19 8% 26 842 2.95% 792
20 7% 23 487 3.08% 724
21 6% 20 131 2.75% 554
22 5% 16 776 2.93% 491
23 4% 13 421 3.08% 413
24 3% 10 066 3.31% 333
25 2% 6 710 3.39% 227
26 1% 3 355 2.97% 99
27 0.50% 1 678 2.80% 47

Table 9: Summary results of the models on the full development data set.

is relatively small. In the latter case sampling weights are often introduced and/or over-
sampling of the bads which introduces bias, which is then corrected by introducing an
offset in the fitted model.

In Figure 2 and 3 the influence of sample size was examined where the horizontal axis
represents each sample number (sorted in order from largest to smallest sample).

Figure 2: A plot of the average of the estimated coefficients’ standard errors for each differently

sized sample. [Figure can be viewed in colour in the electronic version, available at http://orion.

journals.ac.za .]
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In Figure 2 the averages of the estimated coefficient standard errors per sample are com-
pared for each VIF fit. If one would believe that multicollinearity is not a significant
concern when logistic regression models are fitted to large data sets, then one would ex-
pect that the standard errors of the estimated coefficients should behave similarly when
comparing the four model fits. Also, the standard errors should be small when sample
sizes are large. From the graph it is clear that there are no substantial differences between
the average standard errors per sample for the four models. It is clear that the four fit-
ted VIF models behave similarly across the different sized samples, and that the average
standard error shows a marked increase as the sample sizes get smaller. For sample sizes
bigger than 200 000 the average standard error is very small, while for samples smaller
than 10 000 the average standard error starts to increase dramatically. The latter occurs
when the number of “bads” is less than about 400 (somewhere between sample 24 and
27), the bad rate less than about 3% and the sample size less than about 13 000. This is
a common phenomenon when the (unweighted) frequency of bads becomes small relative
to the size of the population.

Figure 3: A plot of the maximum standard error for different VIF values over differently sized

samples. [Figure can be viewed in colour in the electronic version, available at http://orion.

journals.ac.za .]

One might question the fact that average standard errors are used as criterion, but in-
spection of the individual standard errors of the coefficient estimates yielded the same
conclusion. In Figure 3 the maximum standard error of the estimated coefficients ob-
tained for each fitted model are compared over samples. When observing Figure 3 one
can see that the maximum standard errors is relatively small when the number of “bads”
exceeds 400 (sample size higher than 13 000), but increases considerably when the number
of “bads” is less. It is again clear from the above that the larger the sample size and
number of “bads”, the lower the standard error of the estimated coefficients. Also, the
maximum standard errors are similar for all the models, regardless of the VIF thresholds
used. Therefore, when developing scorecards using large datasets with a reasonable num-
ber of “bads”, the standard errors of the estimated coefficients should not be regarded as
a major concern. Figure 2 and Figure 3 indicate that when the population exceeds 50,000
observations and an actual bad rate of 3% (sample 15), the maximum standard error of
the estimated coefficients is less than 0.25 (average standard error less than 0.1). More
research is needed to establish a general rule of thumb. However, note that when the sam-
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ple size exceeds 200 000 the maximum standard errors are very close to the corresponding
average standard errors, and both are very small indicating that the standard errors are
almost all the same. Since all four VIF models are unaffected by the presence of the
multicollinearity that remains after the collinearity diagnostic phase has been completed,
in large samples, the VIF threshold may be relaxed considerably.

Figure 4 contains the comparison of the Gini-statistics for each sample (1 to 27). Again, it
is clear that a VIF ≤ 2.5 threshold results in inferior Gini-statistics over all samples. It is
also clear that the Gini-statistic of the models follows the same pattern over the different
sized samples. However, for samples 26 (1% sample) and 27 (0.5% sample) overfitting
results in a sharp increase in the Gini-statistic for these models.

Figure 4: A plot of the comparison of the Gini-statistic of the models over the 27 samples

of different sizes. [Figure can be viewed in colour in the electronic version, available at http:

//orion.journals.ac.za .]

In summary, the results of Part I indicate that the use of a strict VIF threshold of 2.5
could result in a loss of discriminatory power and it is clear that a much less strict VIF
of 15 provided superior discriminatory power. It is also clear from Figure 2 that samples
of more than 200,000 observations, and assuming a 3% bad rate, tend to yield small
standard errors that indicate a stable fit not much affected by multicollinearity. However,
when the sample size and unweighted number of bad accounts gets smaller instability
becomes evident, especially when the sample is smaller than 10 000 observations and the
number of “bads” is less than 4%. This study indicates that in this portfolio the effect of
unstable parameter estimates is negated by using large sample sizes in excess of 200 000
observations and a bad rate of at least 3%. More research is needed in order to make
generic recommendations regarding the minimum sample size and bad rate mix required
and this will probably vary according to the characteristics of the portfolio studied [17].

For some of the above-mentioned sample sizes, repeated samples of the same size were
drawn from the four data sets and then logistic regression models fitted for each sample.
The standard deviations of the estimated coefficients as well as the standard deviations
of the standard errors of the estimated coefficients were calculated over the repeated
samples. The results confirmed the conclusion that the coefficient estimates are stable in
large sample sizes, becoming unstable in sample sizes less than 10 000 having less than
4% “bads”. This concurs with the results of the small bad rate scenarios obtained in the
simulation study.
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3.2 Empirical study: Part II

3.2.1 Methodology

The objective of this part of the study was to investigate the stability of a fitted model over
time. The model was fitted on observational data from 2008 and performance data from
2009 by carrying out the same steps as in Part I. The first step involved constructing the
development data set on the observation data and the corresponding performance data.
The observation window stretched from March 2008 to August 2008 and the correspond-
ing performance window from March 2009 to August 2009. The data in the observation
window comprised of 539 948 observations and 767 predictor variables and the data set
in the performance window comprised of 3 392 097 observations and 6 characteristics. As
was the case in Part I, the latter characteristics were used to construct the target def-
inition and to merge the two data sets into one coherent development data set. After
the data were merged, the development data set comprised of 539 948 observations and
767 predictor variables which were further reduced to 225 920 observations and 72 predic-
tor variables after performing the observation exclusion and variable filtering procedures
prior to the collinearity diagnostics phase. As before, VIF thresholds were specified, the
collinearity diagnostic phase executed, and stepwise logistic regression models fitted. The
fitted models were then evaluated in terms of their out-of-sample prediction performance
using observation data in monthly periods stretching from March 2008 until August 2011
and the corresponding performance data from March 2009 until August 2012. In this
case once again the Gini-statistic is used as a measure for discriminatory power on the
out-of-sample performance of the models over time and as a measure for predictive power
the predicted bad rate is compared with the actual bad rate as a measure of ‘usefulness’.
Through this measure it is investigated whether the VIF level will cause drift from the
theoretically predicted bad rate aggregated for the entire portfolio and compared month
on month. It is important to note that only three models are compared, i.e. a model for
VIF criteria of 2.5, 5 and 10. The reason why the VIF criteria of 15 was not considered is
that when using this criterion, the resulting stepwise logistic regression fit was similar to
that obtained when using a VIF threshold of 10.

3.2.2 Results

Given the above-mentioned development data set that comprised of 225 920 observations
and 72 predictor variables, the step-by-step collinearity diagnostic phase followed by a
stepwise logistic regression, provided the results as depicted in Table 10.

VIF ≤ 10 VIF ≤ 5 VIF ≤ 2.5

Variables 25 21 14
Max VIF 7.5 4.17 2.39

Gini-statistic 0.803 0.799 0.781

Table 10: A summary of the results for the models on the full data set.

From Table 10 it may be seen that 25 (21, 14) predictors remain in the less than 10 (5,
2.5) VIF fit after performing stepwise logistic regression. The “Max VIF” for each fit
corresponds to the maximum VIF of the predictor variables in the model. Note that the
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Gini-statistic obtained under VIF ≤ 2.5 is lower than those obtained under the other two
thresholds. This finding is important since again it suggests that a VIF ≤ 2.5 threshold
is too conservative. To test the stability of the three models over time, Gini-statistics
were calculated for the in- sample period (March 2008 to August 2008) and the out-of-
sample period stretching from September 2008 until August 2011. The resulting Gini-
statistics (indicated on the left hand vertical axis) together with the actual bad rate
observed (indicated on the right hand vertical axis) are given in Figure 5.

Figure 5: A comparison of the three models’ Gini-statistics from month-to-month. [Figure can

be viewed in colour in the electronic version, available at http://orion.journals.ac.za .]

When studying the behaviour of the Gini-statistics over time, it seems that the trend
stays relatively stable over the in-sample period (March 2008 – August 2008) as well as
for three subsequent months (September 2008 – November 2008). Thereafter, erratic be-
haviour is evident (December 2008 – April 2009) where after a steady decline is observed
(May 2009 – December 2009) which then stabilises from January 2010 onwards. Inter-
estingly the actual bad rate behaves similarly over the period considered in the sense
that erratic behaviour is evident in the period December 2008 until December 2009. The
erratic behaviour of the performance measures could be attributed to changes in the un-
derlying portfolio characteristics during a period that overlap with the credit crisis. When
comparing the Gini-statistics of the three VIF models at a particular point in time, the
lower Gini-statistics that are consistently obtained for VIF ≤ 2.5 is clear. One could also
conclude that the Gini-statistics resulting from the VIF ≤ 10 fits are consistently slightly
higher than that obtained under VIF ≤ 5 fits.

In conclusion, a model based on a VIF criterion of 10 resulted in a better degree of
discriminatory power over time than the other models. To test the predictive power of
the three models over time, the actual bad rate in the specific period was compared to the
three models predicted bad rate. The results are depicted in Figure 6 for the same time
period. Since the three models originated from the same data set, the actual bad rate is
calculated once only.

Note that, although it is desirable that a model predicts the bad rate accurately, it should
be interpreted in conjunction with the discriminatory power (Gini-statistic) of the model.
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Figure 6: A comparison of the actual bad rate against the predicted bad rate of the three

models from month-to-month. [Figure can be viewed in colour in the electronic version, available

at http://orion.journals.ac.za .]

From Figure 6, the performance of the three VIF models is almost identical for the in-
sample period and for the out-of-sample period until April 2009. Thereafter the VIF ≤ 2.5
model predicts a slightly lower bad rate than the other models. For the period July 2009
until December 2009 the VIF ≤ 2.5 model underperforms while in the period January
2010 it outperforms the other models in the sense that it is closer to the actual bad
rate observed. Since Standard Bank frequently realigns their scorecards, the degree with
which the model using a VIF ≤ 2.5 outperforms the others is regarded as of no practical
significance.

4 Summary and ideas for future work

Standard Bank’s Group Risk Model Development Team employs a particular methodology
when developing application or behavioural scorecards. They currently employ a strategy
of selecting variables that satisfy a specific variance inflation factor (VIF) threshold to
detect the presence of multicollinearity in their models. The objective of this study was
to investigate the impact of using different VIF thresholds on the performance of these
models in a predictive and discriminatory context and to study the stability of the esti-
mated coefficients. The results obtained in this study show that the problems caused by
multicollinearity when fitting standard logistic regression models in small samples do not
hold for the very large samples that are frequently encountered in a credit scoring context,
and that the VIF threshold should be relaxed considerably. In fact, employing a too strict
VIF threshold could result in a loss of discriminatory power. The results of this study
enabled Standard Bank to improve their scorecard development methodology.

Standard Bank’s collinearity methodology restricted this research to focus on the clas-
sical approach of Belsley et al. [4]. Across disciplines, different approaches to address-
ing collinearity problems have been developed, ranging from clustering of predictors,
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threshold-based pre-selection, through latent variable methods, to shrinkage and regu-
larisation. The principles concerning multicollinearity can be applied both to logistic
regression as to linear regression, the same diagnostics assessing multicollinearity can be
used. It is also important to have a robust selection procedure in the logistic regression
class so that very large data sets can be analysed in a robust fashion. Classical VIF ex-
periences problems with the larger data set and tend to choose too many covariates. This
paper uses the classical VIF approach while a robust VIF approach could be investigated
in future [5, 19].
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