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Abstract
In this paper the efficient solvability of a class of nonlinear knapsack problems are investigated
by means of the problem’s necessary and sufficient conditions. It is shown that, from the
general theory, it is impossible to determine sufficient conditions for a solution to be globally
optimal. Furthermore, it is shown that even for the smallest possible instance of this problem
it is, in general, possible to have an arbitrary large number of solutions for which the necessary
conditions hold. These results are then generalised to larger instances of the problem. A
possible solution approach is applied to sets of randomly generated problems that utilises the
necessary conditions together with the branch-and-bound technique in an attempt to limit
the search space. This approach solves mixed 0/1 knapsack problems in order to find all
possible solutions satisfying the necessary conditions. Due to the large number of solutions
satisfying the necessary conditions the proposed solution approach takes substantially longer
than existing branch-and-bound algorithms together with linear enveloping when applied to
the same set of problems. This result renders the proposed approach not very efficient.

Key words: Nonlinear knapsack problem, nonconvex optimisation, resource allocation problem.

1 Introduction

Knapsack problems have a wide range of applications in, for example, marketing, chem-
istry, information technology, portfolio optimisation, optimal search strategies, production
planning, logistics and statistical sampling [1, 2, 7, 8]. The specific problem formulation
considered in this paper arises in the optimal allocation of funding to different, indepen-
dent projects within a fixed budget. Depending on the expected return on each project,
this problem may be formulated as a separable nonlinear knapsack problem in which the
objective function consists of the sum of increasing convex and increasing concave func-
tions, subject to a single constraint, and with lower and upper bounds on the allocation
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to each project. Mathematically this problem may be formulated as

maximise w =
m∑

i=1

fi(xi)︸ ︷︷ ︸
f(x)

+
n∑

j=1

gj(yj)︸ ︷︷ ︸
g(y)

subject to
m∑

i=1

xi +
n∑

j=1

yj = B

l
(x)
i ≤ xi ≤ u(x)

i , i = 1, 2, . . . ,m

l
(y)
j ≤ yj ≤ u(y)

j , j = 1, 2, . . . , n,



(1)

where fi(xi) is an increasing convex function and gj(yj) is an increasing concave function
and B is the size of the budget. Furthermore l(x)

i and u
(x)
i (i = 1, 2, . . . ,m) are respec-

tively lower and upper bounds on the decision variables x1, x2, . . . , xm. Similarly l(y)
j and

u
(y)
j (j = 1, 2, . . . , n) are respectively lower and upper bounds on the decision variables
y1, y2, . . . , xn. We assume that

m∑
i=1

l
(x)
i +

n∑
j=1

l
(y)
j < B <

m∑
i=1

u
(y)
i +

n∑
j=1

u
(y)
j

to exclude trivial solutions. No generality is lost by setting the lower bounds of all the
decision variables to zero, i.e. by taking l

(x)
i = 0 and l

(x)
j = 0 for all i = 1, 2, . . . ,m

and j = 1, 2, . . . , n, because this may always be achieved by means of a simple linear
transformation [2].

The remainder of this paper is structured as follows. In §2 the smallest possible instance
of the problem with m = n = 1 is considered, and it is shown that only necessary condi-
tions for local optimality can be determined by means of the general theory on nonlinear
programming. A generalisation to n > 1 and m > 1 is considered in §3. Some thoughts
and insights on possible solution approaches are presented in §4 and these are followed up
with some computational results obtained via these approaches. Finally, some conclusions,
together with ideas for future study, follow in §5.

2 One convex and one concave function

The special, and smallest possible, instance of (1), where the objective function consists of
only one concave and one convex function, is considered in this section because it clearly
demonstrates the computational complexities in solving this problem. Let the decision
variables be x ∈ [0, ux] and y ∈ [0, uy]. The objective in this case is then to

maximise z = f(x) + g(y)
subject to x+ y = B

0 ≤ x ≤ ux

0 ≤ y ≤ uy.

 (2)
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For the formulation in (2) the second order necessary conditions [3] require that for a
point (x∗, y∗) in solution space to be a local maximum there must exist a λ ∈ R and
µ1, µ2, µ3, µ4 ≥ 0, such that

x∗ + y∗ = B (3)
f ′(x∗) + λ+ µ1 − µ2 = 0 (4)
g′(y∗) + λ+ µ3 − µ4 = 0 (5)

µ1(x∗) = 0 (6)
µ2(ux − x∗) = 0 (7)

µ3(y∗) = 0 (8)
µ4(uy − y∗) = 0 (9)

and, with F (x) = ∂2f(x)
∂x2 and G(y) = ∂2g(y)

∂y2 , the Lagrangian matrix

L(x∗, y∗) =
[
F (x∗) 0

0 G(y∗)

]
(10)

must be negative semi-definite on the tangent plane determined by the binding (or active)
constraints.

The second order sufficient conditions for a strong local maximum is that (3)–(9) must
hold and that the Lagrangian in (10) must be negative definite on the tangent plane
determined by the binding constraints.

To determine necessary and sufficient conditions it is therefore important to consider all
possibilities in which the constraints may be binding. Exactly one of the following three
cases may arise:

1. x+ y = B is the only binding constraint,

2. x + y = B and 0 ≤ x ≤ ux (i.e. either x = 0 or x = ux) are the only binding
constraints, or

3. x + y = B and 0 ≤ y ≤ uy (i.e. either y = 0 or y = uy) are the only binding
constraints.

In all three cases additional conditions are required for a feasible solution to be an optimal
solution candidate. The following theorem summarises all the cases with their respective
additionally required conditions. However, in the theorem we require the notion of curva-
ture. If C is a smooth curve of the graph y = f(x), then the curvature of C at the point
(x, y) is given by [9]

Kf (x) =
|f ′′(x)|

[1 + (f ′(x))2]3/2
.

Theorem 1
Let (x∗, y∗) be a feasible solution to (2) for which x∗ + y∗ = B is a binding constraint.

A If additionally x∗ = 0 (or alternatively y∗ = uy) is binding, and if f ′(x∗) < g′(y∗),
then the second order necessary conditions for the point (x∗, y∗) to be a relative
maximum point hold.
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B If no other constraints are binding, then f ′(x∗) = g′(y∗). Furthermore, if |Kf (x∗)| <
|Kg(y∗)|, then the second order sufficient conditions for the point (x∗, y∗) to be a
strong relative maximum point hold.

C If additionally x∗ = ux (or alternatively y∗ = 0) is binding, and if f ′(x∗) > g′(y∗),
then the second order necessary conditions for the point (x∗, y∗) to be a relative
maximum point hold.

The proofs of Parts A and B are supplied. The proof of Part C is omitted, because it is
similar to the proof of Part A. The cases of Theorem 1 are summarised schematically in
Figure 1.

x∗ + y∗ = B

f ′(x∗) < g′(y∗) f ′(x∗) = g′(y∗) f ′(x∗) > g′(y∗)

x∗ = 0 y∗ = uy

|Kf (x∗)| < |Kg(y∗)|

x∗ = ux y∗ = 0

Relative
maximum

Strong local
maximum

Relative
maximum


Binding
constraints


Additional
conditions


Case A



Case B



Case C

Figure 1: Schematic representation of the cases in Theorem 1.

Proof of A: From the conditions that x+y = B and x = 0 are binding constraints in (2),
as well as from (7)–(9), it follows that µ2 = µ3 = µ4 = 0. Because x = 0, µ1 may assume
any non-negative value. If this result is substituted back into (4)–(5), it follows that

f ′(x∗) + λ+ µ1 = 0 = g′(y∗) + λ,

or
f ′(x∗) + µ1 = g′(y∗).

In the alternative situation, i.e. when x+y = B and y = uy are binding, then by the same
argument it follows that µ4 ≥ 0 and

f ′(x∗) = g′(y∗)− µ4.
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The functions f(x) and g(y) are both increasing and therefore f ′(x) ≥ 0 and g′(y) ≥ 0.
The second order necessary conditions [3] for optimality of a point (x∗, y∗) are that the
point should be a regular point and that the Lagrangian should be negative semi-definite
on the tangent plane determined by the active constraints. For (x∗, y∗) to be a regular
point, the vectors[

∂(x+ y −B)
∂x

,
∂(x+ y −B)

∂y

]
= [1, 1] and

[
∂(x− 0)
∂x

,
∂(x− 0)
∂y

]
= [1, 0]

should be linearly independent at the point (x∗, y∗), which they are.

At the point (x∗, y∗) on the tangent plane it holds that

∂(x+ y −B)
∂x

z1 +
∂(x+ y −B)

∂y
z2 = 0

∂(x− 0)
∂x

z1 +
∂(x− 0)
∂y

= 0,

which means that z1 + z2 = 0 and z1 = 0. For the second order necessary conditions it
should hold that zTL(x∗, y∗)z ≤ 0, which is satisfied since z1 = z2 = 0. �

In the situation described in Case A of Theorem 1, no sufficient conditions for optimality
can be found form the general theory on nonlinear programming. We thus have to conclude
that if the point (x∗, y∗) is a feasible solution for (2) such that x∗+ y∗ = B and x∗ = 0 (or
y∗ = uy) are the only binding constraints, then general second order sufficient conditions
for the feasible solution (x∗, y∗) to be a strong relative maximum point for (2) cannot be
found.

Proof of B: If x+y = B is the only binding constraint in (2), it follows from (6)–(9) that
µ1 = µ2 = µ3 = µ4 = 0. These values, together with (4) and (5), gives the first result,
namely that f ′(x∗) = g′(y∗), implying that the first order necessary conditions hold if
f ′(x∗) = g′(y∗).

Sufficient conditions for local optimality at the point (x∗, y∗) require that, in addition
to the requirement that the first order necessary conditions must hold, the Lagrangian
L(x∗, y∗) must be negative definite on the tangent plane M defined by

M =
{

z

∣∣∣∣∂(x+ y −B)
∂x

z1 +
∂(x+ y −B)

∂y
z2 = 0

}
= {z | z1 + z2 = 0} for all z1 and z2,

at the point (x∗, y∗). Thus, for any point z = (z1, z2) on the tangent plane, z1 = −z2
holds. For L(x∗, y∗) to be negative definite on M it is required that

[z1 − z1]
[
F (x∗) 0

0 G(y∗)

] [
z1
−z1

]
< 0 for all z1, z2 6= 0.

From the properties of f(x) and g(y) it follows that F (x∗) ≥ 0 and G(y∗) ≤ 0. Hence
z2
1 [F (x∗) +G(y∗)] < 0 and F (x∗) + G(y∗) < 0 if F (x∗) < |G(y∗)|. If the inequality
F (x∗) < |G(y∗)| holds, then |Kg(y∗)| > |Kf (x∗)|, which completes the proof. �
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The same conclusion, namely that in general no sufficient conditions for optimality can be
found from the general theory, follows from the proof of Part C.

In order for the necessary conditions to hold, it follows from Theorem 1, that one of the
following must hold for any feasible solution (x∗, y∗) to (2) so that the feasible solution
may be considered a candidate for a globally optimal point:

1. x∗ = 0, 0 < y∗ < uy and f ′(x∗) ≤ g′(y∗)
In this situation no sufficient condition for global optimality can be determined from
the general theory.

2. x∗ = ux, 0 < y∗ < uy and f ′(x∗) ≥ g′(y∗)
In this situation no sufficient condition for global optimality can be determined from
the general theory.

3. y∗ = 0, 0 < x∗ < ux and f ′(x∗) ≥ g′(y∗)
In this situation no sufficient condition for global optimality can be determined from
the general theory.

4. y∗ = uy, 0 < x∗ < ux and f ′(x∗) ≤ g′(y∗)
In this situation no sufficient condition for global optimality can be determined from
the general theory.

5. 0 < x∗ < ux, 0 < y∗ < uy and f ′(x∗) = g′(y∗)
In this situation the necessary conditions can be changed to sufficient conditions
for a locally optimal point if |Kg(y∗)| > |Kf (x∗)|. Practically it means that the
concave function should curve “more” (i.e. have a larger curvature) for the sufficient
conditions to hold at the point (x∗, y∗).

If all the situations above are considered, it would seem that the following fairly simple
algorithm may be used to solve (2):

1. find, if they exist, solutions for which x + y = B and 0 ≤ x ≤ ux are binding, i.e.
x1 = (0, B) and x2 = (ux, B − ux);

2. find, if they exist, solutions for which x + y = B and 0 ≤ y ≤ uy are binding, i.e.
x3 = (B, 0) and x4 = (B − uy, uy);

3. find, if it exists, a best solution for which only x + y = B is binding, i.e. find
x5 = (x5, y5), by performing a search for point(s) satisfying 0 < x < ux, 0 < y < uy,
x+ y = B, f ′(x) = g′(y) and f ′′(x) ≤ g′′(y); and, finally

4. select the best solution from the five obtained above.

Steps 1 and 2 above are computationally inexpensive. To select an optimal solution (in
Step 4) does not bring about an additional computational burden either. Furthermore,
it is computationally simple to find one point for which the conditions in Step 3 hold
numerically. A problem would, however, arise if there are a number of these points, in
which case each of the points would have to be enumerated. To determine the number
of points for which the conditions in Step 3 hold is equivalent to answering the following
question: how many times can the difference between two increasing, convex functions be
zero? Nahay [6] showed, by means of an example, that it is possible that this difference
may intersect any value (and hence zero) an arbitrarily large number of times on a finite
interval! In general, there is thus no upper bound on the number of points that have to
be enumerated in Step 3. An algorithm based on the four steps above would therefore not



On the efficient solvability of a simple class of nonlinear knapsack problems 7

be suitable as an algorithm to find an optimal solution to (2). It could, however, work as
an outline for a heuristic approach towards solving this problem.

We note that the problem with only two functions considered in this section may be
transformed to a problem containing only one function in one variable. This renders an
unconstrained optimisation problem in one variable. Although it is a simpler formulation,
it does not shed any new light on solving for an optimal solution to (2).

3 Generalisation to more functions

In the generalisation to more functions the increase in the number of concave functions
poses no real problem. If the concave part of the formulation is seen as a subproblem
(when m = 0) it is a well researched problem for which efficient algorithms have been
established [8]. The same does not apply for the convex functions. An increase in the
number of convex functions increases the complexity of the problem considerably.

Consider problem (1). In general the second order necessary conditions state that for a
feasible solution x∗ = (x∗1, . . . , x

∗
m, y

∗
1, . . . , y

∗
n) to be optimal, there must exist a λ ∈ R and

µ1, . . . , µm, ν1, . . . , νm, η1, . . . , ηn, ω1, . . . , ωn ≥ 0 for which

m∑
i=1

x∗i +
n∑

j=1

y∗j = B (11)

f ′(x∗i ) + λ+ µi − νi = 0, i = 1, . . . ,m (12)
g′(y∗j ) + λ+ ηj − ωj = 0, j = 1, . . . , n (13)

µi(x∗i ) = 0, i = 1, . . . ,m (14)
ηj(y∗j ) = 0, j = 1, . . . , n (15)

νi(ui − x∗i ) = 0, i = 1, . . . ,m (16)
ωj(uj − y∗j ) = 0, j = 1, . . . , n (17)

and for which

L(x∗) =



F1(x∗1) . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . Fm(x∗m) 0 . . . 0
0 . . . 0 G1(y∗1) . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . Gn(y∗n)


(18)

is negative semi-definite on the tangent plane M determined by the active constraints,
where

Fi(xi) =
∂2fi(xi)
∂x2

i

and Gj(yj) =
∂2gj(yj)
∂y2

j

.
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This implies that for z1, . . . , zm, w1, . . . , wn ∈M ,

[z1, . . . , zm, w1, . . . , wn]



F1(x∗1) . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . Fm(x∗m) 0 . . . 0
0 . . . 0 G1(y∗1) . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . Gn(y∗n)





z1
...
zm
w1
...
wn


≤ 0. (19)

From (19) it follows that

z2
1F1(x∗1) + . . .+ z2

mFm(x∗m) + w2
1G1(y∗1) + · · ·+ w2

nGn(y∗n) ≤ 0.

Let M1 be the tangent plane on the equality constraint, M2 the tangent plane on the
active lower bound constraints and M3 be the tangent plane on the active upper bound
constraints. Then M = M1 ∩M2 ∩M3, and thus for zi, wj ∈M it follows that

z1 + · · ·+ zm + w1 + · · ·+ wn = 0 M1 (20)

zi = 0
wj = 0

if xi = 0
if yj = 0

}
M2 (21)

zi = 0
wj = 0

if xi = ui

if yj = uj

}
M3. (22)

Theorem 1 may be generalised to more functions using this result. All the variables of a
feasible solution (x∗1, . . . , x

∗
m, y

∗
1, . . . , y

∗
n) may be partitioned into three sets, namely

L = {i | x∗i = 0} ∪ {j | y∗j = 0},

U = {i | x∗i = u
(x)
i } ∪ {j | y

∗
j = u

(y)
j } and

K = {i | x∗i ∈ (0, u(x)
i )} ∪ {j | y∗j ∈ (0, u(y)

j )}.

Each entry of a feasible solution will be in exactly one of these three sets, because the
set L contains all the variables that are at their lower bounds, the set U contains all the
variables that are at their upper bounds and the set K contains all the variables neither at
their upper nor at their lower bounds. If a feasible solution is represented in this fashion
it follows from (11)–(17) that

f ′i(x
∗
i ) ≤ −λ

g′j(y
∗
j ) ≤ −λ

}
for all x∗i , y

∗
j ∈ L

f ′i(x
∗
i ) ≥ −λ

g′j(y
∗
j ) ≥ −λ

}
for all x∗i , y

∗
j ∈ U

f ′i(x
∗
i ) = −λ

g′j(y
∗
j ) = −λ

}
for all x∗i , y

∗
j ∈ K.
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All the functions with their variables in the set K have exactly the same slope at a feasible
solution for which the first order necessary conditions hold. We call this slope the consensus
slope, Sc. The result above may be summarised as

f ′i(x
∗
i ), g′j(y

∗
j ) ≤ Sc for all x∗i , y

∗
j ∈ L

f ′i(x
∗
i ) = g′j(y

∗
j ) = Sc for all x∗i , y

∗
j ∈ K

f ′i(x
∗
i ), g′j(y

∗
j ) ≥ Sc for all x∗i , y

∗
j ∈ U

in terms of the consensus slope. There is another result that may be used to limit the
search space in order to facilitate development of a possible algorithm to solve the problem
formulation in (1). Two different proofs of the following result were presented by Venter
and Wolvaardt [11], and by Visagie [12].

Theorem 2
If a feasible solution x∗ = (x1, . . . , xi, . . . , xm) is an optimal solution to (1) with n = 0,
then at most one element of x∗ is in the set K.

The following generalisation of the above result holds for the problem formulation in (1).

Theorem 3
An optimal solution x∗ = (x∗1, . . . , x

∗
m, y

∗
1, . . . , y

∗
n) to (1) with n > 0 has at most one

x∗i ∈ K.

Proof: The formulation in (1) may be divided into a master problem and two subproblems.
The first subproblem (P1) contains all the convex functions and the second subproblem
(P2) contains all the concave functions. The subproblem P1 is given by

maximise Z1 =
m∑

i=1

fi(xi)

subject to
m∑

i=1

xi = B1

0 ≤ xi ≤ ui i = 1, 2, . . . ,m


(23)

and subproblem P2 by

maximise Z2 =
n∑

j=1

gj(yj)

subject to
n∑

j=1

yj = B2

0 ≤ yj ≤ uj j = 1, 2, . . . , n.


(24)

The master problem is then given by

maximise z = Z1 + Z2

subject to B1 +B2 = B

B1, B2 ≥ 0.

 (25)
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If an optimal solution (x∗1, . . . , x
∗
m, y

∗
1, . . . , y

∗
n) to (25) exists, then (x∗1, . . . , x

∗
m) must be

an optimal solution to (23) and (y∗1, . . . , y
∗
n) must be an optimal solution to (24). If this

were not the case for one of the subproblems, then it would be possible to obtain a better
objective function value for that subproblem, with the same amount of resources. However,
then this improved solution may have been used as is in the master problem, without any
effect on the other subproblem. This would then lead to a better solution for the master
problem which is not possible, because the original solution was already optimal. Hence
the solutions (x∗1, . . . , x

∗
m) and (y∗1, . . . , y

∗
n) to both subproblems must be optimal. If the

solution (x∗1, . . . , x
∗
m) is an optimal solution for (23), then Theorem 2 must hold for (23)

and thus at most one of the convex function variables may be in K. �

Theorem 1 may now also be generalised.

Theorem 4
Let (x∗1, . . . , x

∗
m, y

∗
1, . . . , y

∗
n) be a feasible solution to (1), for which

A f ′i(x
∗
i ) ≤ Sc and g′j(y

∗
j ) ≤ Sc for all x∗i , y

∗
j ∈ L,

B f ′i(x
∗
i ) = g′j(y

∗
j ) = Sc for at most one x∗i ∈ K, and for all y∗j ∈ K and in addition, if

there is one xi ∈ K, then |Kfi
(xi)| < |

∑
j Kgj (yj)| for all y∗j ∈ K, and

C f ′i(x
∗
i ), g′j(y

∗
j ) ≥ Sc for all x∗i , y

∗
j ∈ U

hold. Then the first and second order necessary conditions for (x∗1, . . . , x
∗
m, y

∗
1, . . . , y

∗
n) to

be an optimal solution hold.

Thus all solutions (x∗1, . . . , x
∗
m, y

∗
1, . . . , y

∗
n) having either one of the two properties described

below, must be determined to find a globally optimal solution.

1. If there is exactly one x∗i ∈ K, say x∗k (and thus f ′k(x∗k) = Sc), then
Sc = g′j(y

∗
j ) and f ′′k (x∗k) <

∑
j g
′′
j (y∗j ) for all y∗j ∈ K,

f ′i(x
∗
i ) ≤ Sc and g′j(y

∗
j ) ≤ Sc for all x∗i , y

∗
j ∈ L, and

f ′i(x
∗
i ) ≥ Sc and g′j(y

∗
j ) ≥ Sc for all x∗i , y

∗
j ∈ U , or else

2. if there is no x∗i ∈ K, then
Sc = g′j(y

∗
j ) for all y∗j ∈ K,

f ′i(x
∗
i ) ≤ Sc and g′j(y

∗
j ) ≤ Sc for all x∗i , y

∗
j ∈ L, and

f ′i(x
∗
i ) ≥ Sc and g′j(y

∗
j ) ≥ Sc for all x∗i , y

∗
j ∈ U .

With an increase in the number of convex functions the situation becomes worse than the
situation with only one convex function, even though there may be at most one xi ∈ K,
because the chances increase that there is more than one point for which f ′i(xi) = g′j(yj) =
Sc holds for all xi, yj ∈ K. For more than one such point to exist there must be at least
two feasible solutions for which

m∑
i=1

xi +
n∑

j=1

yj = B,

f ′i(xi) = g′j(yj) for all xi, yj ∈ K
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and

∑
i∈K

z2
i f
′′
i (xi) ≤

∑
j∈K

w2
j g
′′
j (yj) for all zi, wj ∈M

holds. This implies that there should be at least one feasible solution for which

z2
i f
′′
i (xi) =

∑
j∈K

w2
j g
′′
j (yj), (26)

with at most one zi 6= 0. An increase in the number of convex functions translates to an
increase in the number of choices on the left hand side of (26) to ensure that the equality
holds.

4 Numerical results

For some types of problems (such as certain bin packing problems) standard sets of problem
instances exist which may be used by researchers to measure the performance of new
algorithms. Unfortunately, no such benchmark sets exist for the problem considered in
this paper and therefore instances needed to be generated for the purpose of testing the
algorithm described below. Eight families of increasing convex functions and increasing
concave functions were used to create these instances as described in the following sections.

4.1 A possible solution approach

It would seem a logical approach to design an algorithm for solving (1) repeating itself
n times. During each of these n repetitions another convex function is considered as the
convex function of the decision variable in K. As a first attempt one may approximate
the remaining n− 1 convex functions by enveloping them by means of straight lines. This
ensures that these envelopes are indeed concave as well. Such an approach therefore has
the advantage of considering all but one function as concave functions — and then using
the available, efficient algorithms to solve the problem in the case where there are only
concave functions. The problem with this approach is that the solution will almost always
include an enveloped convex function (i.e. a straight line) that assumes a value between
its bounds at an optimal solution candidate, which is, of course, disallowed. To avoid
this, the algorithm may be altered to incorporate a binary branch and bound algorithm.
In other words, as soon as the algorithm solves the problem and an enveloped function
assumes a value between its bounds, the problem is branched into two subproblems. In
the first subproblem this variable is set at its lower bound and in the second subproblem
the variable is set at its upper bound. This implies solving a mixed 0/1 knapsack problem
by a branch and bound technique. An algorithm based the logic of the Horowitz-Shani
algorithm, see for example [5], may be used to solve this mixed 0/1 knapsack problem.
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4.2 The functions utilised

The four families of convex functions

fi(xi) = −s(1)
i

(
1− e−m

(1)
i xi

)
,

fi(xi) = −s(2)
i xi +m

(2)
i x2

i ,

fi(xi) = −
s
(3)
i (xi + c

(3)
i )

(xi +m
(3)
i )

, m
(3)
i > c

(3)
i and

fi(xi) = −s(4)
i ln(1 +m

(4)
i xi)

have been used in the literature [2, 10] to generate nonlinear knapsack problems. The first
authors utilising these functions were Luss and Gupta [4]. Here the constants s(k)

i , m(k)
i

and c
(k)
i , with k = 1, 2, 3, 4 are positive parameters which may be used to alter the shape

of the functions.

Unfortunately these families of functions cannot be used in this paper because they are
not all increasing functions. Small adaptations were applied to these functions to ensure
that they are nonnegative and increasing over the interval [0, u(k)

i ]. The adopted families
of functions are

fi(xi) = −s(1)
i + s

(1)
i em

(1)
i xi ,

fi(xi) = m
(2)
i x2

i + s
(2)
i xi,

fi(xi) =
s
(3)
i (u(3)

i + c
(3)
i )

u
(3)
i +m

(3)
i

−
s
(3)
i [(u(3)

i − xi) + c
(3)
i ]

[(u(3)
i − xi) +m

(3)
i ]

, m
(3)
i > c

(3)
i and

fi(xi) = s
(4)
i ln(1 +m

(4)
i u

(4)
i )− s(4)

i ln(1 +m
(4)
i (u(4)

i − xi)).

Note that all the above functions have already been transformed so that their lower bounds
are zero and so that fi(0) = 0 for all i = 1, . . . ,m.

Similarly, the families of concave functions

gj(yj) = s
(5)
j

(
1− e−m

(5)
j yj

)
,

gj(yj) = s
(6)
j yj −m(6)

j y2
j ,

gj(yj) =
s
(7)
j (yj + c

(7)
j )

(yj +m
(7)
j )

, m
(7)
j > c

(7)
j and

gj(yj) = s
(8)
j ln(1 +m

(8)
j yj)
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were used for benchmark generation purposes. These functions were adapted to

gj(yj) = s
(5)
j

(
1− e−m

(5)
j yj

)
,

gj(yj) = s
(6)
j u

(6)
j +m

(6)
j (u(6)

j )2 − s(6)
j (u(6)

j − yj)−m(6)
j (u(6)

j − yj)2,

gj(yj) = −
s
(7)
j c

(7)
j

m
(7)
j

+
s
(7)
j (yj + c

(7)
j )

(yj +m
(7)
j )

, m
(7)
j > c

(7)
j and

gj(yj) = s
(8)
j ln(1 +m

(8)
j yj),

in order to ensure that all of these functions are nonnegative, increasing concave functions
on the interval [0, u(k)

j ] for j = 1, . . . ,m and k = 5, 6, 7, 8.

The constants s(k)
j , m(k)

j and c(k)
j , with k = 5, 6, 7, 8 are again positive parameters that may

be used to alter the function shapes. Note that all the above functions have already been
transformed so that their lower bounds are zero and so that gj(0) = 0 for all j = 1, . . . , n.

4.3 Methodology

All the algorithms tested in this paper were programmed in Visual Basic for Applications
(VBA) in Microsoft Excel. Excel’s rand and randbetween functions were utilised for
random numbers generation purposes. Benchmark instances were generated as follows.
All upper bounds on the decision variables were randomly generated (for each generated
instance the minimum and maximum length of an interval were specified as 100 and 200,
respectively). A budget amount B was then calculated as

1
2

 m∑
i=1

u
(x)
i +

n∑
j=1

u
(y)
j

 .

Thereafter an average slope, fi(u
(x)
i )/u(x)

i or gi(u
(y)
i )/u(y)

i , was randomly generated within
specified bounds (for this paper it was restricted to between 5 and 8). A random integer
number between 1 and 4 was generated for both the convex and concave functions to
determine which family of functions should be used in each case. Random values for m(k)

i

or m(k)
j , c(k)

i or c(k)
j were then generated. Finally, the average slope together with m

(k)
i ,

m
(k)
j , c(k)

i and c
(k)
j were then used to calculate s(k)

i or s(k)
j , thus determining the shape of

the randomly generated function.

4.4 Results

The approach described in §4.1 yields optimal solutions, but the solution times are unac-
ceptably long. The main reason for these long solution times is that considerably more
branches are possible than in a pure 0/1 knapsack problem, because the concave part of
the problem may “finance” additional branches by shifting resources between the binary
and continuous parts of the problem.
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The solution times are listed in Table 1. The table compares the solution times of piecewise
linear enveloping together with the branch and bound technique, which also yields the
optimal solutions, see for example [1]. These solution times were recorded on a Pentium(R)
4 computer with a 3.2 GHz central processing unit and 1 GB random access memory. A
hundred random instances of the problem were generated and solved for each reported
value of n.

n NBB MBB

5 0.0625 1.0155
10 0.0781 1.8750
15 0.1250 4.2195
20 0.1563 5.9380
25 0.3438 10.1575
30 0.3281 15.3060
35 0.5313 19.1415
40 0.7656 35.6240
45 0.9219 40.0770
50 1.3906 71.8750
55 2.2813 121.6875

Table 1: Total solution times in seconds for 100 randomly generated instances of the problem for

each reported value of n. The following abbreviations are used: NBB = normal branch and bound

technique with piecewise linear enveloping and MBB = mixed 0/1 branch and bound algorithm.

It is clear from the data in Table 1 that piecewise linear enveloping, with the branch
and bound technique, outperforms the algorithm described above, when both are used to
solve the same problem sets. Because of the poor solution times achieved by the proposed
algorithm it is not presented in detail here.

Dynamic programming was used to validate the algorithmic results presented here.

5 Conclusions and ideas for further research

The main reason why the analytic, continuous approach to the problem formulation in
(1) is not successful is that there are potentially many feasible solutions for which the
necessary conditions hold. In fact, it may be shown that there may be arbitrarily many
feasible solutions to (1) for which the conditions in Theorem 1 hold. This renders a brute
force search for all these feasible solutions impractical. This conclusion remains the same
if the results of Theorem 3 are used to supply additional necessary conditions in a bid to
limit the search space for all feasible solutions for which the necessary conditions hold.

The possibility of constructing a heuristic that searches for only the first N points for
which the necessary condition holds may be investigated further, for some specified value
of N .

An analytical, continuous approach does not compete favourably with linear enveloping
in conjunction with branch and bound algorithms. Research into improving the manner
of performing piecewise linear enveloping, as well as on how the branching should be
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achieved, may lead to algorithms with shorter solution times than the normal branch and
bound approach used in this paper.

Finally, there is a need to generate and document standard sets of benchmark instances for
this problem formulation that have different properties regarding, for example, curvature
of the functions, average slopes of the functions and lengths of the intervals [0, ui] of the
decision variables. These standard sets may then be used to test algorithms against each
other in future.
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