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Abstract

This paper focuses on a manpower system with a fixed number of jobs that uses both per-
manent and temporary staff. The dynamics of workforce-mix in such a system is modelled
as an optimal control problem. The objective is to find the most economical workforce-mix
for the manpower system, subject to the fluctuations in workforce caused by wastage and the
hiring of temporary staff. The fluctuations in the workforce-mix are modelled using a model
similar to the Vidale-Wolfe advertising model. The solution is found by applying Pontrya-
gin’s principle, and a number of resulting propositions are presented along with their proofs.
A real-life manpower setting is used to illustrate the utility of the model.

Key words: Manpower system, optimal control problem, Pontryagin’s principle, Vidale-Wolfe model,

workforce.

1 Introduction

The subject of workforce-mix has received considerable attention in the literature (for ex-
ample, Baker [3, 4], Emmons & Fuh [12]). Earlier studies have shown that organisations
use both full-time (permanent) staff and part-time (temporary) staff to satisfy given man-
power requirements. The part-time workers are hired for a finite time horizon. Universities
hire part-time workers as contract staff, adjunct staff or associate staff to fill a shortfall in
manpower needs. This can happen even when the institution is undergoing accreditation,
and can be worsened by the loss of permanent staff, which may be due to retrenchment,
retirement, death, resignation, etc. Early research has shown that the loss of staff in a
manpower system is a fundamental part of the system [5]. The loss of permanent staff pro-
vides opportunities to hire temporary staff. In actual practice, the number of temporary
staff hired does not exceed the shortfall in manpower requirement. This paper considers
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the effect of loss of permanent staff in the dynamics of workforce-mix. This effect was not
a major consideration in the works of Baker [3, 4], Emmons & Fuh [12].

In this study, the term ‘wastage’ is used to refer to the loss of manpower for whatever
reason. The objective is to find the most economical workforce-mix to satisfy a fixed
size manpower requirement subject to the fluctuations in workforce. That is, the opti-
mal number of temporary staff required to fill manpower shortages arising from the loss
of permanent staff, which simultaneously minimises the total personnel cost. Since or-
ganisations are interested in minimising the total personnel cost, cost-effective workforce
planning is essential [44]. More so, labour unions may have considerable influence on the
personnel cost. In the Nigerian university system with which the author is acquainted, the
allowance for excess workload is influenced by the Academic Staff Union of Universities
(ASUU). This study provides bounds on the relative size of temporary staff. A model
is derived for the most economical workforce-mix for a manpower system using optimal
control theory within the framework of the Vidale-Wolfe advertising model [34, 42]. The
model is an aggregate planning tool which is designed to assist manpower planners in
finding the optimal workforce-mix for manpower systems.

From the literature, there are no examples of similar studies on manpower systems where
the Vidale-Wolfe model was employed. Baker [4] had earlier considered a similar problem
using a discrete-time formulation and the objective was to minimise the number of part-
time staff so as to avoid excess staffing. The research expanded upon in this direction is
discussed in this paper. More specifically, this study provides an alternative approach to
the discrete-time formulation. The alternative approach utilises a continuous-time optimal
control model. The method of least squares [25] is employed to estimate the parameters
for the continuous-time model from a discrete-time dataset.

1.1 Justification for the use of Vidale-Wolfe model in the context of
manpower systems

In Baker [3, 4] and Emmons & Fuh [12], discrete-time models were used to schedule the
workforce. For many practical purposes this is adequate. However, there are instances
where the analysis could be taken further. Perhaps the most perturbing issues in manpower
systems are wastage and the hiring of temporary staff to fill the shortfall in manpower
requirement. Considering the possibility of wastage in a manpower system, the question
arises: how does a person represent the changes in workforce as wastage can occur at
virtually any time? For this a continuous-time theoretical base is necessary and so it is
reasonable to represent changes in workforce as a derivative of the workforce with respect to
time. It is the aim of this paper to provide a continuous-time formulation for the dynamics
of workforce-mix in a manpower system and to show how it can be implemented.

The effect of a variable on another variable is commonly modelled as an interaction between
the two variables [2]. This consideration leads to the hypothesis that the response of a
manpower system to the shortfall in manpower may be described as an interaction between
the variable representing such a response and the shortfall. Bartholomew et al. [5] reported
that the loss from a group of people in an organisation is approximately proportional to
the stock of people in the organisation. Apparently, wastage has a negative effect on the
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system and the hiring of temporary staff has a positive effect. This scenario is similar to
the sales response to advertising in the marketing literature, where changes in the rate
of sales of a product depend on two effects; the response to advertising which acts on
the unsold portion of the market, and the loss due to forgetting which acts on the sold
portion of the market [34]. The Vidale-Wolfe model [42] is one of the earliest management
science applications to describe this phenomenon. The Vidale-Wolfe model is assumed
in the context of manpower system because the model has capacity to capture losses
and the interaction between two decision variables in a simplifying manner. Wastage is
treated as the loss due to forgetting and the hiring of temporary staff as the advertising
effort. A real-life example which is consistent with this theoretical foundation is the
university system described in [31], where Osagiede et al. [31] observed that wastage and
shortages in manpower needs were key issues in the system and then determine the financial
implications for the university management to deal with these issues by outsourcing staff
on a part-time basis. Other examples where this assumption may hold are in organisations
such as restaurants and hospitals [12], labour-intensive service-oriented manpower systems
[44], the iron and steel industry, automobile assembly firms, glass factories and the systems
described by Baker [3, 4].

1.2 The use of optimal control theory in the manpower context

Wastage is outside the direct control of management of an organisation to a large extent.
The management, however, exerts control over the number of temporary staff. These
considerations coupled with the objective of minimising the total manpower cost imply
that the management may be interested in finding an input trajectory of temporary staff
which would achieve this objective, subject to workforce-mix constraints. Consequently,
a controllable manpower system, which can be steered from any given state to an optimal
state, is required. The central idea to model such a system is optimal control theory
[43]. The use of optimal control in finding an optimal workforce size has been analysed
elsewhere in the literature [10, 16]. These studies used discrete-time formulations to obtain
optimal strategies for the manpower system. Even so, the optimal solutions were not in
closed form. As mentioned earlier, wastage may occur at any instant of time. Thus a
continuous-time optimal control model is employed for the manpower system to obtain
closed form expressions for the optimal solutions.

In a continuous-time optimal control model, there are two classes of variables: the state
variables and the control variables. In this study, the state variable is defined as the
fraction of permanent staff at a certain moment and the control variable as the fraction
of temporary staff at a certain moment. The simplest control problem [21] deals with the
selection of a continuous control function, u(t), t0 ≤ t ≤ T , to

max
u(t)

∫ T

t0

f(t, x(t), u(t)) dt (1)

subject to
dx(t)

dt
= g(t, x(t), u(t)), (2)

where x(t0) = x0 is fixed and x(T ) is free. In equations (1) and (2), f and g are assumed
to be continuously differentiable functions of the three independent arguments, none of
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which is a derivative, and x(t) is a state variable at moment t. The state variable x(t)
changes over time according to the differential equation (2). The control u(t) influences
the objective (1) both directly through its own value and indirectly through its impact on
the evolution of the state variable x(t). The state equation (2), which is also called the
state-transition equation, is a first-order differential equation. The necessary conditions
of optimality to the control problem may be derived from the Pontryagin’s principle and
Green’s theorem [2, 21, 34].

2 Related work

Manpower planning involves strategies aimed at providing a continuous matching of avail-
able personnel with certain qualifications to the manpower requirements of the system [41].
Agnihothri et al. [1] studied a workforce-mix problem for two heterogeneous job types of a
system in steady-state with the objective of minimising the sum of the average service costs
and the customer delay costs per unit time. Bordoloi [6] derived steady-state workforce
levels for the knowledge-mix within a firm with a view to minimising total labour. Zhu &
Sherali [44] considered workforce fluctuations based on an expected demand profile. Lee
& Vairaktarakis [24] addressed a workforce planning problem of serial assembly lines by
minimising the minimum workforce requirements over all production cycles. Near-optimal
solutions were obtained for the problem using several heuristics. Corominas et al. [9] de-
veloped a discrete-time workforce planning model which integrates production and cash
management decisions for a manpower system. Harper et al. [18] suggested that it is cost
beneficial to increase the number of permanently employed staff to account for fluctuations
in demand in a manpower system.

Edwards [11] reviewed the models developed in the manpower planning literature and
concluded that the ease of use of models is more important than the theoretical sophisti-
cation. Stanford [35] considered the system maintenance cost and the individual member
earnings as the cost incurred in a manpower system. Rao [33] developed a dynamic pro-
gramming model for a manpower system with the objective of minimising the manpower
system costs. The model in this paper is different from Rao’s model in that our model
is an optimal control model in continuous-time. Flynn [14] studied the flows in a multi-
grade manpower system using a deterministic dynamic programming model. Chu & Lin
[7] developed a non-linear model for a manpower allocation problem with an interdepen-
dent relationship between the assignment of staff and the average travel time. Hegde &
Tadikamalla [20] applied mathematical programming techniques to personnel scheduling
in a manpower system.

The mixed exponential distribution [26], the lognormal distribution [8], the non-parametric
competing risk model [28] and bootstrap techniques [23] have all found applications in
manpower planning. The manpower system has also been described using the entropy ap-
proach. McClean & Abodunde [27] and Vassiliou [38] employed the Shannon-type entropy
as a measure of the degree of experience in a manpower system. Tyler [36] presented a
model of manpower systems based on the concept of thermodynamics. The model utilised
the Boltzmann entropy.

Guerry [17], Kipouridis & Tsaklidis [22] and Vassiliou & Tsantas [40] analysed graded



On the dynamics of workforce-mix in a manpower system 109

manpower systems using discrete-time Markov chains. The semi-Markov models [37, 39]
and the continuous-time Markov models [15, 29] have also been used to describe graded
manpower systems. More details on the use of Markov models for manpower planning
may be found in [5, 32].

The use of continuous-time Markov models for graded manpower systems is a source of
inspiration to develop a continuous-time optimal control model for manpower systems.
This consideration is an addition to the existing literature on the subject of workforce-mix
as results are in a closed form, unlike the discrete-time formulations [3, 4, 12, 33]. More so,
the representation of the changes in workforce as a state-transition model which depends
on loss of permanent staff and an organisation’s response to hiring temporary employees
which acts on the manpower shortage experienced by the organisation is novel.

3 Theoretical framework

This section contains the formulation of the problem and the solution. An asterisk (*) is
added to a variable to represent the optimal value and the hat symbol (ˆ) on a parameter is
used to denote an estimate. The routines for implementing the solutions and the schematic
displays are carried out in the MATLAB environment. It is important to note that the use
of the term ‘temporary staff’ in this study is synonymous to ‘part-time staff’, ‘contract
staff’, ‘casual staff’ or ‘outsourced staff’.

3.1 Model set-up

This study assumes a fixed size manpower requirement for a manpower system that uses
both permanent and temporary staff. The permanent staff may belong to a labour union,
which is capable of influencing wages through collective bargaining. It is assumed that the
initial size of permanent staff is known (i.e., no ‘ghost’ worker). The loss of permanent staff
in the system is due to wastage. The wastage rate is assumed to have a significant effect
on the manpower system. The temporary staff are hired whenever under-staffing exists.
It is assumed that the unit cost of hiring temporary staff is constant and that the number
of temporary staff is under control. Inflation is not considered within the cost function.
Another assumption is that allocation problems are not considered in the workforce-mix.
This study also assumes that the fluctuations in workforce may be described by the Vidale-
Wolfe model [13, 34, 42].

Let N be a fixed workforce size for the manpower system. Let x(t) denote the fraction
of permanent staff at moment t ∈ [0, T ] relative to the manpower requirement (or simply,
the fraction of permanent staff at moment t). The interval [0, T ] is a fixed time horizon.
The fraction of the permanent workforce at the beginning of the period t = 0 is denoted
as x(0) = x0. For Nx(t) < N , the manpower system is under-staffed. The shortfall N(1−
x(t)) creates vacancies which are either filled by recruiting additional permanent staff or by
outsourcing work to temporary staff. Let u(t) represent the fraction of temporary staff at
moment t relative to the manpower requirement. Then the manpower cost, C(u(t), x(t)),
is expressed as

C(u(t), x(t)) = c1u(t) + c2x
k(t), k ≥ 1, c1, c2 > 0, (3)
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where the first term is the total cost of hiring temporary staff and the second term is
the total retention cost. The parameters c1 and c2 are constants in monetary units. The
constant k describes the diseconomies when scaling up workers’ wages consequent upon
workers’ agitations for a better pay and the collective bargaining by the labour union and
the management of the manpower system.

Since the fluctuations in the workforce are induced by two effects, i.e., the wastage from the
system and the hiring of temporary staff to bridge the shortfall in manpower requirement,
the state-transition model, analogous to the Vidale-Wolfe model, may be written as

dx(t)

dt
= −γ1x(t) + γ2u(t)(1− x(t)), (4)

where γ1 ≥ 0 is the attrition effect parameter and γ2 > 0 is the reaction effect parameter.
The constant γ1 may be thought of as the difference between the wastage rate and the
recruitment rate in such fashion that the latter does not exceed the former. The term
−γ1x(t) describes the reduction in workforce due to wastage, while the term γ2u(t)(1−x(t))
captures the hiring of temporary staff to bridge the shortfall in the manpower requirement.
Technically, the workforce-mix problem considered in this study is stated as follows.

Determine the fraction of temporary staff u(t) and the permanent staff x(t) for the period
0 ≤ t ≤ T to

min
u(t)

∫ T

0

(
c1u(t) + c2x

k(t)
)

dt (5)

subject to
dx(t)

dt
= −γ1x(t) + γ2u(t)(1− x(t)),

where 0 < u(t) ≤ (1−x(t)) for x(t) < 1 and u(t) = 0 otherwise. Also, x(0) = x0, t ∈ [0, T ].
The bounds for the control imply that the number of temporary staff does not exceed the
shortfall in the manpower requirement. The model set-up for the workforce-mix problem
is therefore a bounded optimal control problem with the bounds being the closed interval
[0, 1− x(t)].

3.2 Model solution

The Pontryagin’s principle is applied to the bounded optimal control problem. The Hamil-
tonian, H, with arguments (x(t), u(t), λ(t)), is

H = c1u(t) + c2x
k(t) + λ(t)(−γ1x(t) + γ2u(t)(1− x(t))), (6)

where λ(t) is a multiplier function, which defines the marginal valuation of the permanent
staff at moment t. The influence equation is obtained as

dλ(t)

dt
= − ∂H

∂x(t)
= −

(
kc2x

k−1(t) + λ(t)(−γ1 − γ2u(t))
)
. (7)

The Lagrangian function, L, for the Hamiltonian subject to the control bounds is

L = c1u(t) + c2x
k(t) +λ(t)(−γ1x(t) + γ2u(t)(1−x(t))) + ρ1u(t) + ρ2(1−x(t)−u(t)), (8)
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where ρ1 and ρ2 are the Lagrangian multipliers. The necessary conditions for u(t) to
minimise the bounded optimal control problem are

∂L

∂u(t)
= c1 + γ2λ(t)(1− x(t)) + ρ1 − ρ2 = 0,

where ρ1 ≥ 0, ρ1u(t) = 0, ρ2 ≥ 0 and ρ2(1 − x(t) − u(t)) = 0. Thus, the following cases
arise.

3.2.1 Case 1

Suppose ρ1 = ρ2 = 0. Then λ(t) = − c1
γ2(1−x(t)) , so that

dλ(t)

dt
= − c1

(1− x(t))2
dx(t)

dt
.

The influence equation (7) becomes

c1
(1− x(t))2

dx(t)

dt
= kc2x

k−1(t) +
c1

γ2(1− x(t))
(γ1 + γ2u(t)). (9)

Making a substitution for u(t) from the state-transition equation (4) into equation (9)
yields

xk+1(t)− 2xk(t) + xk−1(t) +
c1γ1
2c2γ2

= 0. (10)

When k = 1, no real solution exists, unless γ1 = 0. This is because

4

(
1 +

c1γ1
2c2γ2

)
> 4,

for γ1 6= 0. Similarly, when k = 2, no real solution exists, unless γ1 = 0. To see this, let
x(t) = ϕ cos θ + 2

3 , ϕ > 0. Then equation (10) becomes

ϕ3 cos3 θ − 1

3
ϕ cos θ +

(
c1γ1
2c2γ2

+
2

27

)
= 0. (11)

By comparing equation (11) with the trigonometric identity 4 cos3 θ − 3 cos θ = cos 3θ,
ϕ = 2

3 and

θ =
1

3

(
2nπ + cos−1

(
−
(

1 +
27c1γ1
4c2γ2

)))
, n = 0, 1, 2.

Therefore, the optimal solution becomes

x∗(t) =
2

3

(
1 + cos

(
2nπ

3
+

1

3
cos−1

(
−
(

1 +
27c1γ1
4c2γ2

))))
, n = 0, 1, 2. (12)

There are three solutions of x∗(t), for n = 0, 1, 2, in equation (12), which are independent
of time. It is easily seen that the stationary solutions are not feasible, unless γ1 = 0.

This is because the term cos−1
(
−
(

1 + 27c1γ1
4c2γ2

))
cannot exist as a real-value for γ1 6= 0.
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In particular, for γ1 6= 0, 1 + 27c1γ1
4c2γ2

exceeds the bounds of the cosine function, which
oscillates between the values ±1.

For k 6= 1, 2, numerical techniques are applied. Using Newton’s method yields

x(i+1)(t) = x(i)(t)−
f(i)

f ′(i)
, (13)

where

f(i) = xk+1
(i) (t)− 2xk(i)(t) + xk−1(i) (t) +

c1γ1
2c2γ2

,

f ′(i) = (k + 1)xk(i)(t)− 2kxk−1(i) (t) + (k − 1)xk−2(i) (t),

and i = 0, 1, 2, . . . , is the number of iterations. This solution is independent of time, so
that x(i+1)(t) may be written as x(i+1). In essence, the optimal solution, say x(i+1) = x∗,
is independent of time and the control, u∗, is also independent of time. Thus,

u∗ =
γ1x
∗

γ2(1− x∗)
, (14)

and dx(t)
dt

= 0.

3.2.2 Case 2

Suppose ρ1 = 0, ρ2 > 0 and γ1 > 0. Then λ(t) > − c1
γ2(1−x(t)) and the control is at the upper

bound. In this case, the state-transition equation is a non-linear autonomous system. The
analytic solution x(t) which satisfies the initial condition x(0) = x0 is obtained using the
transformation z = (1− x(t))−1 so that the state-transition equation becomes

dz

dt
= −γ1

(
z2 − z − γ2

γ1

)
.

This leads to the evaluation of the integrals

1

α1 − α2

∫ (
1

z − α1
− 1

z − α2

)
dz = −γ1

∫
dt, (15)

where

α1 =
1

2

(
1 +

(
1 + 4

γ2
γ1

)1/2
)
> 0

and

α2 =
1

2

(
1−

(
1 + 4

γ2
γ1

)1/2
)
< 0.

After some simplifications, the optimal fraction of permanent staff is obtained as

x∗(t) = 1− 1− φ exp(−(α1 − α2)γ1t)

α1 − α2φ exp(−(α1 − α2)γ1t)
, (16)



On the dynamics of workforce-mix in a manpower system 113

where

φ =
1− α1(1− x0)
1− α2(1− x0)

and

α1 − α2 =

(
1 + 4

γ2
γ1

)1/2

.

3.2.3 Case 3

Suppose ρ1 > 0, ρ2 = 0 and γ1 > 0. Then λ(t) < − c1
γ2(1−x(t)) and u∗(t) = 0. Thus the

state-transition equation becomes a linear autonomous system with the solution

x∗(t) = x0 exp(−γ1t). (17)

This solution holds for x∗(t) ≥ 1. This is because u∗(t) = 0 implies no under-staffing.

3.2.4 Case 4

Suppose ρ1, ρ2 > 0. Then ρ1u(t) = 0 implies that u∗(t) = 0. Similarly, ρ2(1−x(t)−u(t)) =
0 implies that 1 − x∗(t) − u∗(t) = 0. Since u∗(t) = 0, x∗(t) = 1. This case also excludes
under-staffing.

3.3 Some useful insights

Some insights may be drawn from the solution to the workforce-mix problem. These
insights are presented as propositions below.

Proposition 1: Whenever excess staffing exists and the optimal workforce size is indepen-
dent of time, then the attrition effect is zero.

Proof: Suppose x∗(t) is below 1. Then it can never exceed 1 again. This is because, for
x∗(t) = 1 in equation (4), its derivative is negative. Thus, the hiring of temporary staff
is required. If x∗ + u∗(t) > 1, then u∗(t) = 0 as u∗(t) cannot exceed 1 − x∗(t). When

the workforce size is independent of time, dx(t)
dt

= 0. From the state-transition equation
therefore, γ1 = 0.

Proposition 2: Whenever 0 ≤ φ2 exp(−2(α1 − α2)γ1t) < 1, x∗(t) is below 1.

Proof: Clearly φ2 exp(−2(α1 − α2)γ1t) ≥ 0 as φ2 ≥ 0 and exp(−2(α1 − α2)γ1t) ≥ 0. To
show that 0 ≤ φ2 exp(−2(α1−α2)γ1t) < 1 implies x∗(t) is below 1, it is sufficient to prove
that

1− φ exp(−(α1 − α2)γ1t)

α1 − α2φ exp(−(α1 − α2)γ1t)
> 0,

whenever 0 ≤ φ2 exp(−2(α1−α2)γ1t) < 1. Let ω = (α1−α2)γ1. If 0 ≤ φ2 exp(−2ωt) < 1,
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then

1− φ exp(−ωt)
α1 − α2φ exp(−ωt)

=
1− φ2 exp(−2ωt)

(α1 − α2φ exp(−ωt))(1 + φ exp(−ωt))

=
1− φ2 exp(−2ωt)

1
2

(
(1− φ2 exp(−2ωt)) +

(
1 + 4γ2γ1

)1/2
(1 + φ exp(−ωt))2

)
> 0.

For φ ≥ 0, 1− φ exp(−ωt) > 0 and α1 − α2φ exp(−ωt) > 0. Thus,

1− φ exp(−ωt)
α1 − α2φ exp(−ωt)

> 0.

Consider the case when φ < 0. Then

1− φ exp(−ωt)

α1

(
1− α2

α1
φ exp(−ωt)

) =
1

α1
(1− φ exp(−ωt))

(
1− (−α2)

α1
(−φ) exp(−ωt)

)−1

=
1

α1
(1− φ exp(−ωt))

∞∑
r=0

(
(−α2)

α1
(−φ) exp(−ωt)

)r
>

1

α1
(1− φ exp(−ωt))

(
1 +

(−α2)

α1
(−φ) exp(−ωt)

)
=

1

α2
1

(1− φ exp(−ωt))(α1 + α2φ exp(−ωt))

and

1

2α2
1

(
(1− φ2 exp(−2ωt)) +

(
1 + 4

γ2
γ1

)1/2

(1− φ exp(−ωt))2
)
> 0.

It follows that

1− 1− φ exp(−(α1 − α2)γ1t)

α1 − α2φ exp(−(α1 − α2)γ1t)
< 1.

Remark 1: When φ2 exp(−2(α1 − α2)γ1t) ≥ 1, x∗(t) ≥ 1 and u∗(t) = 0.

Proposition 3: Whenever 0 ≤ φ2 exp(−2(α1 − α2)γ1t) < 1, the optimal solution to the
workforce-mix problem is

x∗(t) = 1− 1− φ exp(−(α1 − α2)γ1t)

α1 − α2φ exp(−(α1 − α2)γ1t)
, (18)

with

u∗(t) = 1− x∗(t). (19)

Proof: The proof follows from Case 2 of the workforce-mix problem and the proof of
Proposition 2.
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Proposition 4: Given the initial state x0, the optimal fraction of permanent staff tends to

1 +
γ1
2γ2

(
1−

(
1 + 4

γ2
γ1

)1/2
)
,

when the time period is sufficiently large.

Proof: When T is large, then exp(−(α1 − α2)γ1t) → 0. This is equivalent to writing
lim
t→∞

exp(−(α1−α2)γ1t) = 0. It follows that x∗(T )→ lim
t→∞

x∗(t) as the time period elapses.

Thus,

lim
t→∞

x∗(t) = 1− 1

α1

= 1− 2

1 +
(

1 + 4γ2γ1

)1/2
= 1 +

γ1
2γ2

(
1−

(
1 + 4

γ2
γ1

)1/2
)
.

Remark 2: The managerial implications of Proposition 4 are that: additional staff not
more than N |x∗(t) − x(t)| should be recruited at any time instant t ∈ [0, T ] whenever
x∗(t) < x(t); otherwise, they should be retrenched.

3.4 Estimation of parameters of the transition model

The model presented in this paper is a continuous-time model. However, data on the staff
strength in a manpower system are usually available on a discrete-time basis – monthly,
quarterly, bi-annually or annually. Thus, the discrete-time model may be used as a proxy
for the continuous-time process. Suppose the manpower requirement, N , is known and
historical data at specific periods, t = 1, 2, . . . , η, are available on the fraction of temporary
staff, ut, and the fraction of permanent staff, xt. Then the state-transition equation can
be specified in the discrete form as

xt = (1− γ1)xt−1 + γ2ut−1(1− xt−1) + εt, t = 1, 2, 3, . . . , η, (20)

where εt is the error term, The parameters γ1 and γ2 are estimated by minimising the
sum of square errors,

∑η
t=1 ε

2
t . Thus, by the method of least squares,

γ̂1 = 1− [1 0]([X−1 Π]′[X−1 Π])−1[X−1 Π]′X, (21)

and

γ̂2 = [0 1]([X−1 Π]′[X−1 Π])−1[X−1 Π]′X, (22)

where X−1 is an (η − 1) × 1 vector of xt−1, Π is an (η − 1) × 1 vector of the product
ut−1(1− xt−1) and X is an (η − 1)× 1 vector of xt.
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4 Numerical illustration

To illustrate the use of the model in Section 3 consider the pattern of staff distribution in
Table 1 of a faculty in a university system [30]. The system is designed in such a fashion
that staff in the position of Graduate Assistant are entirely temporary staff. The unit
cost per annum of each staff category is computed as the average salary. Thus c1 = 1.32
million naira1 per annum and c2 = 3.87 million naira per annum. Let the manpower
requirement be the number of staff at t = 5 so that no excess staffing is considered. At
t = 0, the fraction of permanent staff relative to the manpower requirement is computed
as x0 = 0.8017.

t 0 1 2 3 4 5

Graduate assistant 8 3 4 8 11 15
Assistant lecturer & above 93 101 100 98 98 101

Table 1: Historical data on the workforce in a university faculty.

The parameters of the state-transition equation are estimated from Table 1 using equations
(21) and (22) as γ̂1 = 0.0425 and γ̂2 = 5.2336 (see appendix). The optimal workforce-mix
is solved for x∗(t) + u∗(t) ≤ N . For x∗(t) + u∗(t) < N , no real solution exists for the
algebraic equation (10), k = 3, . . . , 8. For this reason, the optimal solution in Case 2, for
which x∗(t)+u∗(t) = N , is employed. The values of α1 and α2 are computed as 11.6122 and
-10.6122, respectively. These results agree with the a priori specifications. The dynamics of
the optimal workforce are extrapolated for a 10-year period. For φ2 exp(−2(α1−α2)γ1t) ≥
1, x∗(t) ≥ 1. Consequent upon this, the control u∗(t) is set equal to zero. This is in line
with the Remark 1. Using the assertion in Proposition 3, the trajectories of the optimal
fraction of permanent staff to be retained and the optimal fraction of temporary staff to
be hired are obtained. The results are displayed in Figure 1 and Figure 2. The MATLAB
source code for the computations and graphical displays are given in the appendix. The
limiting fraction of permanent staff is obtained as lim

t→∞
x(t) = 0.9139.

Figure 1 indicates that a continuous recruitment of permanent staff is required until the
fraction of permanent staff reaches the limiting value. Figure 2 shows that the hiring of
temporary staff should be reduced until the fraction of temporary staff stabilizes at the
value 0.0861. These results agree with the assertion in Proposition 3. Thus the optimal
workforce-mix for the faculty is that academic staff in the rank of Assistant Lecturer
& above should be increased to 91.39% of the manpower requirement and 8.61% of the
academic staff should be recruited as Graduate Assistants. This deduction is in line with
Harper et al. [18].

5 Conclusion

This study discussed the formulation of a continuous-time optimal control model for the
workforce-mix in a manpower system. The workforce-mix is made up of temporary and

1Naira is the currency of Nigeria. As at the time of writing this paper, 1 naira is equivalent to 0.06226
South African Rand.
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Figure 1: Dynamics of the optimal fraction of permanent staff.
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permanent staff. The scenario where wastage rate has a significant effect on the manpower
system was considered. The fundamentals of optimal control theory and the Vidale-Wolfe
model were employed to derive a formula for the fraction of permanent staff that should
be retained as well as the fraction of temporary staff that should be hired in a manpower
system. Findings reveal that: (i) the attrition effect is zero whenever excess staffing exists
and the optimal workforce size is independent of time, (ii) whenever temporary staff are
hired, it should be equal to the shortfall in the manpower requirement, and (iii) a steady-
state value exists for the fraction of permanent staff.

The manpower model in this paper is a suitable alternative to the discrete-time models
in the literature. It is worthy of note that the most rapid approach path (MRAP) as in
[19] may as well be employed instead of the Pontryagin’s principle since the workforce-mix
problem is a linear control problem (i.e., the problem is linear in the control). Nonetheless,
the same conclusions are expected. The current model is not without limitations. The
assumption of a fixed manpower requirement may not hold in the long-run situation owing
to variations in demand, which are important for staffing issues. The model should be
used with caution as allocation problems and the learning period for hired temporary
staff were not included in the model formulation. In addition, the exclusion of inflation
in the cost function and the assumption of a constant unit cost of hiring temporary staff,
without due considerations to the bargaining power of temporary staff and proficiency,
are shortcomings to the model implementation. More so the model is deterministic. In
the real-world scenario, the wastage (or attrition) rate is not entirely predictable. To
refine the model, further research may be undertaken to develop a probabilistic model in
continuous-time for the manpower system which may also incorporate the skill-mix of the
workforce from a real-world perspective.
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Appendix

The MATLAB source code for the numerical illustration follows below.

clc

X=[93 101 100 98 98 101]’/116;

U=[8 3 4 8 11 15]’/116;

Ulag=U(1:length(U)-1,1);

Xlag=X(1:length(X)-1,1);

XX=X(2:length(X),1);

Q=Ulag.*(1-Xlag);

g1=1-[1 0]*inv([Xlag Q]’*[Xlag Q])*[Xlag Q]’*XX,

g2=[0 1]*inv([Xlag Q]’*[Xlag Q])*[Xlag Q]’*XX,

c1=1.32; c2=3.87;

for k=3:8;

syms x;

xt=solve(x^(k+1)-(2*x^k)+(x^(k-1))+c1*g1/(k*c2*g2),x);

end

xinf=1+(g1/(2*g2))*(1-sqrt(1+4*(g2/g1))),

T=10;

x0=93/116,

a1=(1/2)*(1+sqrt(1+4*g2/g1)),

a2=(1/2)*(1-sqrt(1+4*g2/g1)),

w=(1-a1*(1-x0))/(1-a2*(1-x0)),

for t=1:T;

x(t)=1-(1-w*exp(-g1*(a1-a2)*t))/(a1-a2*w*exp(-g1*(a1-a2)*t)),

u(t)=1-x(t);

if (w^2)*exp(-2*g1*(a1-a2)*t)>=1

u(t)=0

else

u(t)=u(t)

end

end

x=[1-(1-w*exp(-g1*(a1-a2)*1))/(a1-a2*w*exp(-g1*(a1-a2)*1)) ...

1-(1-w*exp(-g1*(a1-a2)*2))/(a1-a2*w*exp(-g1*(a1-a2)*2)) ...

1-(1-w*exp(-g1*(a1-a2)*3))/(a1-a2*w*exp(-g1*(a1-a2)*3)) ...

1-(1-w*exp(-g1*(a1-a2)*4))/(a1-a2*w*exp(-g1*(a1-a2)*4)) ...

1-(1-w*exp(-g1*(a1-a2)*5))/(a1-a2*w*exp(-g1*(a1-a2)*5)) ...

1-(1-w*exp(-g1*(a1-a2)*6))/(a1-a2*w*exp(-g1*(a1-a2)*6)) ...
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1-(1-w*exp(-g1*(a1-a2)*7))/(a1-a2*w*exp(-g1*(a1-a2)*7)) ...

1-(1-w*exp(-g1*(a1-a2)*8))/(a1-a2*w*exp(-g1*(a1-a2)*8)) ...

1-(1-w*exp(-g1*(a1-a2)*9))/(a1-a2*w*exp(-g1*(a1-a2)*9)) ...

1-(1-w*exp(-g1*(a1-a2)*10))/(a1-a2*w*exp(-g1*(a1-a2)*10))],

u=ones(1,length(x))-x,

t=1:T;

ribbon(t’,x’,0.5)

zlabel(’\bf fraction of permanent staff’)

ylabel(’\bf time (in years)’)

clf

ribbon(t’,u’,0.5)

zlabel(’\bf fraction of temporary staff’)

ylabel(’\bf time (in years)’)


