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Abstract

Two packing problems are considered in this paper, namely the well-known strip packing
problem (SPP) and the variable-sized bin packing problem (VSBPP). A total of 252 strip
packing heuristics (and variations thereof) from the literature, as well as novel heuristics
proposed by the authors, are compared statistically by means of 1 170 SPP benchmark in-
stances in order to identify the best heuristics in various classes. A combination of new
heuristics with a new sorting method yields the best results. These heuristics are combined
with a previous heuristic for the VSBPP by the authors to find good feasible solutions to
1 357 VSBPP benchmark instances. This is the largest statistical comparison of algorithms
for the SPP and the VSBPP to the best knowledge of the authors.
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1 Introduction

While cutting and packing (C&P) problems have been studied for many years, e.g. the
packing of animals, seafaring vessel, trains and vehicles, these problems have only become
an active field of mathematical study since the 1939 landmark paper by Kantorovich [47]
and papers by other early researchers in the mid-twentieth century, including those of
Eisemann [25] in 1957 and Gilmore and Gomory [32–34] in the 1960s. In the early
C&P literature, cutting problems were the most common type of C&P problems stud-
ied (Hixman [39] provides a detailed survey of early cutting stock problems). However,
Dyckhoff [24, pp. 148–149] identified a strong relationship between cutting problems and
packing problems due to the duality of solid objects and the space that they occupy. Cut-
ting problems are typically characterised by the cutting of small items from large objects,
while packing problems may be characterised by the packing of small items into large
objects. Therefore, the packing of items into a bin may be considered as “cutting” away
the empty space inside the bin, where the unused space is “trim loss.” The literature on
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packing problems is vast and presented in some detail in papers on C&P typologies, such
as those by Dyckhoff [24] and Wäscher et al. [69], and surveys such as those by Sweeney
and Paternoster [64], Coffman et al. [17], and Lodi et al. [50, 53].

The aim in the so-called strip packing problem (SPP) is to pack small items into a bin of
fixed width and infinite height such that the resulting packing height is a minimum. This
problem has been studied extensively, with authors such as Coffman et al. [18], Berkey
and Wang [7, p. 425], and Martello et al. [55] having proposed level-packing1 heuristics
for the SPP. Pseudolevel-packing heuristics for the same problem have been proposed by
Lodi et al. [51,52], Bortfeldt [8], Ntene and Van Vuuren [57] and Ortmann et al. [59], while
Sleator [63], Coffman et al. [18], Baker et al. [1, 2], Golan [35], Chazelle [13] and Burke et
al. [11, 12] have proposed plane-packing heuristics for the SPP.

The aim in the variable-sized bin packing problem (VSBPP) is to pack a set of items into
a subset of bins (which may, or may not, all be of the same dimensions) in such a manner
that the resulting total area of bins containing items is a minimum. The single-sized bin
packing problem (SSBPP) is the special case of the VSBPP where the bins all have the
same dimensions. Chung et al. [16] first proposed a heuristic approach towards solving the
two-dimensional (2D) OG2 SSBPP in 1982 by combining heuristics for two “well-studied
packing problems” [16, p. 67], namely the one-dimensional (1D) bin packing problem and
the 2D SPP. Bengtsson [6] proposed a heuristic for the 2D RF SSBPP that packs all items
into bins, and then attempts to repack them into other bins until some stopping criterion
is met. Frenk and Galambos [29] proposed a heuristic that packs items into bins in a
next-fit manner in order to solve the 2D OG SSBPP. Berkey and Wang [7] proposed a
number of heuristics for the 2D OG/OF SSBPP, making use of the next-fit, first-fit and
best-fit packing principles, while also using the BLF algorithm by Chazelle [13] to fill bins.
Lodi et al. [51, 52] proposed pseudolevel-packing heuristics for the 2D OG/OF/RG/RF
SSBPP that allow items to be packed onto the floors or ceilings of levels in an attempt
to save space when packed into a strip. The levels of the strip are then repacked into
bins in a manner similar to that of the hybrid heuristic by Chung et al. [16]. The HBP
algorithm proposed by Boschetti and Mingozzi [9] allows item rotation, with the items
being packed in an order determined by a “price.” This price may be adjusted after every
packing iteration before the next packing iteration takes place, inducing a new order of
items. This process continues until some time or iteration restriction is reached. El Hayek
et al. [26] proposed a heuristic for the 2D RF SSBPP in which regions in a bin are defined
by the location of the bin boundaries and the placement of items already packed into
the bin. Items are packed into these regions in a best-fit manner, where the criterion for
best-fit is a weighted sum of four properties.

Heuristics for the VSBPP have typically been confined to the 1D case. Friesen and
1Level-packing algorithms pack all items into horizontal levels such that the bottom edges of the items

are adjacent to the floor of a level, while pseudolevel algorithms allow the items to be packed anywhere
within the level. Plane-packing algorithms pack items into the strip without the constraint of packing
items into levels. See Ortmann [58, p. 18] for further detail regarding these classes of heuristics.

2The abbreviation OG was proposed by Lodi et al. [49, 52] to denote the problem in which items may
not be rotated (the oriented problem, hence the abbreviation “O”) and in which a guillotine packing is
required (hence the abbreviation “G”). The two other common abbreviations are “R” for the problem
where items may be rotated and “F” for a free (non-guillotine) packing. These abbreviations are used
throughout this paper.
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Langston [30] proposed two strategies for this problem: one that packs the largest bins
first in a first-fit manner before attempting to repack the items in these bins into smaller
bins (called the FFDLR strategy), and another that shifts items to smaller bins under
certain circumstances before the repacking takes place (called the FFDLS strategy). Chu
and La [15] proposed four strategies for the 1D VSBPP that take into account the size
of the bins and the absolute or relative waste remaining when an item has been packed.
Kang and Park [46] combined the FFDLR strategy with the first-fit decreasing (FFD) and
best-fit decreasing (BFD) algorithms to design the iterative first-fit decreasing and iterative
best-fit decreasing heuristics which achieve an optimal packing if the sizes of items and bins
are exactly divisible. The first heuristic for the 2D VSBPP was proposed by Ortmann et
al. [59], and is a combination of strip packing algorithms, namely the hybrid approach to
bin packing by Chung et al. [16] and the repacking strategy by Friesen and Langston [30].
While this approach may have been the first heuristic for the problem, Hopper and Tur-
ton [40,41] used the bottom-left fill (BLF) algorithm [13] in combination with a number of
metaheuristics to find solutions to the 2D RF VSBPP, Pisinger and Sigurd [60] proposed
a branch-and-price algorithm to find exact solutions to the 2D VSBPP with variable bin
costs, and Yanasse et al. [70] used a pattern-generation algorithm to find solutions to the
related 2D multiple stock size stock cutting problem.

The objective in this paper is to perform a large-scale comparison of strip packing heuristics
from the literature, and to compare the best of these algorithms with respect to their
propensity of solving the VSBPP by means of a two-stage packing approach. To the best
of our knowledge, this is the largest statistical comparison of strip packing heuristics to
date. The remainder of this paper is organised as follows. Section 2 contains the details of
the comparison of the various strip packing heuristics and Section 3 contains the results
from the comparison of the heuristics when modified for the VSBPP. The paper closes
with a few comments on the results obtained in Section 4.

2 The strip packing problem

In order to determine which strip packing heuristics may be suitable in an algorithmic
approach towards solving the 2D VSBPP, a large-scale comparison of algorithms was
performed. A total of 252 known or new heuristics and variations of heuristics were applied
to the 1 170 benchmark instances listed in Table 1. These benchmark instances were
sourced from a number of repositories, including Beasley’s OR-library [5], Cui’s CutWeb
[20], the DEIS Operations Research Group’s library of instances [22], the EURO Special
Interest Group on Cutting and Packing (ESICUP) repository [27], Fekete and Van der
Veen’s PackLib2 [28], Hifi’s library of instances [38], the test instances by Scheithauer et
al. [62] and the repository for SPPs by Van Vuuren and Ortmann [66].

2.1 Level-packing algorithms

The level-packing algorithms which formed part of this study include the next-fit decreas-
ing height (NFDH) [18], first-fit decreasing height (FFDH) [18], best-fit decreasing height
(BFDH) [7, 19], knapsack problem (KP) [52] and JOIN [55] algorithms, as well as new
2D adaptations of the 1D worst-fit decreasing (WFD) [45] and best two-fit (B2F) [31]
algorithms.
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Authors Year Reference Number Optimal

Christofides & Whitlock 1977 [14] 3 1 Known
Bengtsson 1982 [6] 10 All Known
Beasley 1985 [3] 13 2 Known
Beasley 1985 [4] 12 All Known
Berkey & Wang 1987 [7] 300 None known
Jakobs 1996 [44] 2 Both Known
Dagli & Poshyanonda 1997 [21] 11 None Known
Martello & Vigo 1998 [56] 200 None Known
Ratanapan & Dagli 1998 [61] 1 Not Known
Hifi 1998 [36] 25 10 Known
Hifi 1999 [37] 9 None Known
Burke & Kendall 1999 [10] 1 Known
Hopper & Turton 2000 [40,42] 21 All Known
Hopper & Turton 2000 [40,43] 70 All Known
Wang & Valenzuela 2001 [68] 480 All Known
Burke, Kendall & Whitwell 2004 [11] 12 All Known

Total 1 170 621 Known

Table 1: Benchmark problem instances used to evaluate the strip packing algorithms cited in
§2. Ten of the benchmark sets [3, 4, 6, 7, 14, 21, 36, 37, 56, 61] were randomly generated subject to
certain area and dimensional constraints, but not from an initial rectangle in the same manner that
the the others [11, 40, 42–44,68] were generated (which allows one to deduce an optimal packing).
Known optimal solutions to some of these instances are due to Martello et al. [55] and Kenmochi
et al. [48].

The worst-fit decreasing height (WFDH) algorithm for the 2D SPP packs items into levels
in a manner that leaves a maximum residual horizontal space (the BFDH algorithm packs
items so that the residual horizontal space is a minimum). The 2D adaptation of the
B2F algorithm packs items into a level until no further items fit, and then attempts to
replace the last item packed (called the incumbent) with two items that either have a
greater combined width (denoted by B2FW), or a greater combined area (denoted by
B2FA) and fit into the remaining space, onto the floor of the level. Searching the entire
list of unpacked items for replacements may prove impractical for large problem instances;
instead the algorithm restricts the search space to k − 1 items ahead of the current item
under consideration. In particular, the B2FAnDH algorithm allows all items ahead of the
current item to be investigated for the best pairing according to their combined areas,
while the B2FW2DH algorithm only allows items adjacent to one another in an ordered
list to be considered for replacing the incumbent according to their combined width. While
the items are typically sorted according to decreasing height for these algorithms, any ties
may be resolved by sorting items of equal height according to decreasing width (denoted
by DHDW) or according to increasing width (denoted by DHIW), as previously described
by Ntene and Van Vuuren [57].

2.2 Pseudolevel-packing algorithms

Two classes of pseudolevel algorithms are included in this comparison study, namely
those that yield guillotine feasible layouts and those that do not. The guillotine pseu-
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dolevel algorithms that form part of this study include the oriented guillotine floor-ceiling
(FCOG) [51, 52], modified best-fit decreasing height (BFDH*) [8], size-alternating stack
(SAS), modified SAS (SASm) [58, 59] and best-fit with stacking (BFS) algorithms [58, 59],
as well as a novel stack level (SL) algorithm.

The SL algorithm was developed in order to combine the stacking ability of the BFS
algorithm with the idea of joining items of similar height [55] in order to establish a wider
platform on which items may be stacked, thereby stacking short but wide items onto tall
but narrow items. The algorithm begins by sorting all items according to decreasing height,
resolving any ties by sorting them according to decreasing width, and then initialising the
first level with the first item in the list. Items are then packed in a best-fit manner unless
the item that follows in the list is of the same height (or of heights within a percentage δ
of one another). If the heights are similar, then the two items are packed adjacent to each
other, and this process continues until the next item is not of similar height, or insufficient
space remains on the level. Once the process is terminated, a region of height equal to the
difference between the level height and the height of the first item within the height range,
and of width equal to the combined widths of these adjacent items, is defined within which
items may further be stacked.

The free-packing pseudolevel algorithms that form part of this comparison study include
the oriented free-packing floor-ceiling (FCOF) [51, 52], stack ceiling (SC) [59] and stack
ceiling with re-sorting (SCR) [59] algorithms. Some variations, with respect to the sorting
of items in the FC and BFDH* algorithms are also included (instead of only sorting items
according to decreasing height, items of equal height are sorted according to increasing or
decreasing width).

2.3 Plane-packing algorithms

A large number of plane-packing algorithms form part of this study, including Sleator’s
algorithm [63], the split-fit (SF) algorithm [18], the bottom-up left-justified (BL) algo-
rithm [2], the split (SP) algorithm [35], the mixed (M) algorithm [35], the up-down (UD)
algorithm [1], Chazelle’s BLF algorithm [13], the guillotine cutting stock (GCS) algo-
rithm3 [54] and the best-fit (BF) algorithm4 [11]. Two novel modifications are also pro-
posed for the SP algorithm.

The SP algorithm sorts items according to decreasing width and packs them into certain
regions that have formed due to the items that have previously been packed. In Figure 1(a)
a region Ri has been generated by the packing of an item, after which another item of
the same width is to be packed. In the original algorithm the space to the right of
the packed item would be wasted, while the modifications attempt to fill this space by
the same procedure used in the BFS and SL algorithms, namely to stack items onto
floor-packed items, taking the ceiling to which the items may be stacked as the height
of the topmost edge of the item already packed (see Figure 1(b)). The resulting layout

3This algorithm was originally proposed to solve the 2D single stock size stock cutting problem, but is
included as an example of a plane-packing heuristic that yields a guillotine layout.

4There are three variations of the BF algorithm by Burke et al. [11]: the left-most (BFLM), the tallest
neighbour (BFTN) and the shortest neighbour (BFSN) algorithms. Each involves a different policy on item
location above a skyline segment.



26 FG Ortmann & JH van Vuuren

remains guillotine feasible. The free-packing variation allows items to drop lower if there
is sufficient space, which requires a search involving the locations of all packed items in
order to prevent overlaps. Ntene and Van Vuuren [57] have shown how the BF algorithm
(originally designed for the 2D RF SPP) may be used to solve the 2D OF SPP. By
modifying the BF algorithm to pack the first item in a list that fits into a skyline segment,
instead of packing the widest item that fits into the space, the modified algorithm may
find other solutions than the oriented version of the original algorithm when the sorting of
items is not performed according to decreasing width (then it is the same as the oriented
original). These modified algorithms are denoted by BFmLM, BFmTN and BFmSN for
the left-most, tallest neighbour and shortest neighbour variations, respectively.

Wasted Space

Ri

(a) A large space may remain empty if the SP
algorithm is used to pack consecutive items with
a combined width larger than w (Ri).

Ri

(b) The resulting SPm algorithms attempt
to fill this space with smaller items before
the next item is packed.

Figure 1: An illustration of the proposed modification to the SP algorithm. An attempt is made
to pack smaller items adjacent to an item before another item is packed above it in region Ri.

2.4 A new overarching classification for strip packing heuristics

Studying the large number of heuristics cited above has naturally led to the identification of
two overarching classes of algorithms, namely sorting-dependent and sorting-independent
algorithms. The class of sorting-dependent algorithms includes all level and pseudolevel
algorithms forming part of this study, Sleator’s algorithm, and the SF, SP, M and UD
algorithms. These are called sorting-dependent algorithms because either their packing
efficiency depends heavily on the order in which items are sorted,5 or because the items
are arranged into subsets according to their dimensions and these subsets are sorted in a
specific manner.6 The class of sorting-independent algorithms includes the BL, BLF, GCS
and modified BF algorithms. These algorithms may be presented with a list of items in any
order without affecting their packing efficiencies, on expectation. For example, MacLeod

5Consider any level-packing algorithm. If the items are not sorted according to decreasing height (DH),
then the results will most likely be worse than they could have been had the items been sorted according
to decreasing height. Every time an item is taller than the item preceding it, a new level will have to be
initialised which makes it very likely that the resulting strip height will be larger than if the taller item
had been packed first. The SP algorithm, for example, depends heavily on the fact that all unpacked items
are no wider than those that have been packed. The algorithm does not allow for the packing of items
wider than those that have already been packed.

6Consider the M algorithm in which items are allocated to one of five subsets, each of which is sorted
in its own manner. If the items are not sorted in the correct manner, then the resulting regions may not
have the correct size, shape or location for the generation of regions which are to be filled by items from
other subsets.
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et al. [54] pass their GCS algorithm the same packing list many times, each time sorted
in a different random manner, and keep the best solution. In fact, sorting-independent
algorithms, such as the BL and BLF heuristics, have been incorporated into metaheuristic
solution approaches, where the metaheuristic part of the algorithm determines the order
in which items are arranged (see Hopper and Turton [40,41]).

The fact that the class of sorting-independent algorithms does not require a specific sorting
of items allows one to experiment with the order in which the items are sorted. A packing
list sorted according to decreasing height may result in a packing that is sparse below
a single wide item (particularly for the BL algorithm which does not allow items to be
packed into holes in the same manner as the BLF and GCS algorithms). On the other
hand, a packing list sorted by decreasing width (DW) may yield a packing with a single,
pronounced vertical spike, which may have been avoided had the item been packed earlier.
An attempt is made to clarify this observation in Figure 2. Potential problems that may be
encountered when sorting according to decreasing height or decreasing width are shown
in Figures 2(a) and 2(b), respectively, when the BL algorithm is used to pack a set of
items. An attempt at finding a solution to this problem is shown in Figure 2(c). In order
to achieve this result the items are first sorted according to DW, resolving ties according
to DH (denoted by DWDH), and then partitioned into two groups: those items, W, that
are wider than half the strip width, and the remaining items, N . The items in N are
then sorted according to DHDW. This sorting approach is denoted by 1/2WDWDH, where
the fraction denotes the fraction of the strip width at the splitting point, i.e. the width
at which the two lists W and N are separated. In this example, the items that are wider
than half the strip width remain sorted according to DWDH, and the remaining items are
sorted according to DHDW. A natural modification would be to split the list according
to the number of items to be packed. For example, one may want to sort the widest half
of the items according to DWDH, and the remaining items according to DHDW. This
strategy is denoted by 1/2RDWDH.

2.5 Methodology of algorithmic comparison

In order to determine whether the algorithms cited in §2.1–2.3 yield results that are signif-
icantly different from one another, the nonparametric Friedman test (as recommended by
Demšar [23]) was employed, followed by a Nemenyi test (the post-hoc test recommended
by Demšar [23] for these data) if the null hypothesis (that all algorithms in a compari-
son set yield similar results) was rejected. A nonparametric test was used, because the
packing heights achieved by the heuristics relative to the optimal packing heights (or their
best known lower bounds) were not normally distributed (as evidenced by a box plot of
the benchmark packing data in Figures 3–6). The performance ranks of the algorithms
were calculated in such a manner that the algorithm with the lowest packing height was
awarded a rank of 1, while algorithms yielding the same packing heights were awarded the
average of the ranks7 that they would have been awarded had the results not been equal.
The Nemenyi test determines whether algorithms are significantly different by finding a
critical distance (CD) between ranks — if the difference between two ranks is greater

7Consider three algorithms that achieved packing heights of 10, 11 and 11, respectively. They would
be awarded the ranks 1, 2.5 and 2.5, respectively.
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(c) 1/2WDWDH (H = 34)

Figure 2: An illustration of the working of a new sorting method for the class if sorting-
independent algorithms; in this case the BL algorithm.

than the CD, then the difference is significant; otherwise there is insufficient evidence to
distinguish between the two algorithms. All significance tests reported in this paper were
performed at a confidence level of 95%.

2.6 Strip packing algorithmic result comparison

We compare the ratios of the packing heights of the various algorithms to the optimal
packing heights (or appropriate lower bounds) in this section. We adopt a divide-and-
conquer approach, comparing the results of the level heuristics in four comparison sets,
those of the pseudolevel algorithms in two comparison sets and finally those of the plane
algorithms in eight comparison sets.

2.6.1 Results of the level-packing algorithms

The NFDH, FFDH, BFDH and WFDH algorithms and their variations were the first set
of algorithms to be compared (called the LP-1 comparison set). The BFDHDW algorithm
yields the best mean rank of 3.56 when applied to the 1 170 SPP benchmarks listed in
Table 1, with the BFDH and FFDHDW algorithms yielding mean ranks of 3.78 and
3.92, respectively. The CD for the twelve algorithms and 1 170 benchmark instances
is 0.49, suggesting that the best three algorithms are not significantly different from one
another. However, the BFDHDW algorithm is significantly better than the nine remaining
algorithms in the LP-1 comparison set.
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The KP algorithm was compared to a time-restricted version (denoted by KPTR) that
allows a maximum time of one second to find a (possibly approximate) solution to the
knapsack problem on each level, forming the LP-2 comparison set. If the allotted time
is exceeded, then the best solution found by the solver, or from a heuristic solution, is
used to fill the level. It was found that the KPTRDHDW algorithm is significantly worse
than the KP algorithm, but that the KPTRDH and KPTRDHIW are not, and they are
significantly faster.

The JOIN algorithms which join items vertically and horizontally were compared for the
DH, DHDW and DHIW sorting methods (in the algorithm joining items horizontally if
they have a similar height), and for the DW, DWDH and DWIH sorting methods (in
the algorithm that joins items vertically if they have a similar width), for height/width
difference allowances of 0%, 5%, 10% and 15%, resulting in a total of 24 algorithms, forming
the LP-3 comparison set. The JOIN0DHDW, JOIN0DW and JOIN0DHIW algorithms
yield mean ranks of 6.95, 7.07 and 7.97, respectively, and are not significantly different
according to the Nemenyi test which requires a CD of 1.06 between ranks. However, these
three algorithms are all significantly better than the remaining algorithms in the LP-3
comparison set.

The B2FA and B2FW algorithms were compared for the DH, DHDW and DHIW sorting
variations and for the search spaces k ∈ {n, 2, 4, 6, 8, 10}, forming the LP-4 comparison set.
The B2FA10DHDW algorithm yields the lowest mean rank, followed by the B2FAnDHDW
and other B2FAkDHDW (k ∈ {2, 4, 6, 8}) algorithms which, combined with the B2FA10DH
algorithm, are all not significantly different. However the B2FA10DHDW algorithm is
significantly better than the remaining algorithms in the LP-4 comparison set.

The best algorithms from each of the comparison sets LP-1, LP-2, LP-3 and LP-4 are
compared to one another in Figure 3 and in Table 2. The BFDHDW algorithm yields
the lowest mean rank, but the results obtained via the B2FA10DHDW algorithm are not
significantly different according to the Nemenyi test (which requires a CD of 0.14 for the
four algorithms and 1 170 benchmark instances). However, these two algorithms are both
significantly better than the KPTRDHIW and JOIN0DHDW algorithms.

2.6.2 Results of the pseudolevel-packing algorithms

The pseudolevel-packing algorithms that guarantee a guillotine layout considered in this
study include the DH, DHDW and DHIW variations of the FCOG and BFDH* algorithms,
and the SAS, SASm, BFS and SLδ (where δ ∈ {0, 5, 10, 15}) algorithms, forming compar-
ison set PLP-1. The SL5 algorithm yields the lowest mean rank of 4.96 over the 1 170
benchmark instances, with the FCOGDHDW, SL10 and SL0 algorithms yielding mean
ranks of 5.16, 5.33 and 5.39, respectively. The Nemenyi test suggests a CD of 0.53 for 13
algorithms and 1 170 benchmark instances, which means that these four algorithms are
not significantly different. However, the SL5 algorithm is significantly better (with respect
to packing height) than the remaining 9 algorithms in the set. The SASm algorithm is the
fastest8 algorithm in the set (mean times of 1.06/1.17 seconds for “nice”/“pathological” in-

8All computations were performed on a Windows XP personal computer with a 3.0 GHz Intel Core 2
Duo CPU and 4 GB RAM.
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Figure 3: Box plots of the results achieved by the best level-packing algorithm from each of the
comparison sets LP-1, LP-2, LP-3 and LP-4 when applied to the 1 170 SPP benchmark instances
listed in Table 1.

stances of 5 000 items by Wang and Valenzuela [68]), while the BFDH* algorithms require
the longest execution time for 5 000-item benchmark instances (mean times of 5.99/5.34
seconds for the “nice”/“pathological” instances).

The free-packing pseudolevel algorithms include the DH, DHDW and DHIW variations
of the FCOF algorithm, and the SC and SCR algorithms, forming comparison set PLP-2.
The SC algorithm yields a mean rank of 2.56, followed by the FCOFDHDW algorithm
with a mean rank of 2.87 and the SCR and FCOFDH algorithms with mean ranks of
3.09 and 3.10, respectively. The Nemenyi test requires a CD of 0.18 for five algorithms
and 1 170 benchmark instances, suggesting that the SC algorithm is significantly better
than the FCOFDHDW algorithm which, in turn, is significantly better than the other
algorithms in this comparison set. The SC algorithm is the fastest in this set (significantly
so) requiring a mean time of 2.45/2.82 seconds to find solutions to the 5 000-item sets of
“nice”/“pathological” items, while the FCOFDHDW algorithm required 4.81/5.64 seconds
and the SCR algorithm (the slowest in the set) required 4.96/6.47 seconds for the same
problem instances.

2.6.3 Results of the plane-packing algorithms

The set of free-packing, sorting-dependent plane algorithms includes the DH, DHDW and
DHIW sorting variations of the Sleator, modified SP (SPmF), M and UD algorithms,
forming comparison set PP-1. The SPmF(DHDW) algorithm yields the lowest mean rank
of 3.97, followed by the M algorithm with a mean rank of 4.03 and the DH and DHIW
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BFDHDW KPTRDHIW JOIN0(DHDW) B2FA10DHDW

Low. Q. H/OPT 108.1% 108.1% 111.7% 108.5%
Med. H/OPT 116.0% 115.8% 118.5% 115.9%
Up. Q. H/OPT 131.0% 133.6% 132.7% 130.8%
IQR 22.9% 25.5% 20.9% 22.3%
Max. H/OPT 182.7% 256.9% 182.7% 182.8%
Mean Rank 2.02 (1) 2.84 (3) 3.05 (4) 2.09 (2)
Nem. Class C B A C
Nice 5 000 t 2.3164 76.475 2.3166 2.2636
Path 5 000 t 2.2992 81.418 2.2797 2.2107

Table 2: A summary of the results achieved by the best level-packing algorithms cited in this
paper when applied to the 1 170 strip packing benchmark problem instances listed in Table 1. The
row labelled ‘Median H/OPT’ contains the median packing height for all benchmark instances as a
percentage of the optimum packing height, or its lower bound if the optimum is not known. The row
labelled ‘Low. Q. H/OPT’ contains the value of the lower quartile, the row labelled ‘Up. Q. H/OPT’
contains the values of the upper quartile and the interquartile range (in the row labelled ‘IQR’) is
the difference between the two. The row labelled ‘Max. H/OPT’ contains the worst result achieved by
the algorithms for all benchmark instances. The row labelled ‘Nem. Class’ contains results obtained
by means of a Nemenyi test. Algorithms in the same group (indicated by alphabetic letters) do not
produce results that are significantly different. The row labelled ‘Mean Rank’ contains the mean
ranks achieved by the algorithms (a rank of 1 indicates that the algorithm packed to the lowest
height for an instance), with their ranks shown in parentheses. If algorithms yielded the same
packing height for an instance, the mean of the ranks that would have been awarded had these
ranks been different was used in the analysis. The rows labelled ‘Nice 5 000 t’ and ‘Path 5 000 t’
show the mean solution time (in seconds) required for instances of 5 000 items (for the “nice” and
“pathological” benchmark problem instances [68]).

variations of the SPmF algorithm, yielding mean ranks of 4.07 and 4.18, respectively. The
Nemenyi test requires a CD of 0.31 for significance, meaning that these four algorithms
are not significantly different. However, they are significantly better than the Sleator
and UD algorithms. The drawback of the SPmF algorithms is the time they require to
find solutions to large problems — the SPmF(DHDW) algorithm requires a mean time
of 197/870 seconds to find solutions to the 5 000-item “nice”/“pathological” benchmark
instances, compared to the 4.45/4.38 seconds required by the M algorithm.

The sorting-dependent, guillotine-packing plane algorithms include the DH, DHDW and
DHIW versions of the SF algorithm, and the DW, DWDH and DWIH versions of the
SP and modified SP (SPmG) algorithms, forming comparison set PP-2. The SPmG al-
gorithms are significantly better than the SF algorithms which, in turn, are significantly
better than the SP algorithms. The SPmG(DWDH), SPmG(DW) and SPmG(DWIH) al-
gorithms achieve mean ranks of 3.20, 3.41 and 3.49, compared to the mean ranks of 4.28,
4.37 and 4.51 for the SF(DHDW), SF(DH) and SF(DHIW) algorithms, respectively (the
Nemenyi CD is 0.35 when comparing nine algorithms over 1 170 benchmark instances).
However, the SPmG(DWDH) algorithm requires a mean time of 3.16/3.49 seconds to solve
the 5 000-item instances, compared to the SF(DHDW) algorithm’s 2.56/2.55 seconds and
the SP(DWDH) algorithm’s 2.33/2.34 seconds. The SL5 algorithm yields better results
than the SPmG(DWDH) algorithm in a time similar to that of the SP(DWDH) algorithm;
hence algorithms from this comparison set are not used in further comparisons.
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The sorting-independent algorithms were tested according to 23 sorting methods, namely
the DH, DHDW, DHIW, DW, DWDH, DWIH, DA, DADH, DADW, xWDWDH and
xRDWDH methods, where x ∈

{
2/3,

3/5,
11/20,

1/2,
9/20,

2/5,
1/3
}
. The new xWDWDH sort-

ings yield the best mean ranks for the BL algorithm (comparison set PP-3), with the
1/2WDWDH sorting yielding the lowest mean rank (the mean rank of 7.45 is not signifi-
cantly different to the mean ranks of 7.63 and 7.73 for the 11/20WDWDH and 3/5WDWDH
variations due to a Nemenyi CD of 1.01) and the variations that sort according to de-
creasing item height yielding the lowest solution times (means of 8.73/9.70 seconds for
5 000-item benchmark instances by the DHDW variation compared with 11.16/12.15 sec-
onds required by the 1/2WDWDH variation).

The BLF2/5WDWDH algorithm yields the best mean rank of 8.09 (followed by 8.18 for the
9/20WDWDH variation and 8.26 for the 1/2WDWDH variation — the Nemenyi CD is again
1.01) for the set of BLF algorithms (comparison set PP-4) and it belongs to the subset
of fast algorithms as it requires 27.8/33.8 seconds to solve 5 000-item problem instances
compared with times of 34.4/193.9 seconds for the DWIH variation (which yields a mean
rank of 18.14).

The 1/2WDWDH sorting method yields the best mean rank for the GCS algorithms (com-
parison set PP-5) with a mean rank of 8.48 (compared to the mean ranks of 8.56 and
8.75 for the 9/20WDWDH and 11/20WDWDH variations, respectively, with a Nemenyi CD
of 1.01), but required 2 021/694 seconds to find solutions to problems with 2 000 items.

The 1/3WDWDH sorting method yields the best mean rank in the set of BFmLM algorithms
(comparison set PP-6) with a mean rank of 9.70 (compared to the mean ranks of 10.05 and
10.08 for the 2/5WDWDH and DADW variations, respectively, for a Nemenyi CD of 1.06),
but the DADW method proved faster, requiring a mean time of 2.34/2.49 seconds versus
4.84/4.80 seconds for the 2/5WDWDH method to find solutions to 5 000-item benchmark
instances. The same sorting methods yield the best (with respect to packing height) and
fastest solutions when used by the BFmTN algorithm (comparison set PP-7), with the
1/3WDWDH, 2/5WDWDH and 9/20WDWDH variations yielding the mean ranks of 9.11, 9.49
and 9.77, respectively (the Nemenyi CD is 1.06). However, the DADW sorting method
proved most effective when used by the BFmSN algorithm (comparison set PP-8) and was
fast, being significantly slower than only the oriented version of the original algorithm.
It yields a mean rank of 10.15, compared to 10.16 and 10.20 for the DADH and DA
variations, respectively. The packing results achieved by the best of these algorithms are
shown in Figure 4 and Table 3.

2.6.4 Overall appraisal of strip packing heuristics

When comparing the algorithms in Figure 4 it is immediately obvious that the SASm,
M and BL algorithms do not yield results as good as those of the other algorithms, and
that the best of the BFmSN algorithms is not as good as the best of the BFmLM or
BFmTN algorithms. Of the guillotine algorithms, the GCS1/2WDWDH algorithm yields
the best mean rank, but it is not significantly better than the SL5 algorithm accord-
ing to the Nemenyi test and it is significantly slower. The SASm algorithm may not
yield very good solutions when compared to many of the other algorithms in this set,
but it does require the lowest execution time to find feasible solutions. The pseudolevel-
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Figure 4: Box plots of the distribution of results achieved by the best pseudolevel and plane
algorithms from each comparison set when applied to the 1 170 SPP benchmark instances listed in
Table 1.

packing SC algorithm yields solutions that are not significantly different to those of the
plane-packing GCS1/2WDWDH, BFmLM(DADW) and BFmLM1/3WDWDH algorithms,
but results that are significantly better than the plane-packing M, BL and BFmSN al-
gorithms. The BFmTN1/3WDWDH algorithm yields the lowest mean rank and is signifi-
cantly better than the second-ranked BFmTN(DADW) algorithm, which is equivalent to
the BLF2/5WDWDH algorithm in terms of packing height, but much faster. These algo-
rithms are followed by the BFmLM algorithms in terms of mean ranks. It is clear that
using the xWDWDH sorting method typically results in slower algorithms than do the
previously used sorting methods (those sorting items according to height, width or area),
but in some cases yields solutions of significantly higher quality.

3 The variable-sized bin packing problem

Now that suitable strip packing algorithms have been found which may be combined with
the 2SVSBP algorithm of Ortmann et al. [59], the combination of these strip packing
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algorithms with the 2SVSBP algorithm may be compared on benchmarks for the VSBPP.
For this comparison we made use of the multiple stock size stock cutting problem instance
described by Wang [67, p. 585], and the algorithmically-generated benchmark instances
by Hopper and Turton [40, 42], Pisinger and Sigurd [60] and Ortmann et al. [59]. Out
of interest, the algorithms were also applied to the benchmark instances by Berkey and
Wang [7] and Martello and Vigo [56] for the 2D SSBPP, giving rise to a total of 857
benchmark instances for the VSBPP and 500 instances for the SSBPP.

3.1 The 2SVSBP algorithm

The 2SVSBP algorithm [58,59] begins by packing all items into a strip by means of a level
or pseudolevel strip packing algorithm. The bins are then sorted according to decreasing
area and the levels of the packing are packed into the largest bin in the set. When no
further levels fit into the bin, then the levels are packed into the next bin in the list. If
the new bin width is different to the width of the previous bin, then a new strip packing is
performed, with the width of the strip taken as the width of the empty bin. Once all items
have been packed, the bin containing the smallest area of items is selected for repacking,
and the smallest empty bin of area no less than the area of the items is selected as the
target. The items are packed into a strip of the same width as the empty bin. If the strip
height is no larger than the height of the empty bin, then the items may be repacked into
it. However, if the strip height is larger than the bin height, then the previous (possibly
larger) bin in the list is selected as a target. This process continues until the items are
repacked, or the target bin is the same bin as the one containing the items. When an
attempt to repack a bin has been completed, the bin with the next smallest area of items
is selected for repacking. This process continues until attempts have been made to repack
all bins.

Figure 5 contains an example of how the repacking stage of the algorithm may improve
utilisation. The items are first packed into a strip by means of the SAS algorithm [57] and
then packed into the bins as shown in Figure 5(a). The item in the third-largest bin may
be repacked into the smallest bin and the items in the second-largest bin may be repacked
into the bin that was rendered empty by the previous packing. The items in the largest
bin cannot be repacked into any of the remaining empty bins and the resulting packing is
shown in Figure 5(b).

3.2 Selection of algorithms for comparison purposes

The best of each class of level-packing algorithms, when incorporated into the 2SVSBP al-
gorithm, was compared by means of the so-called packing utilisation9 and fitness10 scores.
The BFDHDW, KPTRDHDW, JOIN0DHDW, B2FA10DHDW and B2FW2DHDW algo-
rithms yield the best mean ranks in their respective classes when they are compared with

9The utilisation µ of a packing is the total area of the items to be packed divided by the sum of the
areas of the bins that eventually contain items.

10The fitness ν of a solution to the VSBPP, as proposed by Hopper [40], is a measure that aims to
reward algorithms for dense packing of bins. This allows one to distinguish between algorithms when their
utilisations are equal for all solutions. A solution in which most bins are densely packed and one bin is not,
would typically achieve a higher fitness score than an algorithm that packs bins less densely. The fitness
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Figure 5: Results obtained by the two-stage algorithm for the VSBPP (2SVSBP-SAS), using the
SAS algorithm for strip packing.

respect to the 857 benchmark instances. A Nemenyi test (requiring a CD of 0.27) on
their utilisations show that the JOIN algorithm, with a mean rank of 3.86, is significantly
worse than the B2FW algorithm (which yields a mean rank of 2.99) which, in turn, is sig-
nificantly worse than the BFDHDW, KPTRDHDW and B2FA10DHDW algorithms which
yield mean ranks of 2.68, 2.72 and 2.74, respectively. The final three algorithms are not
significantly different when compared with respect to mean ranks of bin utilisation. How-
ever, if the fitness scores are used, then the BFDHDW algorithm (with a mean rank of
2.46) is significantly better than the KPTRDHDW and B2FA10DHDW algorithms, which
achieve mean ranks of 2.69 and 2.74, respectively.

Comparing the guillotine pseudolevel-packing algorithms shows that the SASm algorithm
is significantly worse (with a mean rank of 3.98) than the FCOGDHDW algorithm (which
yields the best mean rank of 2.70), the BFDH*(DW) algorithm (which yields the fourth
lowest mean rank of 2.86), the BFS algorithm (which yields the third lowest mean rank
of 2.74) and the SL5 algorithm (which yields the second lowest mean rank of 2.71), but

of a solution is defined as

ν =

∑M

i=1

(
A(IBi )
A(Bi)

)k

M
,

where A
(
IBi
)

denotes the total area of the items packed into bin Bi, where A (Bi) denotes the area of bin
Bi, and where M is the number of bins that contain items in the solution. Typically k = 2.
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these algorithms are not significantly different from one another due to a Nemenyi CD
of 0.21 (the significance results, but not the ranks, are the same for the algorithms when
applied to the SSBPP). By using the fitness score to rank the algorithms, the Nemenyi test
suggests that the BFDH*(DW) algorithm (with a mean rank of 2.93) is significantly worse
than the FCOGDHDW, BFS and SL5 algorithms which achieve mean ranks of 2.56, 2.67
and 2.65, respectively. The free-packing pseudolevel algorithms, when combined with the
2SVSBP algorithm, yield results that are significantly different according to the Friedman
test when applied to the fitness score, and the Nemenyi test suggests that the FCOFDHDW
algorithm (with a mean rank of 1.92) is significantly better than the SCR algorithm (which
yields a mean rank of 2.08), but the SC algorithm (with a mean rank of 2.00) cannot be
distinguished from either algorithm due to a Nemenyi CD of 0.11.

3.3 Adaptation of plane-packing algorithm

The 2SVSBP algorithm was initially designed to make use of available level and pseudolevel
algorithms to pack items into bins in a generic manner that does not require each algorithm
to be reimplemented for the 2D VSBPP. However, the best of the strip packing algorithms,
the BFmTN heuristic, requires a new procedure for incorporating the repacking strategy
of the 2SVSBP algorithm. The structure of this algorithm is very similar to that of the
2SVSBP algorithm, but instead of performing a strip packing with the unpacked items,
these items are packed directly into the first bin. The procedure that performs this task
is very similar to the BFmTN algorithm for the SPP, with the difference that an item is
only packed if the space between the skyline onto which an item is to be packed and the
top-most edge of the bin is no smaller than the height of the item. If no item is found that
fits onto a skyline segment, this segment is raised to the height of the lowest neighbouring
segment in the hope that a wider item which is short enough to fit into the bin may fit
onto the wider segment. The bin is filled until none of the unpacked items fit into the
remaining space. If the new xWDWDH sorting method is employed, the items may have
to be re-sorted if the bin width changes. An attempt is made to repack the bins (after all
items have been packed for the first time) in the same manner as for the original 2SVSBP
algorithm.

3.4 Variable-sized bin packing algorithmic result comparison

It turns out that the BFmTN(DA) algorithm for the VSBPP yields the lowest mean rank
and is significantly better than the BFmTN1/3WDWDH algorithm. The first problem in-
stance by Wang [67] is the largest in terms of the number of items to be packed and the
BFmTN(DA) algorithm requires 4.87 seconds to find a solution for this instance compared
to the 143 seconds required by the BFmTN1/3WDWDH algorithm and the 129 seconds re-
quired by the BFmTN1/3RDWDH algorithm. The two new sorting methods are likely to
yield slow solution procedures due to the re-sorting required for each bin packing. The
results in Figure 6 and Table 4 show that the modified BFmTN(DA) algorithm typically
finds better solutions (significantly better according to the Nemenyi test which requires
a CD of 0.31 when comparing seven algorithms over 857 benchmark instances) than the
level and pseudolevel algorithms — an expected result considering that the BFmTN(DA)
algorithm is not constrained by a rule requiring it to pack items into levels. It is also faster
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than the other algorithms which is likely an artifact of the level and pseudolevel SPP al-
gorithms being called by a generic algorithm, while the BFmTN(DA) algorithm is more
closely integrated with the bin packing and repacking procedures. The results show that
the pseudolevel-packing SASm algorithm, while fast, yields results that are significantly
worse than the level-packing BFDHDW algorithm. The BFDHDW algorithm is also sig-
nificantly worse than the remaining pseudolevel algorithms. The Nemenyi test was unable
to distinguish between the remaining pseudolevel-packing algorithms, and the mean ranks
for the guillotine FCOGDHDW and SL5 algorithms were better than for the free-packing
SC algorithm — an unexpected result, even if the difference in ranks is very small. The
results for the SSBPP (shown in Figure 5) suggest that there is no significant difference
between the BFDHDW algorithm and the pseudolevel-packing algorithms (excluding the
SASm algorithm, which is significantly worse). The BFmTN(DA) algorithm is the best
by a large margin.

BFDHDW FCOGDHDW SASm SL5 FCOFDHDW SC BFmTN(DA)

0.5

0.6

0.7

0.8

0.9

1.0

U
ti

li
sa

ti
on

µ

Figure 6: Box plot of the utilisations achieved by the best heuristics for the VSBPP when applied
to the 857 VSBPP benchmark instances.

4 Conclusion

In this paper a total of 252 SPP heuristics (or variations of thereof) were tested on a total
of 1 170 benchmark instances; to the best knowledge of the authors this is the largest com-
parison of SPP heuristics performed to date. The results were subjected to nonparametric
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statistical tests in an attempt to compare the algorithms in an unbiased fashion, at a 95%
level of confidence.

A new strip packing heuristic was also proposed for the 2D OG SPP, namely the SL
algorithm. This novel heuristic outperformed other guillotine-packing algorithms that
pack items into levels in terms of packing height and, in many cases, execution time.

Two new sorting methods were proposed for the class of sorting-independent SPP algo-
rithms and the xWDWDH method was shown to yield the best results in terms of packing
height for many of the algorithms. This included modified versions of the best-fit algorithm
by Burke et al. [11] which were shown to yield better results than the BLF algorithm, one
of the “most documented heuristic approaches” for the SPP [11, p. 656].

It was also shown how all of the above algorithms may be combined with the 2SVSBP
algorithm by Ortmann et al. [59] in order to find good solutions to the 2D OF VSBPP.
These solutions may be used as initial solutions to metaheuristics designed to improve on
the packing density.

Finally, we remark that the differences between the solution qualities of the algorithms
are not as marked for the VSBPP as for the SPP.
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