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Abstract

The influence of individual cases in a data set is studied when variable selection is applied in
multiple linear regression. Two different influence measures, based on the Cp criterion and
Akaike’s information criterion, are introduced. The relative change in the selection criterion
when an individual case is omitted is proposed as the selection influence of the specific omitted
case. Four standard examples from the literature are considered and the selection influence of
the cases is calculated. It is argued that the selection procedure may be improved by taking
the selection influence of individual data cases into account.

Key words: Akaike’s information criterion, influential data cases, Mallows’ Cp criterion, multiple

linear regression, variable selection.

1 Introduction

The literature on statistical variable selection, frequently one of the first steps in a multi-
ple linear regression analysis, is considerable. Recent references are Burnham & Anderson
(2002) and Murtaugh (1998). The purpose of regression variable selection is to reduce the
predictors to some “optimal” subset of the available regressors. This may be important
because (i) a smaller set of predictors may provide more accurate predictions of future
cases, or, (ii) it may be important to identify those predictor variables significantly influ-
encing the response (for example, in a clinical trial). There are many techniques which
are routinely used for variable selection in multiple linear regression: stepwise routines
such as forward selection (Miller, 2002), Bayesian techniques (an extensive list of refer-
ences is given in Burnham & Anderson, 1998, p.127), cross-validation selection techniques
(Liu et al., 1999), or an all possible subsets approach based, for example, on Mallows’ Cp

criterion (Mallows, 1973, 1995), or Breiman’s little bootstrap (Breiman, 1992; Venter &
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Snyman, 1997). In this paper attention is restricted to selection using an all possible sub-
sets approach based on either the Cp criterion or Akaike’s information criterion (Akaike,
1973).

The literature on measures of the influence of individual cases in a data set on a multiple
linear regression fit is equally impressive. Some contributions include Cook (1977, 1986),
and Belsley et al. (1980). These and other contributions on influence measures assume
that the predictor variables are identified beforehand. If an initial selection step takes
place, the influence measures are therefore conditional, i.e. the specific predictors in the
model are given.

Only a few papers dealing with the influence of individual data cases in regression explic-
itly take an initial variable selection step into account. In this context, Léger & Altman
(1993) distinguish between conditional and unconditional selection versions of Cook’s dis-
tance. To explain the difference between the two versions, let V be the set of indices
corresponding to the predictor variables selected from the full data set, and let _

y (V ) be
the prediction vector based on the selected variables and calculated from the full data set.
Also, let _

y (−i) (V ) be the prediction vector based on the variables corresponding to V , but
calculated from the full data set without case i. Note that _

y (−i) (V ) contains a prediction
for case i, although this case is not used in calculating _

y (−i) (V ). The conditional Cook’s
distance for the i-th case is ∥∥∥_

y(V )− _
y (−i) (V )

∥∥∥2
,

appropriately scaled. Here, ‖•‖ denotes the Euclidean norm. To obtain the unconditional
Cook’s distance, Léger & Altman (1993) argue that it is necessary to repeat the variable
selection using the data without case i. This selection yields a subset V(−i) of indices, with
V(−i) possibly different from V . The unconditional distance is

∥∥∥_
y(V )− _

y (−i)

(
V(−i)

)∥∥∥2
,

appropriately scaled. Léger & Altman (1993) discuss the differences between these two
selection versions of Cook’s distance and argue that the unconditional version is preferable,
since it explicitly takes the selection effect into account.

In this paper we introduce two new measures of the selection influence of an individual data
case in multiple linear regression analysis. Our point of view is that such a measure should
provide an indication of whether the fit of the selected model improves or deteriorates
owing to the presence of the case. This is the main contribution of the paper. Section 2
is devoted to a brief exposition of Mallows’ Cp statistic and Akaike’s information criterion
(AIC ). The new measures of selection influence, based on Cp and AIC respectively, are
introduced in Section 3. It is indicated how variable selection based on Cp or on AIC
may be modified, and hopefully improved, by making use of the influence measures. Four
practical examples are discussed in Section 4. We close with some recommendations in
Section 5.
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2 Variable selection using Cp or AIC

Let y1, . . . yn be observations of the response in a multiple linear regression, with corre-
sponding observations xij , i = 1, . . . , n; j = 1, . . . , p of p explanatory variables. We make
the customary assumption that

yi = β0 +
p∑

j=1

βjxij + εi, (1)

for i = 1, . . . , n. In (1), ε1, . . . , εn are independent normal
(
0;σ2

)
random variables, and

β0, . . . , βn and σ2 are unknown parameters. We assume that {xi1, . . . , xip} may contain
redundant variables, so that it is advisable to perform variable selection as a first step in
the analysis. Let RSS be the residual sum of squares from the least squares fit of (1).
Then σ̂2 = RSS/(n − p − 1) is the commonly used unbiased estimator of σ2. Consider
a subset V of {1, . . . , p}, and let RSS(V ) be the residual sum of squares from the least
squares fit using only the regressors corresponding to the indices in V , together with an
intercept. The Cp statistic for the corresponding model is

Cp (V ) =
RSS(V )

σ̂2
+ 2(v + 1) − n, (2)

where v is the number of indices in V . Variable selection based on (2) entails calculating
Cp (V ) for each subset of {1, . . . , p}, and selecting the variables corresponding to V̂ , the
subset minimizing (2). This approach is based on the fact that for a given V , σ̂2Cp (V ) is
an estimate of the expected squared error if a (multiple) linear regression function based
on the variables corresponding to V is used to predict Y ∗, a new (future) observation of
the response random vector, Y . Therefore, choosing V̂ to minimize (2) is equivalent to
selecting the variables which minimize the estimated expected prediction error.

The AIC is based on the maximized log-likelihood function of the model under consid-
eration. Given independent normal errors, and ignoring constant terms, the maximized
log-likelihood for the model corresponding to a subset V is given by −n log [RSS(V )/n] /2.
This is a non-decreasing function of the number of selected regressors. Akaike (1973) there-
fore included a penalty term, viz. v + 2, which equals the number of parameters which
have to be estimated. Multiplying the resulting expression by −2 yields

ÃIC(V ) = n log
(

RSS(V )
n

)
+ 2(v + 2). (3)

For an up-to-date discussion and further motivation of (3), see Burnham and Anderson
(2002). It is known that AIC(V ) does not perform well when the number of parameters to
be estimated is large compared to the sample size (typically cases where 40 (v + 2) > n).
In such cases a modified version of (3) should be used, viz.

AIC(V ) = n log
(

RSS(V )
n

)
+

2n (v + 2)
n − v − 3

. (4)

Variable selection based on (3) or (4) entails calculating the criterion for each subset V
of {1, . . . , p}, and selecting the variables corresponding to the minimizing subset. This is
equivalent to selecting the variables which maximize a penalized version of the maximum
log-likelihood.
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3 New measures of selection influence

It is standard statistical practice in multiple linear regression to study the influence of a
single data case in an analysis as follows: analyse the complete data set and calculate a
(summary) measure, say M ; repeat the analysis after omitting the case under consideration
and calculate M(−i); quantify the influence of case i in terms of a function, f(•), of M and
M(−i). An example is provided by Cook’s statistic, where M is the vector of predictions
of the response, and f(x) = ‖x‖2 /RSS.

The measures of selection influence which we propose are also based on a leave-one-out
strategy. The following questions need to be resolved: (i) What is meant by an analysis
of the complete or reduced data set? (ii) What measure M should be used? (iii) How
should we define f(•)? Regarding the first question, in a variable selection context an
analysis of a data set entails applying a given variable selection technique, and fitting the
model corresponding to V̂ to the data. Consequently, if we wish to study the influence
of a single data case in such an analysis, it is necessary to apply the selection technique
under consideration to the full data set and again to the reduced data set. This is in line
with the unconditional approach recommended by Léger and Altman (1993). Turning to
the second question, different choices of M can be made, depending on the aspect of the
fitted model which is of interest. In variable selection the number of selected variables
and the lack of fit of the corresponding model are typically of interest. These quantities
are combined in selection criteria such as Cp and the AIC. It therefore seems reasonable
to take M equal to the criterion employed in the selection method. This implies that
f(•) has to be based on the difference in the value of the selection criterion before and
after omitting case i. This difference, M − M(−i), may then be divided by M in order to
calculate the relative change in the selection criterion. The proposed selection influence
measure for the i-th case is therefore given by

f
(
M,M(−i)

)
=

M −M(−i)

M
, (5)

where M denotes the selection criterion under consideration. Note that (5) may be calcu-
lated for all selection criteria where the particular criterion is a combination of some sort
of goodness-of-fit measure and a penalty function (such a penalty function usually includes
the number of predictors of the particular selected model as one of its components, see
Kundu and Murali (1996)).

The proposed influence measure for the i-th case when the Cp criterion is used becomes

f(Cp (V ) , Cp

(
V(−i)

)
) =

Cp (V )− Cp

(
V(−i)

)
Cp (V )

, (6)

where Cp

(
V(−i)

)
is calculated as in (2), but with the i-th case omitted. Note that in

calculating Cp

(
V(−i)

)
the estimator for the error variance is obtained from the full data

set. The use of this error variance estimator is supported by considerations given by Léger
and Altman (1993) for using σ̂2 in the denominator of the unconditional Cook’s distance.
The proposed influence measure based on the Cp criterion in (6) is large if the relative
difference between Cp (V ) and Cp

(
V(−i)

)
is large. If this is true for an omitted data



Variable selection in multiple linear regression: The influence of individual cases 127

case i, the particular case is considered possibly selection influential. Note that negative
values of Cp (V ) may occur. These negative values may cause misrepresentation of the
relative difference between Cp (V ) and Cp

(
V(−i)

)
, i.e. the relative differences for certain

data cases may now be incorrectly larger than others if, for example, Cp (V ) − Cp

(
V(−i)

)
in the numerator, and Cp (V ) in the denominator of (6) are negative. We overcome this
difficulty by omitting the subtraction of n and (n − 1) in the calculation of Cp (V ) and
Cp

(
V(−i)

)
respectively. Thus, for instances where V and V(−i) are similar, or where V and

V(−i) have the same number of indices, the sign of the numerator in (6) depends on the
sizes of RSS(V ) and RSS(V(−i)) respectively. Using Akaike’s information criterion (AIC )
for variable selection, the corresponding influence measure for the i-th case in (5) is

f
(
AIC (V ) , AIC

(
V(−i)

))
=

AIC (V )−AIC
(
V(−i)

)
AIC (V )

. (7)

The value of AIC
(
V(−i)

)
in (7) is obtained by using either (3) or (4), but with the i-th

case omitted.

4 Illustrative examples

The proposed influence measures in (6) and (7) are applied to four example data sets in
this section.

4.1 The fuel data

Consider the fuel data given by Weisberg (1985, pp. 35, 36 and 126). There are 50 cases
(one case for each of the 50 states in the USA). The response is the 1972 fuel consumption
in gallons per person. The four predictor variables are:

x1 : amount of tax on a gallon of fuel in cents;
x2 : percentage of the population with a driver’s license;
x3 : average income in thousands of dollars; and
x4 : total length of roads in thousands of miles.

Applying Cp selection to the full data set resulted in variables x2 and x3 being selected.
The proposed influence measure in (6) is calculated for each data case i. The resulting
values, together with the selected variables, Cook’s unconditional selection distances, and
estimated expected squared prediction errors are shown in Table 1 for some of the omitted
data cases. The estimated average prediction errors for the reduced data sets were obtained
by randomly selecting 39 of the 49 cases as a training data set and the other 10 cases as
a test data set. Applying the Cp criterion to the training data set, the selected model
was used to calculate an average squared prediction error for the 10 cases of the test
data set. Random selection of a training data set and calculation of the average squared
prediction error for the test data set, based on the selected model from the training data
set, was repeated 20 000 times. Record was kept of the 20 000 average prediction errors.
Their average was calculated in order to obtain an estimate of the expected squared
prediction error. For the full data set (using 40 observations in the training data sets and
10 observations in the test data sets) this estimate equals 9 740.
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Case Variables Influence Unconditional Average
omitted selected measure Cook’s distance prediction error

1 2,3 0.0016 0.0017 9 909
12 2,3 0.0004 0.0007 10 061
13 2,3 0.0006 0.0004 10 100
19 2,3 0.0557 0.1986 9 513
28 2,3 0.0009 0.0005 9 972
32 2,3 0.0005 0.0008 9 924
33 2,3 0.0224 0.0486 9 811
39 2,3 0.0192 0.0402 9 756
40 2,3,4 0.2038 0.8756 8 013
45 2,3 0.0652 0.1627 9 329
49 2,3,4 0.1024 1.0664 8 688
50 1,2,3 0.2658 2.4029 6 057

Table 1: Fuel data: Variable selection with Mallows’ Cp criterion.

It is clear from Table 1 that the proposed influence measure and Cook’s unconditional
distance are relatively large when case 40, 49 or 50 is omitted. Both reach a maximum
when data case 50 is omitted. We observe a sharp reduction in the estimated average
prediction error (from 9 740 to 6 053) for the reduced data set where case 50 is omitted.
The estimated average prediction errors for the reduced data sets without case 40 or 49
are also considerably smaller than that of the full data set, but not as low as that of the
reduced data set with case 50 omitted. It would therefore seem to be advisable to omit
data case 50 before performing variable selection and model fitting on the fuel data. Note
that variables x1, x2 and x3 are selected if case 50 is omitted.

There is a strong correspondence between the values of the proposed influence measure and
the estimated average prediction errors. This is reflected in the correlation coefficient of
−0.9716 between these two sets of numbers. The correlation between Cook’s unconditional
selection distance and the estimated average prediction error is −0.9657. Finally, the
correlation between the proposed influence measure and Cook’s unconditional distance
is 0.9276, confirming a strong positive relationship between these two measures for this
example.

Very similar results are obtained in Table 2 when the influence measure based on AIC
in (7) is applied to the fuel data. We report on the same reduced data sets as in Table
1. Variable selection on the full data set by means of AIC also resulted in variables
x2 and x3 being selected. With case 50 omitted, variables x1, x2 and x3 are selected.
Clearly, case 50 is once again selection influential. For all the other reduced sets (also
those not shown) AIC selection results in the same variables selected as in the full data
set. The proposed influence measure also identifies case 50 as the most influential. Cook’s
unconditional distance (also suggesting case 50 as most influential) remains unchanged
from Table 1, except for the reduced data sets where cases 40 and 49 are respectively
omitted. The estimated average prediction error for the full data set equals 9 613. The
following correlations are also reported: between the proposed influence measure and the
estimated average prediction error: −0.9809; between Cook’s unconditional distance and
the estimated average prediction error: −0.9199; between the proposed influence measure
and Cook’s unconditional distance: 0.8634.
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Case Variables Influence Unconditional Average
omitted selected measure Cook’s distance prediction error

1 2,3 0.0176 0.0017 9 791
12 2,3 0.0174 0.0007 9 917
13 2,3 0.0174 0.0004 9 974
19 2,3 0.0244 0.1986 9 380
28 2,3 0.0175 0.0005 9 830
32 2,3 0.0174 0.0008 9 785
33 2,3 0.0201 0.0486 9 687
39 2,3 0.0198 0.0402 9 624
40 2,3 0.0471 0.3401 7 937
45 2,3 0.0257 0.1627 9 245
49 2,3 0.0309 0.3634 8 630
50 1,2,3 0.0575 2.4029 6 027

Table 2: Fuel data: Variable selection with AIC.

The proposed influence measures in (6) and (7) show that the maximum relative difference
between M and M(−i) is obtained if case 50 is omitted. Cook’s unconditional selection dis-
tance confirms the implication that case 50 is selection influential. The low values obtained
for the estimated average prediction errors when case 50 is omitted supply strong evidence
that omitting this case before performing variable selection improves the predictive power
of the resulting model.

The following question arises: How should one judge the significance of a value of the
proposed influence measure? In other words, should one recommend to a practitioner
analyzing this data set to omit case 50 before performing variable selection? We attempt
to answer this question by comparing the influence measures of data case 50 (0.2658 in
(6) and 0.0575 in (7)) with the largest influence measures obtained in 10 000 residual
bootstrap samples (Efron and Tibshirani, 1993). The bootstrap samples are obtained in
the following way: Determine the vector of residuals of the form r = Y − Ŷ , once a
linear regression model has been fitted to the complete data set. Random selection of 50
of these residuals with replacement yields a bootstrap vector of residuals, denoted by rb.
If we calculate rb + Ŷ a new bootstrap response vector, denoted by Yb, is obtained. This
newly formed bootstrap vector and the original set of unchanged predictor variable values
constitute the bootstrap sample. Consider now 10 000 of these bootstrap samples, each of
size 50 for the fuel data. The proposed influence measures in (6) and (7) are calculated for
every single omitted data case in each of the 10 000 bootstrap samples. By keeping record
of the largest values of (6) and (7) in every bootstrap sample, we are provided with two
sets of values with which we may compare the largest influence measures (i.e. if data case
50 is omitted) of the fuel data set. The distributions of these 10 000 largest bootstrap
influence measures, based on (6) and on (7) respectively, are shown in Figure 1 and 2.

The vertical line drawn in the class interval (0.26;0.29] on the histogram in Figure 1 shows
the position of 0.2658 in the distribution. The proportion of bootstrap influence measures
that are smaller than 0.2658, equals 0.8824. This implies that the value 0.2658 lies close to
the 90th percentile of the bootstrap distribution. Similarly, the largest influence measure
(0.0575) lies above the 83rd percentile in Figure 2. Providing this information to any
practitioner who analyses the fuel data, will surely be helpful in the decision as to whether
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Figure 1: Histogram of largest Cp influence measures in 10 000 bootstrap samples.

case 50 should be omitted before subsequent analysis is performed.

It is important to bear in mind that the proposed influence measures only identify indi-
vidual selection influential data cases. If it is, for example, decided to reject case 50 from
the fuel data set, the influence measures should be recalculated on the n − 1 remaining
observations to identify other possibly selection influential data cases.

4.2 The evaporation data

We also apply the proposed influence measures to the evaporation data given by Freund
(1979). Ten independent predictor variables were measured on 46 consecutive days, in
accordance with the amount of evaporation from the soil, which represents the response.

The ten predictor variables are:

x1 : maximum daily soil temperature;
x2 : minimum daily soil temperature;
x3 : integrated area under the soil temperature curve;
x4 : maximum daily air temperature;
x5 : minimum daily air temperature;
x6 : integrated area under the daily temperature curve;
x7 : maximum daily relative humidity;
x8 : minimum daily relative humidity;
x9 : integrated area under the daily humidity curve; and

x10 : total wind measured in miles per day.

Variable selection with Cp on the full data set yields variables x1, x3, x6, x8 and x9 as the
selected variables. Table 3 shows the following for some of the reduced data sets: the
selected variables; values of the proposed influence measure in (6); Cook’s unconditional
distances; and the estimated expected squared prediction errors. Random selection of 37



Variable selection in multiple linear regression: The influence of individual cases 131

Figure 2: Histogram of largest AIC influence measures obtained in 10 000 bootstrap samples.

cases from the full data set in order to constitute a training data set, and using the model
selected from this set to determine the average squared prediction error for the remaining
9 cases, resulted in an estimated average prediction error of 71, in 20 000 repetitions. The
estimated values for the reduced data sets are based on 20 000 repetitions, each time using
36 cases in the training data set and 9 cases in the test data set.

Case Variables Influence Unconditional Average
omitted selected measure Cook’s distance prediction error

1 1,3,6,8,9 0.002 0.0048 77
4 1,3,6,8,9 0 0 74
8 1,3,6,9,10 0.1039 0.7118 62
21 1,3,6,8,9 0.0423 0.0389 71
22 1,3,6,9,10 0.0359 0.6148 73
26 1,3,5,7,8,9 0.021 0.5225 72
31 1,3,4,8,9 0.034 1.3462 69
32 1,3,6,9,10 0.0324 0.8613 73
33 1,3,6,9,10 0.1612 0.8349 60
40 6,9,10 0.0512 1.9332 71
41 1,3,6,9 0.2054 0.7768 52
46 1,3,6,9,10 0.0102 0.547 73

Table 3: Evaporation data: Variable selection with Mallows’ Cp criterion.

The largest influence measures are obtained when case 41 is omitted, followed by case 33.
The reduced data sets when cases 41 and 33 are respectively omitted also give the smallest
values for the estimated average prediction error. The strong correspondence between the
proposed influence measure and the estimated average prediction error for all 46 reduced
data sets is reflected in a correlation coefficient of −0.9712. Note that Cook’s unconditional
distance is a maximum if a different case (i.e. case 40) is omitted. A correlation coefficient
of only −0.4532 is obtained when the relationship between Cook’s unconditional selection
distance and the estimated average prediction error is considered. Finally, as expected,
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the weak relationship between the proposed influence measure and Cook’s unconditional
distance is reflected in a correlation coefficient of 0.5022 for this example.

Applying AIC to the full data set results in variables x1, x3, x6 and x9 being selected, with
the estimated average prediction error for the full data equal to 72. The corresponding
AIC results, for the same reduced data sets as in Table 3, are shown in Table 4. The
proposed influence measure in (7) also identifies cases 41 and 33 as most influential. The
correlation between the influence measure in (7) and the estimated average prediction
error (−0.9747) is higher than the correlation between Cook’s unconditional distance and
the estimated average prediction error (−0.334). The correlation between the proposed
influence measure and Cook’s unconditional distance equals 0.3664.

Case Variables Influence Unconditional Average
omitted selected measure Cook’s distance prediction error

1 1,3,6,9 0.0151 0.0076 77
4 1,3,6,9 0.0146 0.0011 75
8 1,3,6,9,10 0.0502 0.6989 63
21 1,3,6,9 0.028 0.0474 71
22 6,9,10 0.0272 2.2452 73
26 1,3,7,8,9 0.0193 2.0713 74
31 1,3,4,8,9 0.0249 2.4136 70
32 1,3,6,9,10 0.0243 0.9236 74
33 1,3,6,9,10 0.0731 0.935 61
40 6,9,10 0.0345 2.3096 70
41 1,3,6,9 0.0904 0.471 51
46 1,3,6,9 0.017 0.0079 74

Table 4: Evaporation data: Variable selection with AIC.

Omission of case 41 yields the largest values of measures (6) and (7) for the evaporation
data. The low values obtained for the estimated average prediction error when case 41
is omitted provide strong evidence that omitting this case before doing variable selection
improves the predictive power of the resulting model. Even stronger evidence is acquired
when this value of the influence measure, if data case 41 is omitted, is compared with
the largest influence measures obtained from 10 000 residual bootstrap samples. The
histograms in Figure 3 and 4 show the distribution of these values for selection with Cp

and AIC respectively. The vertical lines show the values of the influence measure if case
41 is omitted. This value lies above the 97th percentile in Figure 3 and above the 86th
percentile in Figure 4.

4.3 Two further examples

In this section we present two further examples illustrating application of the proposed
criteria. For the sake of brevity the results are merely described in the text, without a full
summary in tables. Consider the Scottish hill racing data which have been examined by
several authors such as Atkinson (1986) and Hoeting et al. (1996). The data investigate
the relationship between the record-winning times for 35 hill races in Scotland with the
following predictors:
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Figure 3: Histogram of largest Cp influence measures in 10 000 bootstrap samples.

x1 : distance covered in miles; and
x2 : elevation climbed during the race.

According to Atkinson (1986) the data contain a known error: observation 18 should be
18 minutes rather than 78 minutes. Here we specifically use the data set containing the
error in order to evaluate the performance of the proposed influence measures in (6) and
(7). Throughout, the results obtained when either Cp or AIC are applied to the data
are very similar. Both variables are selected if the two selection techniques are applied to
the full data set. The one-at-a-time omission of case 7 or 11 leads to variable x1 being
selected. For all the other reduced data sets the same variables as in the full data set are
selected.

The largest influence measures in (6) and (7) are obtained when data case 18 is omitted,
followed by cases 11 and 7. The influence measures for these cases (especially case 18)
are significantly larger than when other cases are omitted. Cook’s unconditional distance
reaches a maximum when case 7 is omitted, with also relatively large values when cases 11
and 18 are omitted. There is a sharp reduction in the estimated average prediction error
when case 18 is omitted. The estimated average prediction error for the reduced data sets
without cases 11 and 7 are also significantly smaller than that of the full data set. For the
full data set 28 observations are used in the training data sets and 7 observations in the
test data sets.

Finally, consider the stack loss data which also have been examined by several authors
(Brownlee, 1965; Atkinson, 1985; Hoeting et al., 1996). The data investigate the rela-
tionship between the percentage of unconverted ammonia that escapes from a plant in 21
days, and the following three explanatory variables:

x1 : air flow that measures the rate of operation of the plant;
x2 : inlet temperature of cooling water circulating through coils in the tower; and
x3 : value proportional to the concentration of acid in the tower.
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Figure 4: Histogram of largest AIC influence measures obtained in 10 000 bootstrap samples.

Again, as with the hill racing data, results obtained when either Cp or AIC are applied, co-
inside throughout. Variable selection with both techniques on the full and all reduced data
sets consistently result in variables x1 and x2 as being selected. The influence measures
show a relative maximum when case 21 is omitted, followed by cases 4, 3 and 1. The
corresponding unconditional Cook’s distances of these cases are also relatively larger than
those of the other cases. In the same way the estimated average prediction errors if these
cases are omitted are significantly smaller than the estimated average prediction error
calculated on the full data set. For the full data set 16 observations are used in the
training data sets and 5 observations in the test data sets.

5 Recommendations

Quantifying the influence of an individual data case in a selection context is important.
The proposed influence measures may easily be calculated for any multiple regression
sample that has to be analyzed. Once the influence measures have been obtained, a
decision has to be taken as to whether to omit the data case with the largest influence
measure, before selection is repeated on the reduced data set. The magnitude by which the
estimated average prediction error decreases, if calculated for the complete and reduced
data set, provides us with a good indication of whether the data case should be omitted.
The illustrated bootstrap approach may also be utilized to judge the significance of the
largest proposed influence measure. We strongly recommend that both these aspects (i.e.,
the estimated average prediction error and the bootstrap distribution) should be taken into
consideration before the data case with the largest influence measure is merely excluded
from the regression sample.

The proposed influence measure is based on the Cp and AIC selection criteria. It may
easily be extended to other selection criteria where the particular criterion is a combination
of some sort of goodness-of-fit measure and a penalty function.
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Since omission of individual cases does not address the problems of masking and swamping,
two or more cases may be omitted at a time. This approach, however, causes difficulties
with respect to computing time.
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