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Abstract

A large South African retailer (hereafter referred to as the Retailer) faces the problem of
selling out inventory within a specified finite time horizon by dynamically adjusting product
prices, and simultaneously maximising revenue. Consumer demand for the Retailer’s fashion
merchandise is uncertain and the identification of products eligible for markdown is therefore
problematic. In order to identify products that should be marked down, the Retailer forecasts
future sales of new products. With the aim of improving on the Retailer’s current sales
forecasting method, this study investigates statistical techniques, viz. classical time series
analysis (Holt’s smoothing method) and survival analysis. Forecasts are made early in the
product life cycle and results are compared to the Retailer’s existing forecasting method.
Based on the mean squared errors of predictions resulting from each method, the most
accurate of the methods investigated is survival analysis.
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1 Introduction

A large South African retailer that aims to provide affordable merchandise to the lower-
and middle-income target market is considered. The Retailer offers a vast selection of
different products, ranging from shoes and clothing to cell phones and home decorations.
A large proportion of merchandise that the Retailer sells consists of fashion items, of which
the demand is dependent on seasonal trends and consumer sentiment. For this reason,
it is difficult to estimate future seasonal demand. For seasonal products, new stock is
bought from overseas suppliers every season. For this particular Retailer, this is a once-off
transaction, and once the stock has been ordered by the Retailer’s buyers, no changes can
be made, irrespective of the product’s sales performance.
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Demand for the Retailer’s products is price-elastic due to the nature of the target market.
Periodic price cuts throughout the season stimulate sales for products that do not sell
out satisfactorily. However, the Retailer should avoid marking down products for which
consumers are willing to pay full price. It is important to identify which products should be
marked down at an early stage because if markdowns occur too late, inefficient occupation
of shelf space may lead to a decrease in revenue.

The problem that the Retailer faces corresponds to the widely researched field of markdown
optimisation, originally conducted by Kincaid and Darling (1963). Markdown optimisation
deals with the problem of maximising expected total revenue by continuously adjusting
prices, given that sales may only take place within a finite time horizon (Gallego & Van
Ryzin 1994). A brief overview of the literature in this field and a discussion of why a
traditional approach to markdown optimisation is inappropriate in the case of the Retailer
are given here. Subsequently, a discussion of the methods used in the study is given.

1.1 Stochastic demand models

As an input in the markdown optimisation model, consumer demand needs to be mod-
elled, either deterministically or stochastically. In stochastic models of consumer demand,
consumer demand can either be a random variable or a function of a random variable.
An example of the former is to model sales of a specific product over time as a Poisson
counting process with transition intensity inversely proportional to price (Chatwin 2000).
The objective is then to maximise the expected revenue under the assumed distribution.
Under the Poisson model, the maximum expected revenue is a non-decreasing, concave
function of remaining inventory over time to the end of the season, and the optimal price
is continuously decreasing (Chatwin 2000).

Mantrala and Rao (2001) define a model where demand is a function of both deterministic
and stochastic variables. The function is given by

Py i
Dtj = Oth <Pt]> Et,

Dy; is consumer demand for product j at time ¢ at price P,

oy  is a seasonal factor at time ¢,

P;  is the full price of the product, charged at the beginning of the season,

M s the total seasonal demand at price Py,

Ve is a function of the sensitivity at time ¢ of consumer demand to a change in
price, and

e is a random variable with a continuous time lognormal distribution (i.e. the
random disturbance component takes the form of geometric Brownian Mo-
tion).

The estimation of parameters for a stochastic model requires an extensive amount of data.
For the model described above, the sensitivity parameter 7, varies over time, and can only
be estimated if there are sufficient observed values of D;; for all values of ¢ and j.
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Data available to the particular Retailer investigated in this study only provides informa-
tion on the effect of late price changes (if any) on consumer demand. In other words, there
are

e many observed values of Dy; if P;; = Py for all values of ¢,
e very few observed values of Dy; if Py # P; for large values of ¢, or

e 1o observed values of Dy; of Py # P;; for small values of .

Since model fitting requires a sufficient number of observed values for Dy; for all values
of t and j, 44 cannot be estimated accurately based on the available data. If a stochastic
model was to be used to optimise markdowns, subjective assumptions would be required
about the form of 7. These assumptions may be inaccurate, and resulting markdown
decisions may potentially lead to losses in revenue.

A further disadvantage of the stochastic approach is that it often requires the assumption
of independence of sales quantities in consecutive weeks, which is unlikely to be valid
(Lobel & Perakis 2010).

Given the limited nature of the available data for the Retailer investigated, it is not
feasible to apply markdown optimisation in its traditional sense to the Retailer’s markdown
decision problem. However, the data may be useful for predicting what demand will be
assuming that the price remains constant. Using the previous notation, a model for Dy;
can be developed, assuming a constant price, since there are many observed values of
Dy; where Pj = Pr. Even though such a model would not be useful for determining the
optimal time and magnitude of markdowns, it may nevertheless help in identifying which
products should be marked down.

Therefore, instead of investigating ways of optimising markdowns, this study focuses on
the question of whether markdowns for particular new products are necessary at all. The
identification of products eligible for markdown is done by means of in-season sales fore-
casting of newly launched products, assuming no price change. Sales forecasts provides
information as to whether the products considered will sell out within the specified time
horizon if the price remains the same. If not, the product is flagged for markdown.

1.2 The Retailer’s approach to markdown identification

To assist with decisions regarding the markdown of products, an early indication of likely
future sales performance is needed. The Retailer therefore predicts the remaining shelf life
of products shortly after the commencement of sales based on a simple heuristic method,
which is hereafter referred to as the forward cover method. The concept of forward cover,
also known as “weeks of supply”, is widely used in different forms across the retail industry
(Meckin 2007). The forward cover is defined as a measure of the number of weeks’ worth
of inventory in stock at any particular time (Chase et al. 2008). The variation of forward
cover used by the Retailer is based on the assumption that sales will remain constant over
the entire remaining shelf life of the product. The constant rate of future sales is assumed
to be an average of the previous 5 weeks of sales.
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The forward cover calculated in week n is defined by
Cn

F,=—
1 4 )
5 Zi:(] Sn—i

where

C; is the closing inventory for week 4, and
S; is the quantity of products sold during week 1.

This calculation is done on a weekly basis, starting as soon as sufficient sales data are
available. Products that are not expected to sell out within the allowed time horizon are
then identified as being eligible for markdown.

In this study, two alternative forecasting methods (described in §1.4.) are investigated
with the aim of improving on the accuracy of the forward cover method. Ideally, the
remaining future shelf life of products should be forecasted in a methodical, quantitative
manner. Furthermore, the forecasting model should be capable of:

producing forecasts of future sales on a weekly basis,

using very little data as the basis for the forecasts,

using as much as possible of the information underlying the available data, and
using knowledge of trends in past data (on sales of similar products) as a reference
to estimate sales of a new product.

= 0N

1.3 Forecasting methods

Two forecasting models are proposed to predict future sales, namely time series analysis
and survival analysis.

1.3.1 Time series analysis

A number of time series techniques have been used for sales forecasting, including Au-
toregressive Integrated Moving Average (ARIMA) models, Bayesian forecasting models
and exponential smoothing models. Most of these methods require estimation of several
parameters. In this study, an early indicator of future product success is needed. Fore-
casts are required after only eight weeks of initial sales. Since only eight data points are
available on which to base forecasts, a model with as few as possible required parameter
estimates is needed.

Holt’s smoothing method for exponential trend was used in this study, since there was
no significant seasonality over the short time period observed and inventory typically
diminishes faster than straight-line decay. Forecasts are obtained for the weekly closing
inventory percentages. To obtain an estimate for the forward cover, the number of weeks
until the forecasted inventory is less than 1% of total inventory is established.

1.3.2 Swurvival analysis

The theory of survival analysis considers the time to occurrence of a particular event. Pos-
sible events include the time of death in clinical trials, the length of stay in hospital until
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discharge, or even how long it takes before a light bulb fuses. In the past, practical appli-
cations of survival analysis principles have mainly been in the actuarial field, but survival
analysis has increasingly been used in non-traditional fields, including the manufacturing
industry (Berry 2009).

The general survival function S(t) is defined as
S(t) = P(T>t).

It is the probability that a response variable T' > 0 exceeds time ¢. The survival function
denotes the probability that a subject will survive for a minimum period of ¢ time units.
In the case where the probability of survival of a subject is dependent on the age of the
subject, the survival function may be written as a function of age. The probability that a
subject currently aged x will survive for a minimum period of ¢ time units is expressed as

P = Si(t) =P(Tp > 1t).

The hazard function, p(t), is defined as the instantaneous rate at which deaths occur,
conditional on no previous deaths occurring. The hazard function is given by

L PA<Ty<t+ At Ty >t)  fult)
uit) = limg At CAOK

where f,(t) is the probability density function of the future lifetime, 7}, of a subject aged
x (Cox & Oakes 1984). The survival function, py,, is hence defined as a function of the
integrated hazard function and is given by

Ptz = €Xp <— /m MM(S) dS) :

In the context of sales forecasting, the future shelf life of products is considered, i.e. the
response variable T, is defined as the time until sale of a product given that the product
has been on the shelf for x weeks. The probability of a particular product being sold in
any given week is considered analogous to the probability of death. The probability that a
product is sold between week = and x4+ 1, given that it is not sold by week x, is represented

by
r+1
szl—plzzl—eXp<—/ u(s)ds).

The application of survival models in retail sales forecasting is potentially useful because:

1. No distributional assumptions are needed in the model. The model relies solely on
data and the result is an empirically derived set of mortality rates that capture all
information contained in past data without the need for parametric formulae.

2. The results of the model depend on a mix between information obtained from past
data and the latest sales data of new products.
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1.4 Cross validation

In order to test the validity of the suggested models, a subset of 11 products was left out
of the data analysis and used as test observations. Afterwards, all models were applied to
the chosen 11 products. This allowed direct comparison of the two forecasting techniques
with the forward cover method.

2 Survival analysis methodology
A diagrammatic outline of the methodology followed to obtain forecasts of future sales

is given in Figure 1. These three steps in the methodology is discussed in the following
sections.

Determine the shape of a mortality curve (§2.1)

e Pool homogeneous pools of products
e Calculate crude mortality rates for each group
e Graduate crude rates and test for goodness-of-fit

\ 4

Re-fit mortality rates for new products (§2.2)

e Assume mortality curve shape is similar for homogeneous products
e Re-fit assumed mortality curve for new products baes on latest data

\ 4

Estimate future shelf life (§2.3)
e Calculate weekly expected future sales
e Determine the number of weeks until less than 1% of initial
inventory remains

Figure 1: An outline of the steps followed in the survival analysis methodology.

2.1 Determining the shape of a mortality curve

A number of factors influencing the nature of a mortality curve are considered.

2.1.1 Pooling of homogeneous groups

Products that were deemed relatively homogeneous were pooled together in groups to
form different cohorts of ‘lives’ to produce mortality rates that would be applicable to
all products in that group. Each group consisted of various different product styles from
the same department. For example, within the “Ladies’ Clothing” cohort, there were a
number of different styles of dresses, pants and other attire. The five cohorts investigated
are ladies’ clothing, shoes, girls’ clothing, baby girls’ clothing and preschool boys’ clothing
respectively.
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The maximum likelihood estimate, ¢,, of the mortality rate is obtained by dividing the
number of products sold by the number of exposure units (Broffitt 1984). This estimate
is also referred to as the actuarial estimate and is given by ¢, = %—2, where ¢, is the crude
initial rate of mortality, d, is the number of products sold during week x (i.e. the number
of “deaths”), and F, is the initial number of units exposed to risk during week z.

2.1.2 Graduation of crude rates

A simple moving average approach was used to graduate crude rates for each of the five
cohorts. However, for the first 3-10 weeks (depending on the cohort), crude rates and
graduated rates were assumed equal, since the exposure data during the first weeks were
sufficient to produce adequately smooth rates. Depending on the volatility of the crude
rates, a three- or five-point moving average was taken. The graduated rates are denoted by
¢ and the formulae for obtaining graduated rates for three- and five-point moving averages
are given by

. 1 R . . 1 . . . R R
4o = g(Qx—l +dp + Gpy1) and ¢y = g(qz—Q + Go—1 + Go + Got1 + Guot2),

respectively. As an example, an illustration of crude and graduated mortality rates for
Ladies’ Slippers is given in Figure 2.
60% -
] —o+— Crude Rates
50% - —=— Graduated Rates

IS

o

X
1l

30% 1

20% 1

Probability of sale

10% 1

0% -
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Figure 2: A graph of the crude and graduated mortality rates for Ladies’ Slippers over weeks.

2.1.3 Graduation tests

The graduation tests below were used to determine whether the graduated rates were
significantly biased compared to the data. In each case, the fit is deemed adequate if the
null hypothesis is not rejected.

Sign Test

The signs test is used to detect whether there is a bias in the graduated rates. Only
the sign of the deviation, z;, is taken into account. The number of positive deviations is
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assumed to be binomially distributed with success probability, p = 0.5. It is a two-tailed
test, since Hy : p=0.5; Hy : p# 0.5. A p-value (Benjamin & Pollard 1993) is calculated
for

p = 2P[X > max{n,, po}|,

where X has a Binomial (n,0.5) distribution (n is the sample size), n, is the observed
number of negative deviations, and p, is the observed number of positive deviations. A
significance level of 0.05 was used, i.e. a p-value larger than 0.05 resulted in the null
hypothesis not being rejected.

Grouping of signs test (Stevens’ test)

The grouping of signs test aims to detect long runs or clumps of deviations of the same
sign. The number of groups of positive signs, g, is counted. Under the null hypothesis,
the probability of having exactly g positive groups is given by
ni no+1
P[G _ g] _ (9—1)751 g )’
()

where nq is the observed number of positive deviations, no is the observed number of
negative deviations, g is the number of groups of positive deviations, and m is the sample
size (i.e. number of weeks over which the graduation was done) (Benjamin & Pollard
1993).

In each case, a p-value was calculated. The p-value,

g 9 ni na—+1
p:ZP[G:ﬂ:Z(“z(m)i)-
l:0 ’LIO ni

is equal to the probability of having a number of positive groups fewer than or equal to
that observed.

2.2 Re-fitting of graduated rates for new products

Since the aim is to forecast sales of new products that did not form part of the investigation
of mortality rates, the sets of graduated mortality rates cannot be used directly. New
products were first classified into groups, and subsequently viewed as new manifestations
of the process modelled by past data.

Adjustments were made to the shape of the smoothed mortality rates in light of new
information obtained from the first eight weeks of new product sales. The mortality rates
assumed for these new products were obtained by taking a linear combination of the
smoothed rates, i.e.

4z = aqz + b,

where ¢, is the adjusted (new) mortality rate, g, is the graduated mortality rate based on
sales data from previous products, and the parameters a and b were determined using a
least squares approach based on observed sales for the first eight weeks, with the constraint
that all fitted and predicted mortality rates must be nonnegative. An example of a set of
re-fitted mortality rates for a particular new product is given in Figure 3. To illustrate
prediction accuracy, the realised actual sales numbers are included in the graph.
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Figure 3: A graph of the re-fitted product mortality rates.

2.3 Obtaining forecasts from estimated mortality rates

An estimate of the product’s remaining number of weeks on shelves is obtained by calcu-
lating the number of products expected to remain after each week by ;s = £, X py,, where
£, is the number of products expected to remain after x weeks, and p;, is the probability
of survival up to week = + t, given survival up to week x. This can be computed directly
from the estimated mortality rates: py; = (1 — ¢z)(1 — gut+1) - -+ (1 — @u+t). The estimate
of the complete future shelf life is equal to the smallest value of ¢ for which ¢, is smaller
than 1% of the initial inventory level.

3 Empirical results

A comparison of the actual vs. predicted shelf life of all three forecasting methods is given
in Figure 4.

The predictions arising from both the forward cover methodology and time series analysis
are underestimated, since forecasts are unanimously below the actual values. The survival
analysis predictions seem to be the most accurate, and are not consistently biased. To
formalise this conclusion, a comparison between the prediction errors and resulting mean
squared error (MSE) for each of the models is given below in Table 1.

3.1 Signs test

Resulting p-values for each group is given below in Table 2. Since all p-values are greater
than 0.1, the null hypothesis for each cohort is not rejected at the 10% significance level.
There is thus no significant bias, and the graduation fits the data adequately.

3.2 Grouping of signs test

A summary of results of the grouping of signs test is given in Table 3. Since all p-values
are greater than 0.1, the null hypothesis is not rejected at the 10% significance level, and
it can be concluded that the graduation fits the data adequately.
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Figure 4: A plot of the actual vs. predicted number of remaining weeks for the three models.

Prediction errors
Forward Time series Survival

Product cover method analysis  method
Ladies’ pencil skirt —42 —38 -5
Ladies’ bengaline pants —48 —28 3
Ladies’ slippers (style A) —4 —2 1
Ladies’ slippers (style B) —15 -5 -3
Ladies’ slippers (style C) —26 —18 1
Girls’ T-shirt (style A) —46 —33 -1
Girls’ T-shirt (style B) =7 1 1
Baby girls’ fancy top —17 =1l 13
Baby girls’ leggings —37 —20 1
Preschool boys’ yarn dye T-shirt —27 —21 —4
Preschool boys’ printed T-shirt —20 -8 1
MSE 903.4 416.1 21.3

Table 1: Prediction errors and resulting MSE for the three forecasting methods.

Ladies Shoes  Girls Baby Girls  Preschool Boys
Sample size 84 50 69 45 48
Number of positive deviations 49 21 35 21 21
Proportion of positive deviations 58.3% 42.0% 50.7% 46.7% 43.8%
p-value 0.101  0.161 0.810 0.766 0.471

Table 2: Prediction errors and resulting MSE for the three survival analysis.

A comparison of the three methods is given in Table 4.
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Ladies Shoes Girls Baby Girls  Preschool Boys
Sample size 84 50 69 45 48
Groups of positive signs 23 14 19 10 10
p-value 0.8684 0.8670 0.6402 0.2416 0.1509

Table 3: Results of grouping of signs test.

4 Conclusion

The forecasts produced by survival analysis produce the most accurate results of the
methods investigated in this paper. It is a computationally expensive method to implement
on a large scale.

Since the Retailer’s current forecasting method has been shown to produce inaccurate
forecasts, which may lead to sub-optimal markdown decisions, it is recommended that
further resources be spent to investigate the use of survival analysis as a forecasting options.
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Method

Factors that fundamentally impede accuracy of
the method

Advantages

Disadvantages

Forward cover
method (Retailer’s
current method)

Time seris analysis

Survival analysis

e Inappropriate to assume constant sales over

the entire shelf life of the product, since past
data confirms that sales usually peak during
the first 3-5 weeks, and then decrease as the
product ages.

Very sensitive to outliers in the first weeks of
sales. This is of particular concern, since sales
volumes are usually highly volatile throughout
the season.

Information on the usual distribution of sales
is available through historical sales data, but
is not seen by the model, which uses only data
from the first 8 weeks of sales of the new prod-
uct.

The model does not take seasonal factors into
account, e.g. large sales volumes over the fes-
tive season.

Other external factors (e.g. competitors’ ac-
tions; comsumer behaviour) are also not taken
into account by the model. These factors
should nevertheless form part of the markdown
decision process in a qualitative sense.

e Sheer simplicity

e Ease of understanding the
method

e Ease of calculation

e Full automation of calculation
possible

e Quickly and easily applied

e Ample software tools (e.g. SAS,
Statistica) available to enable
automation of calculation

e Vast improvement in accuracy
over forward cover method.

e Uses historical sales data,
whereas the other methods
only use data from the new
product being analysed. This
implies that the accuracy of
method may be improved even
further if more data were used
(in this study, only a small
subset of the Retailer’s data
was used).

Shown to be histori-
cally inaccurate (nega-
tively biased)

A consequence of the
above is that mark-
downs usually occur
too late, with adverse
effect on revenues.

Significant  level of
added complexity for
little improvement in
accuracy

Requires some level of
expertise to apply the
method

Application of  the
method is time con-
suming and may be
difficult to implement
on a large scale (how-
ever, software tools
could be developed in
order to overcome this
problem).

Table 4: A comparison of the three methods used in this study.
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