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Abstract

We impose dynamically, a shortfall constraint in terms of Tail Conditional Expectation on
the portfolio selection problem in continuous time, in order to obtain optimal strategies.
The financial market is assumed to comprise n risky assets driven by geometric Brownian
motion and one risk-free asset. The method of Lagrange multipliers is combined with the
Hamilton-Jacobi-Bellman equation to insert the constraint into the resolution framework.
The constraint is re-calculated at short intervals of time throughout the investment horizon.
A numerical method is applied to obtain an approximate solution to the problem. It is found
that the imposition of the constraint curbs investment in the risky assets.
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1 Introduction

In recent years, particular stress has been laid on the substitution of variance as a risk
measure in the standard Markowitz [11] mean-variance problem. Since it makes no distinc-
tion between positive and negative deviations from the mean, variance is a good measure
of risk only for distributions that are (approximately) symmetric around the mean, such
as the normal distribution or, more generally, elliptical distributions [12]. However, in
most cases, such as in portfolios containing options, one deals with wealth distributions
that are highly skewed. It is thus more reasonable to consider asymmetric risk measures
since individuals are typically loss averse. In this regard, Value-at-Risk (VaR), a downside
risk measure, has emerged as an industry standard with regulatory authorities, such as
the Basle Committee on Banking Supervision which enforces its use [9].

Despite its widespread acceptance, VaR is known to possess unappealing features. Artzner
et al. [3] proposed an axiomatic foundation for risk measures, by identifying four properties
that a reasonable risk measure should satisfy. They also provided a characterization of
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the risk measures satisfying these properties, which they called coherent risk measures.
By these axioms, VaR is not coherent. Tail Conditional Expectation (TCE), on the other
hand, is a coherent risk measure for an underlying continuous distribution [14].

The focus in this paper is the dynamic portfolio choice of a trader subject to a risk limit
specified in terms of TCE. We maximize the agent’s utility1 over wealth throughout the
investment horizon. The TCE constraint is re-calculated and re-imposed at every short
interval of time, throughout the investment horizon. The portfolio is assumed constant
over each such short interval (re-evaluation horizon), as is the case in practice. This art
of dynamically re-evaluating the constraint has not yet received adequate attention in the
existing literature. We show through numerical simulations, by applying an algorithm
similar to that in Yiu [15], that the introduction of a TCE constraint causes investment
in risky assets2 to be controlled. In our numerical experiments we use two risky assets, as
opposed to just one, which is common in the existing literature.

The remainder of this paper is structured as follows. In Section 2, we model the financial
market and describe the portfolio dynamic. In Section 3 we derive the Value-at-Risk and
Tail Conditional Expectation formulas for the market model under study, while in Section 4
we make precise the optimal control problem to be solved. The solution of the problem is
derived in Section 5 by using the Lagrangian technique to combine the Hamilton-Jacobi-
Bellman (HJB) equation and the TCE constraint. In Section 6, a numerical algorithm is
presented to obtain an approximate solution to the TCE-constrained problem. Section 8
is devoted to the computation of the value function for use in the numerical procedure.
We also present some simulation results with an ensuing discussion in Section 8, while
Section 9 concludes the paper.

2 The model

We consider a standard Black-Scholes-type market (see Korn [10] for relevant definitions)
consisting of one risk-free bond and n risky stocks. The financial market is continuous-time
with a finite time horizon [0, T ].

Uncertainty in the financial market is modelled by a probability space (Ω,F , P ), equipped
with a filtration that is a non-decreasing family F = (Ft)t∈[0,T ] of sub-σ-fields Fs ⊆ Ft ⊆ F ,
0 ≤ s < t <∞. It is assumed throughout this paper that all inequalities as well as equalities
hold P -almost surely. Moreover, it is assumed that all stated processes are well defined
without giving any regularity conditions ensuring this. The risk-free rate r = rt of the
risk-free asset (bond) S0 is supposed to evolve according to dS0

t = rS0
t dt, S

0
0 = s.

For the risky assets (stocks), whose prices are denoted by St = (S1
t , . . . , S

n
t ) for some

1Here, we use a quadratic utility function. Akume and Mbakop [1] solve a similar problem with power
utility.

2See Akume and Mbakop [1] for a similar problem combining both investment and consumption strate-
gies.



Optimal portfolio strategies under a shortfall constraint 33

n ∈ N, the basic evolution model is that of a log-normal diffusion process,

dSit
Sit

= µidt+
k∑
j=1

σijdW j
t , t ∈ [0, T ],

Si0 = si, i = 1, . . . , n,

where, for some k ∈ N, W t = [W 1
t , . . . ,W

k
t ]′, with the symbol (′) denoting a transpose, is

a k-dimensional standard Wiener process, i.e. a vector of k independent one-dimensional
Wiener processes. The n-vector µ = µt = (µ1

t , . . . , µ
n
t )′, contains the expected instanta-

neous rates of return and the n × k-matrix σ = σt = [σijt ] (i = 1, . . . , n, j = 1, . . . , k)
measures the instantaneous sensitivities of the risky asset prices with respect to exogenous
shocks so that the (n × n)-matrix σσ′ contains the variance and covariance rates of in-
stantaneous rates of return. Here µ and σ must be adapted to the information filtration
F = (Ft).

An agent invests according to an investment strategy that can be described by the (n+1)-
dimensional, Ft-predictable process xt = (x0

t , x
1
t , . . . , x

n
t )′, where xit (i = 1, . . . , n) denotes

the number of shares of asset i held in the portfolio at time t (i = 0 refers to the bond).
The process xt describes an investor’s portfolio as carried forward through time. The
value of the investor’s wealth at time t is then

V x
t = x0

tS
0
t +

n∑
i=1

xitS
i
t ,

where xitS
i
t represents the amount invested in asset i at time t. Equivalently, one may

consider the vector θt = (θ1
t , . . . , θ

n
t )′, where

θit =
xitS

i
t

V x
t

, i = 1, . . . , n

denotes the fraction of wealth invested in the risky asset i at time t, whereby the remaining
fraction 1−

∑n
j=1 θ

i
t of the agent’s wealth is invested in the risk-free asset. It is assumed that

θ1
t , . . . , θ

n
t are admissible and Ft-adapted control processes. That is, θ1

t , . . . , θ
n
t are non-

anticipative functions that satisfy the condition of bounded variation
∫ T

0

∑n
1=1(θit)

2dt <∞
for an investment time horizon T <∞. The corresponding portfolio value process reads

dV θt = V θt

[(
1−

n∑
i=1

θit

)
dS0

t

S0
t

+
n∑
i=1

θit
dSit
Sit

]

= V θt

(r +
n∑
i=1

θit(µ
i − r)

)
dt+

n∑
i=1

k∑
j=1

θitσ
i,jdW j

t

, t ∈ [0, T ], (1)

V θ0 = v.

Let µ− r = [µ1
t − r, . . . , µnt − r]′. Then equation (1) can be rewritten more succinctly in

matrix notation as

dV θt = V θt
[(
rt + θ′t(µt − r)

)
dt+ θ′tσtdW t

]
, V θ0 = v.
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Thus,

V θt =

(
1−

n∑
i=1

θit

)
V θt +

n∑
i=1

θitV
θ
t .

We have adopted the incomplete market asset pricing setting of He and Pearson [7]. To
eliminate redundant assets, we assume that σ is of full row rank — that is, σσ′ is an
invertible matrix.

3 Tail conditional expectation

Here we start by defining Value-at-Risk since the subsequent definition of Tail Conditional
Expectation (TCE) will depend on it.

Definition 1 (Value-at-Risk)
Given some probability level α ∈ (0, 1), a time t wealth benchmark Υt and horizon ∆t, the
Value-at-Risk of time t wealth Vt at the confidence level (1−α), denoted VaRαt , is given by
the smallest number L for which the probability that the loss Gt+∆t := Υt+∆t−V θ

t+∆t exceeds
L is no larger than α. That is, VaRαt = inf {L ≥ 0 : P (Gt+∆t ≥ L|Ft) ≤ α} := (Qαt )−,
where Qαt = sup{L ∈ R : P ((V θ

t+∆t −Υt+∆t) ≤ L|Ft) ≤ α} is the quantile of the projected
wealth surplus at the horizon t+ ∆t and x− = max[0,−x]. 2

Thus, VaRαt = 0 for Qαt ≥ 0. VaRαt is therefore the loss of wealth with respect to a
benchmark Υt+∆t at the horizon ∆t which could be exceeded only with a small conditional
probability α if the current portfolio θt were kept unchanged. Typical values for the
probability level α are α = 0.05 or α = 0.01. In market risk management the time horizon
∆t is usually one or ten days.

Proposition 1 (Computation of Value-at-Risk)
It holds that

VaRαt =
(
V θ
t exp

[
Φ−1(α)‖θ′tσ‖

√
∆t+

(
θ′t(µ− r) + r − 1

2
‖θ′tσ‖2

)
∆t
]
−Υt+∆t

)−
,

where Φ(·) and Φ−1(·) denote the normal distribution and inverse normal distribution
functions respectively, and where ‖ · ‖ is the Euclidean norm. �

For a proof of this proposition, see Akume and Mbakop [1]. Tail Conditional Expectation
is closely related to the concept of Value-at-Risk, but overcomes some of the conceptual
deficiencies of Value-at-Risk [14]. In particular, it is a coherent risk measure [2].

Definition 2 (Tail Conditional Expectation)
Consider the loss distribution Gt+∆t := Υt+∆t − V θ

t+∆t represented by a continuous dis-
tribution function FGt+∆t

with
∫

R |Gt+∆t|dF (Gt+∆t) < ∞. Then the TCEαt at confidence
level (1− α) is defined as TCEαt = Et {Gt+∆t|Gt+∆t ≥ V aRαt }. 2
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The Tail Conditional Expectation of wealth Vt at time t is therefore the conditional ex-
pected value of the loss exceeding VaRαt . Again, given the log-normal distribution of asset
returns, the TCEαt may be computed explicitly as can be seen in the following proposition.

Proposition 2 (Computation of Tail Conditional Expectation)
It holds that

TCEαt =
αΥt+∆t − Vt

[
exp

(
(θ′t(µ− r) + r)∆t

)
Φ
(

Φ−1(α)− ‖θ′tσ‖
√

∆t
)]

α
,

where Φ(·) and Φ−1(·) denote the normal distribution and inverse normal distribution
functions, respectively. �

For a proof of this proposition, again see Akume and Mbakop [1].

4 Statement of the problem

We seek the optimal asset allocation that maximizes (over all allowable θt) the expected
utility of discounted wealth over the entire horizon [0, T ], for a risk-averse investor who
limits his risk by imposing an upper bound on the TCE.

The choice of this problem is motivated by the income drawdown option in defined con-
tribution pension schemes. Such an option allows the member who retires not to convert
the accumulated capital into annuity immediately at retirement, but to defer the purchase
of the annuity until a certain point in time after retirement. The period of time can be
limited to time T . Usually, freedom is given for a fixed number of years after retirement
and at a certain age the annuity is bought.

Here, we consider the income drawdown option and investigate, by means of stochastic
optimal control techniques, what should be the optimal investment and consumption al-
location of the fund after retirement until the purchase of the annuity. The reason the
pensioner chooses the drawdown option is the hope of being able to invest the accumulated
capital at retirement and increase its value in order to buy a better annuity in the future
than the one he otherwise could have bought at retirement.

Thus, our objective is to maximize the expected utility of wealth from retirement until
the interruption of the income drawdown option. Therefore, in mathematical terms the
final optimal control problem with TCE constraint is

max
{θ}∈A(v)

E0,V0

{∫ T

0
e−ρsU1(Vs, s)ds+ e−ρTU2(VT , T )

}
(2)

subject to the wealth dynamic

dV θ
t =

[
V θ
t (θ′t(µ− r) + r)

]
dt+ V θ

t θt
′σdW t, V

θ
0 = v

and the TCE constraint

1
α

(
αΥt+∆t − V θ

t

[
exp((θ′t(µ− r) + r)∆t) · Φ(Φ−1(α)− ‖θ′tσ‖

√
∆t)

])
≤ ε(v, t) (3)
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for all t ∈ [0, T ), where Et,v denotes the expectation operator at time t, given V θ
t = v

(and given the chosen investment strategies), where U1 and U2 are twice differentiable,
concave utility functions, where ε(v, t) is an upper bound on TCE and where ρ > 0
is the rate at which wealth is discounted. Note that we allow room for the running
utility function to differ (be weighted differently) from the terminal utility function. Let
U1(x) = U2(x) = U(x) = Kx−(1−K)(x−ψ)2 denote a quadratic utility which privileges
with a weight K ∈ (0, 1) a large wealth, whereas it penalizes with a weight (1 − K)
the square of the spread between the current wealth x and a target wealth, denoted ψ.
Quadratic utilities are widely used in the literature [6].

5 Optimality conditions

We adapt a dynamic programming approach to solve the HJB equation associated with
the utility maximization problem (2). Following Fleming and Rishel [5], the corresponding
HJB equation is given by

Jt(v, t)− ρJ(v, t) + U(v) + sup
θt

{
DθtJ(v, t)

}
= 0, (4)

where t ∈ [0, T ] is the horizon, where V θ
t = v is any admissible state and where

DθtJ(v, t) = Jv(v, t)
(
v
[
θ′t(µ− r) + r

])
+

1
2
v2‖θ′tσ‖2Jvv(v, t),

subject to the terminal condition J(v, T ) = U(v), where the value function is given by

J(v, t) = sup
{θ}∈A(v)

Et,Vt

{∫ T

t
e−ρ(s−t)U(Vs, s)ds+ e−ρ(T−t)U(VT , T )

}

with subscripts on J denoting partial derivatives and where V θ
t = v denotes the wealth

realization at time t.

In solving the HJB equation (4), the static optimization problem

max
θt

{
DθtJ(v, t)

}
,

subject to the TCE constraint (3), may be tackled separately to reduce the HJB equation
(4) to a nonlinear partial differential equation of J only.

Introducing the Lagrangian function

L(θt(v, t), λ(v, t)) = Jv(v, t)(v
[
θ′t(µ− r) + r

]
) +

1
2
v2‖θ′tσ‖2Jvv(v, t) + U(v)−

{
λ(v, t)

×
(
αΥt+∆t − v

[
exp((θ′t(µ− r) + r)∆t) · Φ(Φ−1(α)− ‖θ′tσ‖

√
∆t)

]
− ε1(v, t)

)}
, (5)
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where λ is the Lagrange multiplier and ε1 = ε ·α, the first-order necessary conditions with
respect to θ and λ respectively, of the static optimization problem (5), are given by

vJv(µ− r) +
1
2
Jvvv

2σσ′θt + λ(v, t)v
(
(µ− r)∆t exp

(
(θ′t(µ− r) + r)∆t

)
·Φ
(

Φ−1(α)− ‖θ′tσ‖
√

∆t
)
− exp

(
(θ′t(µ− r) + r)∆t

)
·
√

∆t
2

σσ′θt
‖θ′tσ‖

· 1√
2π

exp
[
−1

2
(Φ−1(α)− ‖θ′tσ‖

√
∆t)2

])
= 0,

where π ≈ 3.14159 (we have applied the product law of differentiation and the fundamental
theorem of calculus in deriving the latter first-order derivative), and

H(v, t) = αΥt+∆t + v
[
exp

(
(θ′t(µ− r) + r)∆t) · Φ(Φ−1α)− ‖θ′tσ‖

√
∆t
)]

+ ε1(v, t) = 0,

while the complimentary slackness conditions are λ(v, t)H(v, t) = 0 and λ(v, t) ≥ 0.

Simultaneous resolution of these first-order conditions yields the optimal solutions θopt

and λopt. Substituting these into (4) gives the partial differential equation

− ρJ(v, t) + Jt(v, t) + Jv(v, t)
(
v[(θopt(v, t))′(µ− r) + r]

)
+Kv − (1−K)(v − ψ)2 +

1
2
Jvv(v, t)v2(θopt(v, t))′σσ′

(
θopt(v, t)

)
= 0, (6)

with terminal condition J(v, T ) = Kv − (1 −K)(v − ψ)2, which may then be solved for
the optimal value function Jopt(v, t).

Due to the nonlinearity of θopt, the first-order conditions together with the HJB equation
are a non-linear system. Hence the differential equation (6) has no analytic solution and
numerical methods such as Newton’s method or Sequential Quadratic Programming (SQP)
(see, for example, Nocedal and Wright [13]) are required to solve for θopt(v, t), λopt(v, t)
and Jopt(v, t) iteratively.

6 Numerical solution

We use an iterative algorithm similar to that of Yiu [15] which yields a C2,1 approximation
Ĵ of the exact solution J and θ̂t, the investment strategy related to Ĵ .

When the optimal solution strictly satisfies the TCE constraint (3), the Lagrange multi-
plier λ(v, t) is zero. If the constraint is active, the multiplier is positive.

First, we divide the domain of resolution into a grid of nv×nt mesh points. Iterations are
indexed by k.

1. For each point (t, v), with t ∈ {0,∆t, . . . , nt∆t} and v ∈ {0,∆v, . . . , nv∆v}, we
compute the value function Ĵk=0 = J(v, t) and the optimal strategy θoptt of the
unconstrained problem. All Lagrange multipliers are set to zero, i.e. λk=0

t,v = 0. This
solution is the starting point of the algorithm.



38 D Akume, B Luderer & R Wunderlich

2. For all points of the grid, the constraint is checked. If the constraint is not active
(i.e. TCEαt < ε(v, t)), the multiplier is zero (i.e. λk+1

t,v = 0) and

θk+1
t = − Ĵv

vĴvv
(µ− r)(σ′σ)−1

is the solution of a similar equation to that of the unconstrained case.

If the TCEαt constraint is active, (i.e. TCEαt ≥ ε), we solve a nonlinear system in
λk+1
t,v and θ̂j+1

t . This nonlinear system comprises of the first-order necessary condi-
tions of the static optimization problem (5). That system is numerically solved by
the sequential quadratic programming method (see Nocedal and Wright [13]).

3. The last stage consists of the calculation of the value function Ĵk+1 according to the
investment strategy θ̂k+1

t as detailed in the following section.
4. Increment k (i.e. k ← k + 1) and return to step 2 until the error at time t from

wealth level v, εt,v, satisfies |εt,v| < 1 · e−5, where

εt,v = Ĵt − ρĴ(v, t) + Ĵv

(
v[(θ̂

opt

t )′(µ− r) + r]
)

+
1
2
v2‖(θ̂t

opt
)′σ‖2Ĵvv + U(v).

7 Computation of the value function

Let θ̂
opt

t (v, t) be the investment strategy from the above numerical algorithm. If we sub-
stitute θ̂

opt

t (v, t) into the HJB equation (6), it is found that the value function Ĵ(v, t) is
the solution of the partial differential equation

0 = Jt(v, t)− ρJ(v, t) + Jv(v, t)
(
v[(θ̂optt (v, t))′(µ− r) + r]

)
+

1
2
v2‖(θ̂optt (v, t))′σ‖2Jvv(v, t) + U(v), (7)

where Jt(v, t), Jv(v, t), Jvv(v, t) denote the first-order derivatives of the value function
with respect to t and v, and the second-order derivative with respect to v, respectively.

Recall that the value function J(v, t) solves the HJB equation for all possible values of v
and all t ∈ [0, T ] and satisfies the terminal condition

J(VT , T ) = U(VT ) = KVT − (1−K)(VT − ψ)2

= −V 2
T (1−K) + VT (K + 2ψ(1−K))− (1−K)ψ2.

We therefore guess, for t < T , that J(v, t) = a(t)v2 + b(t)v + c(t) with auxiliary functions
a, b and c. We note here that as a consequence of the imposition of the constraint,
the auxiliary functions a, b and c will generally depend on v and t. Borrowing from an
idea of Yiu [15], if we neglect the derivatives of these auxiliary functions with respect
to v, then the partial derivatives of J are Jv = 2a(v, t)v + b(v, t), Jvv = 2a(v, t) and
Jt = a′(v, t)v2 + b′(v, t)v + c′(v, t). Introducing these derivatives into (7) and regrouping
the terms in v2, v and independent of v, gives three different ordinary differential equations
for a, b and c respectively.



Optimal portfolio strategies under a shortfall constraint 39

Now substituting the partial derivatives into (7) we obtain

0 = v2
(
a′(v, t)− ρa(v, t)− (1−K) + 2a(v, t)[(θ̂optt (v, t))′(µ− r) + r]

+ a(v, t)‖(θ̂optt (v, t))′σ‖2
)

+ v
(
b′(v, t) + ρb(v, t) +K + 2(1−K)ψ

+ b(v, t)[(θ̂optt (v, t))′(µ− r) + r]
)

+ c′(v, t) + ρc(v, t)− (1−K)ψ2. (8)

Since (8) must hold for all v and t, we obtain the system of ordinary differential equations

a′(v, t) = ρa(v, t) + (1−K)− 2a(v, t)[(θ̂
opt

t (v, t))′(µ− r) + r]− a(v, t)‖(θ̂optt (v, t))′σ‖2

b′(v, t) = −ρb(v, t)−K − 2(1−K)ψ − b(v, t)[(θ̂optt (v, t))′(µ− r) + r]

c′(v, t) = −ρc(v, t) + (1−K)ψ2

with terminal conditions a(v, T ) = −(1 − K), b(v, T ) = K + 2(1 − K)ψ and c(v, T ) =
−(1 − K)ψ2. The functions a, b and c may be computed numerically by means of the
Euler-Cauchy method (see, for example, Isaacson and Keller [8]). We use a hat to denote
a result obtained by menas of numerical integration. Then

â(v, t−∆t) = â(v, t)− a′(v, t)∆t, â(v, T ) = −(1−K), (9)

b̂(v, t−∆t) = b̂(v, t)− b′(v, t)∆t, b̂(v, T ) = K + 2(1−K)ψ, (10)

ĉ(v, t−∆t) = ĉ(v, t)− c′(v, t)∆t, ĉ(v, T ) = −(1−K)ψ2, (11)

where ∆t is a sufficiently small time step. The precision of the solution is a function of
the step length of integration ∆t and is computed via the Bellman equation (7). If we
subdivide the domain of computation into a grid of Nv×Nt mesh points, the error at time
t from a wealth level v with v ∈ [0,∆v, . . . , Nv∆v] and t ∈ [0,∆t, . . . , Nt∆t] is

εt,v = Ĵt − ρĴ(v, t) + Ĵv

(
v[(θ̂optt )′(µ− r) + r]

)
+

1
2
v2‖(θ̂t

opt
)′σ‖2Ĵvv + U(v),

where

Ĵ = â(v, t)v2 + b̂(v, t)v + ĉ(v, t),

Ĵv = 2â(v, t)v + b̂(v, t),

Ĵvv = 2â(v, t),

Ĵt = â′(v, t)v2 + b̂′(v, t)v + ĉ′(v, t)

and θ̂
opt

t (v, t) is obtained via the numerical algorithm detailed in Section 6 above.

8 Simulation results and discussion

We implemented the algorithm in Section 6 in MATLAB 7.0 in order to test our model
on a personal computer with an Intel Pentium IV processor. We assume that n = 2.
That is, the market is composed of two risky stocks and a risk-free bond. Table 1 shows
the parameters for the portfolio optimization problem and the underlying Black-Scholes
model of the financial market. We achieved convergence in under 300 seconds after three
iterations.



40 D Akume, B Luderer & R Wunderlich

Parameter Value

Stock (S1) µ = 4%, σ11 = 5%, σ12 = 5%
Stock (S2) µ = 6%, σ21 = 5%, σ22 = 20%
Bond (S0) r = 3%
Investment horizon t ∈ [0, 1]
State of wealth v ∈ [0, 20]
Shortfall probability α = 1%
Value-at-Risk horizon ∆t = 1

48
≈ 7 days

No. of wealth mesh points Nv = 81
Mesh size for wealth ∆v = 20

80
= 0.25

Quadratic utility function U(v) = Kv − (1−K)(v − ψ)2, K = 0.6, ψ = 5.
Discounting factor ρ = 0.3

Table 1: Parameters for portfolio optimization problem.

0

5

10

15

20

0

0.5

1
−200

−150

−100

−50

0

50

wealth level

Optimal portfolio value

time 0 5 10 15 20 0

0.5

1
−1

0

1

2

3

4

5

6

7

time

Proportion of wealth in risky assets

wealth level

without TCE
with TCE

Figure 1: Effect of the TCE constraint on the proportion of risky investment when the bench-

mark is conditional expectation of wealth.

8.1 Static constraint

Suppose that the Tail Conditional Expectation of the wealth surplus (Vt+∆t−Υt+∆t) with
respect to the benchmark Υt+∆t satisfies TCEαt (Vt+∆t−Υt+∆t) ≤ 0.05. That is, the TCE is
re-evaluated at each discrete time step (TCE horizon) ∆t and kept below the upper bound
ε(Vt, t) = 0.05, by making use of conditioning information. A plot of the investment in
risky assets is shown in the right-hand panels of Figures 1 and 2 with and without the
TCE constraint against the possible wealth realization at different times. The left-hand
panels show the corresponding value functions.

In Figure 1 the shortfall benchmark is taken to be the conditional expected wealth Υt+∆t =
Et{Vt+∆t} = Vt exp [(θ′t(µ− r) + r) ∆t] at each TCE horizon before the terminal date T ,
while in Figure 2 it is the investment in the risk-free bond Υt+∆t = Vte

r∆t.

We observe that as the wealth level increases, the amount of wealth invested in stocks
diminishes. This results from the “increasing absolute risk aversion” that characterizes
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Figure 2: Effect of the TCE constraint on proportion of risky investment when the benchmark

is investment in the bond.

the quadratic nature of the utility function. Furthermore, it may be observed that when
the wealth is smaller than the utility target ψ = 5 of the quadratic utility function, the
optimal solution consists of increasing the position of stocks. The exposure to the market
is, however, limited by the VaR constraint which bounds the amount invested in stocks.
On the other hand, as wealth increases above ψ, the position in stocks is reduced, but
again limited by the VaR constraint.

This is a rather counter-intuitive investment strategy, but results directly from the quadra-
tic nature of the utility function, whereby utility rises up to the satiation level ψ and
diminishes thereafter. One would expect that as the wealth level falls the strategy might
shift into lower-risk assets to protect one’s position. The strategy we have found does
the opposite. As mentioned, the reason for this is because of the quadratic form of the
objective function. This function, in a sense, defines an ideal wealth level ψ. If wealth is
below this level, then one invests in high-return, high-risk assets to increase the chance of
returning to the ideal level quickly. Conversely, if the wealth level is too high, then one
is prepared to invest in an inefficient low-return investment strategy in order to return to
the ideal level. Owing to this shortcoming of quadratic utility, one could instead consider
applying power utility with its more intuitive constant relative risk aversion property (see,
for example, Akume and Mbakop [1]).

The value function of the constrained problem is identical to that of the unconstrained
one when the Lagrange multipliers are zero (the optimal constrained portfolio follows the
unconstrained one), whereas it is inferior when the constraint is active (allocation to risky
assets is controlled).

In Figure 3, the constrained and unconstrained TCE values are shown in the wealth/time
space. The constrained and unconstrained strategies coincide in the area where the lighter
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Figure 3: TCE when the benchmark is the conditional expected wealth, plotted against wealth

at various times of the investment horizon.

surface (TCE limit) lies above the dark surface.

8.2 Dynamic constraint

So far, we have constrained the risk measure from above by a static constraint ε(Vt, t) =
0.05. We next attempt to change the risk limit ε(Vt, t) = −0.005(nv∆v − Vt) + 0.2 (see
Figure 5) dynamically, where nv denotes the number of discrete wealth intervals and where
∆v denotes the mesh size, in order to assertain th impact that this approach has on the
optimal portfolio choice.

This conforms to what accurs in practice, whereby successful traders typically see their
risk limit increased. Thus, the larger the wealth, the larger the risk bound.

Figure 4 shows that even with this dynamic bound, limiting the TCE keeps the investment
in risky assets in check.

The constrained and unconstrained TCE values are compared in Figure 5 for the dynamic
constraint. Note how the limiting TCE ceiling lies at an increasing slope to the horizontal
plane, since it is no longer static as before.

9 Concluding remarks

Using a quadratic utility function, we investigated in this paper how a bound imposed
on TCE affects the optimal portfolio choice. We used dynamic wealth benchmarks —
conditional expected wealth and investment in risk-free bonds — whereby the TCE was re-
evaluated at short intervals along the investment horizon. We deduce from our numerical
results that the constraint is able to control risky investment.
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Figure 4: Effect of dynamic TCE constraint when the benchmark is conditional expectation of

wealth.
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the conditional expected wealth, plotted against wealth at various times of the investment horizon.
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