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Abstract

This paper deals with strip packing metaheuristic algorithm selection using data mining
techniques. Given a set of solved strip packing problem instances, the relationship between
the instance characteristics and algorithm performance is learned and is used to predict the
best algorithms to solve a new set of unseen problem instances. A framework capable of
modelling this relationship for an automated packing algorithm selection is proposed. The
effectiveness of the proposed framework is evaluated in the context of a large set of strip
packing problem instances and the state-of-the-art strip packing algorithms. The results
suggest a 91% accuracy in correctly identifying the best algorithm for a given instance.

Key words: Packing problems, machine learning, metaheuristics.

1 Introduction

The two-dimensional strip packing problem (2D-SPP) consists of packing a set of rectangu- lar
items into a single object of fixed width in a non-overlapping manner, with the objective of
minimising its height. This problem has a wide range of applications, and is typically encountered
in the wood, glass and paper industries [27]. For many decades, researchers have been developing
evermore sophisticated algorithms for solving this problem. Various experimental studies have been
reported in the literature demonstrating the effectiveness of newly developed algorithms, usually
based on publicly available collections of benchmark data instances [39, 53].

It has, however, been documented that the conclusions drawn from such comparative algorithmic
studies are often not insightful, limited by the scale of the studies which typically restrict either
the type or quantity of benchmark problem instances used, or consider only a small number of
algorithms [4, 39]. Moreover, a description of the conditions under which an algorithm can be
expected to succeed or fail is rarely included in the study [39]. No adequate method for selecting
the most appropriate algorithm to solve a particular instance is also found in the strip packing
literature.

Besides, as raised by Smith-Miles & Lopes [47], the true value of a comparative algorith- mic study
lies in its ability to answer the following two questions: “Which algorithm in a (broad) portfolio
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is likely to be best for a relevant set of problem instances”, and “For which types of problem
instances can we expect a given algorithm in a portfolio to perform well, and why”? Answers to
the latter question lead to understanding of the conditions under which a particular algorithm can
be expected to succeed or fail with respect to the features of the benchmark instances, and help
in developing improved algorithm design. Answers to the first question, on the other hand, hold
the key for uncovering relationships between characteristics of problem instances and algorithm
performance, and have implications for effective algorithm selection model capable of predicting
the algorithm from a given portfolio that is likely to be best for a given (unseen) instance.

These questions are certainly relevant in the field of packing problems and need to be addressed for
a more comprehensive tool to be developed. Useful are studies where diverse packing algorithms are
compared across enough instances, making statistical conclusions valid, with the types of instances
matched to the interests of the study. Experimental studies are also suggested to be conducted to
uncover relationships between features of instances and algorithm performance. The outcome can
be an automated packing algorithm selection model.

This paper aims to provide a starting point for addressing the aforementioned research gap in the
2D-SPP literature. A methodology for characterising packing algorithm performance based on
critical features of packing problem instances is introduced. The framework is utilised to predict
algorithm performance on previously unseen instances. More precisely, the proposed methodology
consists of two phases: training and prediction phases. The training phase constitutes the kernel of
the selection process. In this phase, starting from a set of training packing problem instances solved
with a representative sample of packing algorithms, machine learning techniques are applied, in
particular clustering and classification, to learn the relationship among the algorithm performance
and problem instances characteristics. In the prediction phase, the relationship learned during the
training phase is applied to select the best performing algorithm for a new given instance.

The effectiveness of the methodology is evaluated in the context of a large set of strip packing
problem instances and the state-of-the-art strip packing algorithms. Large scale computational
studies involving the assessment of the relative performance of a variety of strip packing algorithms
across a collection of diverse classes of benchmark instances are investigated. This case study
demonstrates how the characteristics of the test instances can be used to predict algorithm performance
on previously unseen instances with high accuracy.

The remainder of this paper is as follows. Section 2 is devoted to a brief literature review. The main
components of the proposed framework are presented in §3. The detailed steps of the methodology
when applied to the 2D-SPP are then described in §4. Discussion of the results obtained follows
in §5, and a conclusion along with future research directions are provided in §6.

2 Literature review

In 1976, Rice [41] proposed a framework for the algorithm selection problem, which seeks to predict
the best performing algorithm from a given portfolio on a collection of problem instances of various
complexities. Rice applied this approach to predict the performance of partial differential equation
solvers. The framework was since then readily generalised to other domains such as in artifical
intelligence, machine learning, and operations research areas. The use of supervised learning or
regression models have been the focus in these research fields to predict the performance ranking
of a set of algorithms with respect to a set of features of the problem instances under investigation.
Interested readers are referred to the survey paper by Smith-Miles [49] for a review.

Limited amount of work has, however, focused on packing algorithm prediction or selection. The
use of data mining approaches in cutting and packing problems are mostly related to the process
of converting problem information into measurable factors in order to reflect the main problem
characteristics and compare algorithm performance with different types of problem instances
[32]. In a rare attempt at predicting bin packing algorithm performance predictors, Perez et
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al. [38] proposed a methodology that model the relation- ship between algorithm performance
and characteristics of bin packing problem instances using machine learning techniques. In [47],
Smith-Miles & Lopes proposed a methodology for adequately characterising the features of a
problem instance and showed how such features can be defined and measured for various optimisation
problems including the bin packing problems. They suggested that the methodology could be
applied to the task of algorithm selection.

A methodology capable of identifying the strengths and weaknesses of algorithms as well as their
relative power with respect to instance space was proposed by Smith-Miles et al. [46]. Based on
a set of problem instances with various properties, they applied data mining methods to measure
algorithm footprint — the boundary in instance space where an algorithm can be expected to
perform well, and relate this boundary to properties of instances to infer the relative performance
of algorithms across all instances. In the same vein, Smith-Miles et al. [48] explored the ideas of
footprints of algorithms in the context of graph coloring and demonstrated the use of data mining
to reveal the performance of algorithms, including their strengths and weaknesses, with respect to
the search space.

In [44], Santoyo et al. conducted a cluster analysis to characterise the difficulty of bench- mark
instances for the bin packing problem. They applied a linear correlation analysis to reduce a total
of 27 features to five metrics to describe the problem instances and to compare the performance of
six heuristic solutions. For the 0-1 knapsack problem, Hall & Posner [23] developed a methodology
based on a set of computed problem characteristics (problem size, the characteristics of rectangle
value and size, the relationship between rectangle value and rectangle size, knapsack capacity and
characteristics of the linear relaxation solution) to predict the best solution procedure from existing
ones (branch- and search or dynamic programming algorithm).

3 Proposed framework

The methodology proposed in this paper consists of two phases as shown in Figure 1. Given a set
of packing benchmark instances, solved using a selection of packing algorithms, the relationship
between the algorithm performance and the problem characteristics is learned during the training
phase. The relationship learned in the previous phase is then used to predict the best algorithm
for a new instance during the prediction phase. Details of these phases are provided in this section.

3.1 Training phase

The training phase involves six steps as depicted by the dashed arrows in Figure 1. In step
1, instance generation, suitable packing instances are selected. This is achieved by collecting
benchmark problem instances documented in the literature, and also by generating new instances
from existing benchmark generators. The choice of instances, and their diversity, play an important
role in learning the boundaries of algorithm performance, and also in determining the limits and
behaviour of the problem. It is vital to take steps to ensure that the generated instances are as
broad as possible and well separated. The key is to include a variety of characteristics of the
problem and to avoid biased information. For packing problems, a large collection of instances
exist (e.g., in the repository of ESICUP [19]).

Step 2, feature selection, consists of selecting the most appropriate features in respect of which
to cluster the benchmark data and to measure the influence of problem characteristics on the
algorithm performance. Features must be chosen so that the varying complexities of the problem
instances are exposed, any known structural properties of the problems are captured, and any
known advantages and limitations of the different algorithms are related to the features. Generally,
feature selection consists of two-steps: First, the determination of all metrics which likely measure
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Figure 1: A framework for automated packing algorithm selection.

the goodness of the instance space and then utilisation of a search strategy to find the subset that
maximise the goodness metrics. A wide range of feature selection methods have been proposed in
the literature, including supervised feature selection approaches and principal component analysis
(PCA) for dimensionality reduction (see [22] for a comprehensive review). Any of these methods
could be used to select appropriate features in the context of packing problems.

In the next step, characteristics measurement, the characteristic values of each instance generated
in step 1 are calculated based on the selected features of step 2. In step 4, performance evaluation,
feasible solutions of the problem instances are calculated by means of packing solution techniques.
Various approaches have been proposed in the literature for solving cutting and packing problems.
These approaches may be classified into the classes of exact methods, heuristic approaches, and
metaheuristic techniques [39]. Exact methods are typically based on a mathematical programming
modelling approach and find a best packing solution, but are slow and may hence only be used
to solve small problem instances. Heuristic and metaheuritsic techniques, on the other hand, are
approximate solution approaches that attempt to provide near-optimal solutions in minimal time.
They are more practical and provide solutions to large problem instances within reasonable time
frames.

In this paper, the problem instances are solved using a representative sample of metaheuris- tic
algorithms from the literature. The effectiveness of these algorithms are evaluated by means of a
standard performance measure utilised in the packing field. There exists a variety of performance
evaluation methods in the literature but the most commonly used computational measure for
evaluating the performance of a packing algorithm is the relative difference between the packing
height returned by the algorithm and the height of an optimal solution of the problem [27]. Such
measure is often expressed in terms of a percentage gap or ratio. Alternative performance measure
is the packing time efficiency or the time required by the algorithm to find a packing solution for
the problem [39]. Computation time may be measured by time tracking during the execution of
the algorithm.
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The step instances clustering entails a cluster analysis whereby the benchmark instances of step 1
are grouped into different classes of test problems based on their underlying features calculated
from step 3. Each group comprises instances with similar characteristics, and for which an
algorithm had better performance than the others according to the performance evaluation of
step 4. Typical clustering analysis involves clustering algorithm design and clustering output
assessment. Clustering algorithm design encompasses the selection of a proximity or distance
measure, and the choice of an appropriate clustering algorithm for subsequent use. An abundance
of clustering algorithms has been proposed in the literature for solving different types of clustering
problems in a variety of different fields [8, 55]. There is, however, no clustering algorithm that is
generally applicable to all types of clustering problems. It is, therefore, important to investigate
the problem at hand properly in order to select an appropriate clustering method.

Clustering output assessment refers to the process of evaluating the clustering results derived from
the selected algorithms for validation purposes. Usually, different clustering techniques result in
different clusters, and even for the same algorithm, different input parameters typically lead to
different cluster results [30]. Effective evaluation or testing criteria are, therefore, required for the
assessment of the performance of the algorithms considered.

In the last step, classification, the identified grouping in step 5 is learned into formal classifiers,
which are predictors that model the relationship between problem characteristics and algorithm
performance. Standard machine learning methodologies that use a subset of the instances of step
1 (the training set) to learn the relationship between the instance features and the label assigned
to each algorithm (thereof the corresponding cluster) of each instance can be employed during
this task. Machine learning classification methods such as decision tree classifiers, Naive Bayes
classifiers or support vector machines, can hence be used to perform the task of this step.

3.2 Prediction phase

The relationship learned during the training phase of §3.1 is used to predict the best algorithm to
solve a new given instance during this prediction phase. The steps of this phase are depicted by the
solid arrows in Figure 1. For a new problem instance, which can be generated using step 1 of the
training phase, its critical characteristic values are calculated using the characteristic measurement
step of §3.1. Based on these characteristics, the learned classifiers from step 6 are employed to
determine the cluster into which the instance belongs to in step 7, the algorithm prediction. The
algorithm associated to this cluster is the expected best algorithm for the instance.

A case study on the 2D-SPP is considered in the following section to illustrate how this framework
can be applied to achieve effective packing algorithm selection.

4 Case study: The 2D-SPP

The methodology described in the previous section is demonstrated here when applied to the
2D-SPP. The process of instance generation is presented in §4.1, followed by the task of feature
selection and characteristics measurement in §4.2 and §4.3, respectively. Performance evaluation
using seven state-of-the-art strip packing algorithms is described in §4.4. This is then followed by
the clustering analysis step in §4.5, and the classification process in §4.6. The task of algorithm
prediction is finally presented in §4.7.

4.1 Instance generation

The use of data mining techniques to predict the packing algorithm requires large problem instance
data sets, mainly to accurately represent the limits and behaviour of the problem and the variability
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that the instances encompass, and also to consider the influence of aspects and characteristics that
affect the algorithm performance.

A total of 1 718 benchmark 2D-SPP instances were identified in the literature which are grouped
in two classes. The first class consists of zero-waste problem instances for which the respective
optimal solutions are known and do not contain any wasted regions (regions of the strip not
occupied by items). This class of benchmark instances comprises nine data sets. The second
class consists of non-zero-waste instances for which optimal solutions are not known in some cases.
Those with known optimal solutions involve some wasted regions. This second class of problem
instances comprises eleven data sets. The main characteristics of these data sets organised by
name, number of problem instances, minimum and maximum number of items, organisation and
source, are described in Table 1.

4.2 Feature selection

The greatest challenge is the derivation of suitable metrics as features to characterise the data
sets. Relevant features of the problem parameters need to be identified, and expressions to
measure the values of identified critical characteristics must be derived. A methodology based
on linear correlations and PCA has been employed by Júnior et al. [32] to identify the most
significant characteristics for the 2D-SPP benchmark instances. They considered 56 descriptive
variables, based on parameters found in the most used packing problem generators, and conducted
an exploratory analysis to determine the most relevant characteristics with respect to a set of
frequently used benchmark data sets. Their analysis suggested that the problem can be reduced
to 19 characteristics, retaining most of the total variance.

Recently, Rakotonirainy [39] has investigated a cluster analysis in an attempt to group 2D-SPP
benchmark instances into different categories based on four descriptive variables. These variables
were selected based on the parameters and characteristics produced by the most popular problem
generators. The computational results reported in [39] demonstrated that the chosen four features
are practically sufficient for discovering the properties of 2D-SPP problem instances.

The same four descriptive variables were considered in this work to characterise the data sets of
§ 4.1. These four features are the maximum aspect ratio of all items of an instance, the maximum
area ratio of all pairs of items of an instance, the heterogeneity ratio, and the width ratio.

• The aspect ratio of an item i is defined as

ρ(i) =
dmax(i)

dmin(i)
,

where dmin(i) and dmax(i) denote its length along the smaller side dimension and its length
along the larger side dimension, respectively. The maximum aspect ratio of all items of an
instance is determined by ρmax = max {ρ(1), . . . , ρ(n)}. The parameter n represents the
total number of items involved in the given instance.

• The area ratio of a pair of items i, j is given by

γ(i, j) =
a(i)

a(j)
,

where a(i) denotes the area of item i. The maximum area ratio of all pairs of items of an
instance is defined as γmax = max {γ(i, j) | i, j = 1, . . . , n; i 6= j}.

• The heterogeneity ratio is given by ν = nt/n, where nt denotes the number of distinct types
of items in an instance. Two items are of the same type if they have identical smaller and
larger side dimensions.
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• The width ratio is determined by δ = W/dmean, where W denotes the width of the strip,
and dmean represents the mean value of all (smaller and larger) items dimensions.

The aspect ratio provides information on the shapes of the items in an instance: Relatively
small values of the maximum aspect ratio feature indicate that the respective instance is heavily
populated by approximately square-shaped items. The variety in the sizes of the items in an
instance, on the other hand, may be deducted from the maximum area ratio: Large value of
this feature implies that the corresponding instance is dominated by items of widely varying sizes.
Furthermore, the miscellany of items in an instance may be gauged from the heterogeneity ratio: An
instance with a value of the heterogeneity ratio feature close to unity indicates that the dimensions
of the items involved in that instance are all different (i.e., heterogeneous). Finally, the width
ratio characterises the mean item width relative to that of the strip: That is, an instance with a
relatively large value of the width ratio feature contains a large number of wide items.

4.3 Characteristics measurement

The critical characteristic values of each instance of the 1 718 data sets obtained in §4.1 were
calculated using the selected features of §4.2. A two-dimensional PCA scatter plot of the data sets
with respect to the four features is given in Figure 2. The axes in this figure represent a projection
that best spreads the data.

Figure 2: A PCA of the data — the axes, labelled PC1 and PC2, indicate respectively the first

and second principal components and represent a projection that best spreads the data.

4.4 Performance evaluation

The problem instances were solved using seven state-of-the-art strip packing metaheuristics from
the literature. The first algorithm is the two-stage intelligent search algorithm (ISA) of Leung et
al. [34], which combines a local search algorithm with the method of simulated annealing (SA) in
an attempt to find feasible packing solutions. The second algorithm is a hybrid technique, where
a genetic algorithm is executed in conjunction with the constructive heuristic of Leung et al. [34].
The simple randomised algorithm (SRA) of Yang et al. [56] and the efficient intelligent search
algorithm (IA) of Wei et al. [54] are also considered, which are both improvements of the ISA
algorithm.

The last three algoritms are among the recently proposed strip packing techniques: The improved
skyline-based heuristic algorithm (ISH) of Wei et al. [53], which may be considered as an improved
version of the constructive heuristic embedded in the IA algorithm, the CIBA algorithm of Chen
& Chen [14], and the modified intelligent search algorithm (IAm) of Rakotonirainy & Van Vuuren
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[40]. These algorithms have been selected for consideration as they were among the most recently
proposed algorithms, and were reported as best algorithms, for solving instances of the 2D-SPP
[40].

The relative effectiveness of these algorithms were evaluated according to a performance measure
— the ratio between the packing height returned by an algorithm and the height of an optimal
solution. A set of best algorithms, which is defined in such a way that the performance ratios of
any pair of algorithms in the set are equal to almost 1%, was extracted for each sample instance.
An example of 5 data instances, each associated with the corresponding values of the four factors
and the best performing algorithms, is shown in Table 2.

The seven packing algorithms were coded in Python using Spyder Version 2.7.6. They were run in
the same environment on an Intel Core i7-4790 CPU running at 3.60 GHz with 8 GB RAM in the
Windows 10 operating system. Further details on the algorithms implementations, together with
the appropriate parameter fine-tuning, can be found in [39, 40].

Problem Instances Aspect Area Width Het Best Algorithms
Ratio Ratio Ratio Ratio

1985BeasleyJORS11.csv 2.684211 4.443422 2.130001 1.0 Hybrid GA
2000HopperT3b.csv 6.913043 53.263158 5.017301 1.0 SRA, Hybrid GA
2000HopperN4a.csv 6.77777 131.6875 7.12209 0.04 CIBA, ISA
2001WangNice10.25.csv 3.79454 6.662807 4.81687 1.0 ISH, CIBA, IA
2001WangPath2.50.csv 93.389605 68.843953 5.78435 1.0 IAm

Table 2: Example of instances with their respective characteristics and the corresponding best

algorithms.

4.5 Instances clustering

The cluster analysis performed in this step consists of grouping a training data, a sample of 1 100
instances randomly extracted from the entire problem instances of §4.1, into different classes of test
problems based on their characteristics as calculated in §4.3. Rakotonirainy [39] has conducted such
analysis in an attempt to classify the overall 1 178 2D-SPP problem instances. In the latter study,
the clustering process consisted of three steps: The first step involved preparation of the data sets
based on their selected features. This entailed feature scaling by applying normalisation. The next
step consisted of estimating the optimal number of clusters in which to partition the benchmark
data by means of a variety of indices. The final step involved evaluation of the performance of
different clustering algorithms with respect to a set of validation measures so as to choose the best
performing one.

The same clustering process was adopted in this study in order to generate a sound data clustering
output result. The R package, NbClust, of Charrad et al. [13] was employed to estimate an
appropriate number of clusters that best partitions the normalised benchmark instances. With
a single function call, it computes thirty indices and determines the relevant number of clusters
accordingly. A histogram of the distribution of the output is shown in Figure 3. The majority of
the indices suggested four as the best number of clusters, and this was utilised in the performance
evaluation of clustering techniques in the following step.

Four popular clustering techniques, the k-means algorithm [30, 55], the agglomerative method [29,
30, 36, 55], the DBSCAN algorithm [20], and the spectral clustering algorithm [1, 3, 52, 57], were
evaluated in this study. The solution quality achieved by these algorithms was assessed by means
of the following four validation measures: The Silhouette coefficient [43], the Calinski-Harabasz
(CHa) index [12], the Dunn index [18], and the Davies-Bouldin (DB) index [17]. A larger Silhouette
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Figure 3: Histogram of the distribution of the results obtained when estimating the number of

clusters in which to partition the training data instances of §4.1 by means of the NbClust function

in R of Charrad et al. [13]. According to the majority rule, the preferred number of clusters is

clearly 4.

coefficient value corresponds to a well-defined cluster structure. Similarly, CHa and Dunn indices
are large when clusters are dense and well separated. In contrast, a small DB index corresponds
to better defined clusters.

The corresponding evaluation results are reported in Table 3. From this table, it is clear that
the k-means algorithm yields larger CHa and Silhouette values than the other methods. The
corresponding Dunn index is comparatively large, and the value of the DB index is also comparatively
small. This indicates that the k-means clustering algorithm produces a better clustering output
than the other techniques. The k-means algorithm was therefore selected as the clustering method
adopted in this study to cluster the instances into groups, whereby the similarity among members of
each group was determined through the characteristics indicators of the instances and the number
assigned to the best perform- ing algorithms obtained in the performance evaluation of §4.4.

Algorithm CHa index Dunn index DB index Silhouette

k-means 530.0126 0.3967 1.2849 0.6271

Hierarchical 445.231 0.2591 1.2641 0.4376

Spectral 445.6919 0.418 1.478 0.413

DBSCAN 238.1507 0.1048 1.1885 0.3699

Table 3: Performance evaluation of the different clustering algorithms in respect of the training

data, based on the CHa, Dunn, DB, and Silhouette indices.

The k-means algorithm was performed repetitively until it generates the best clustering results.
Each resulting cluster was associated a label with respect to the aggregate characteristics values
of its instances members and a best performing algorithm for it. A summary of best performing
algorithm for each cluster is given in Table 4. It is noted that the ISA, SRA, and IA algorithms
were outperformed by the three algorithms reported in this table (or do not differ significantly from
their performances for certain instances), and that CIBA and ISH algorithms performed relatively
similarly with respect to the fourth benchmark cluster, so the CIBA algorithm was selected as the
best algorithm for that cluster. This dominance result applies only to the benchmark instances
explored in this work.
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Cluster Best Algorithm

Cluster 1 IAm
Cluster 2 Hybrid GA
Cluster 3 IAm
Cluster 4 CIBA

Table 4: Summary of the clustering output obtained when performing step 5 of the proposed

framework. The first cluster contains 170 instances, the second cluster 351 instances, and the third

and fourth clusters contain 391 and 198 instances, respectively.

4.6 Classification

The identified grouping in §4.5 is learned into formal classifiers, which are predictors that model
the relationship between problem instances characteristics and algorithm perfor- mance. Decision
trees can be very powerful tools for modelling this relationship and for elucidating rules that can be
used to predict the best performing algorithm for new instances. The decision tree algorithm [42]
was, therefore, employed as a machine learning technique to generate classification rules for this
purpose. The decision tree algorithm builds a decision tree from the training data instances, which
is then converted to a set of classification rules using the cluster labels as target variables. The
rules are ordered by accuracy and are applied in sequence to classify instances in the corresponding
group.

To obtain the classification rules, the four indicators of §4.2 were used as independent variables
and the best algorithms associated to each cluster as class variables. The percentage of new
correctly classified observations is an indicator of the effectiveness of the classification rules. If
these rules are effective on the training datasets, it is expected that they will perform well on new
observations with unknown group. The classification analysis was conducted using the Decision
Tree Classification package available in Python Scikit-learn and the classifier was trained on the 1
1000 training data sets.

In order to optimise the performance of the decision tree classifier, two decision tree methods with
two different attribute selection criteria were compared. The first decision tree method employs
the “information gain”1 as a selection criterion, while the second decision tree approach uses the
“gini index”2 criterion. The accuracy of these two methods when applied to the training datasets
is shown in Table 5. A pre-pruning was also conducted. This was achieved by controlling the
values of parameters and variables defining the classifier. The parameter “maximum depth of the
tree”, which defines the height or the number of nodes in the tree, was varied in this experimental
work. The corresponding accuracy results for the training data sets are also shown in Table 5.

Decision tree methods with Gini index Information gain

Maximum depth of the tree = 5 70% 69.6%
Maximum depth of the tree = 8 80% 75.4%
Maximum depth of the tree = 10 91% 90%

Table 5: Classification accuracy of the various decision tree methods when applied to the

training data sets.

The accuracies ranged from 91%, for the decision tree classifier using gini index as a selection

1Information gain is a statistical property that measures how well a given attribute separates the
training data according to their target variables [37].

2Gini index is a cost function used to evaluate splits in the datasets. It is calculated by subtracting
the squared probabilities of each class from one [37].
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criterion and a value equal to 10 for the ‘maximum depth of the tree’ parameter, down to 69.6%
accuracy for the decision tree classifier using information gain method as a selection criterion and
a value equal to 5 for the ‘maximum depth of the tree’ parameter. The method which exhibits the
highest accuracy was employed to predict algorithm performance in this work.

4.7 Algorithm prediction

The learned classifier of §4.6 was applied to predict the best performing algorithm for each one of
the remaining 618 test instances of §4.1. The decision tree method using gini index as a selection
criterion and a value equal to 10 for the ‘maximum depth of the tree’ parameter was employed for
this purpose, as it provides the highest accuracy results (see Table 5). The output results are given
in Table 6. Column 2 of this table contains the real best algorithms for each instance while column
3 contains the predicted algorithms. If the predicted algorithm is one of the real best algorithms,
the match is counted (equal to 1), as shown in column 4 of Table 6. A ‘Match’ value equal to 0,
for a particular instance, indicates that the classifier fails to predict the correct algorithm for that
instance. As shown in this table, the classifier predicted the correct best performing algorithm
with accuracy of 91%.

Instance Real best Predicted Match
algorithms best algorithm

1985BeasleyJORS8.csv Hybrid GA IAm 0
1987BerkeyWangClass6.41.csv IAm IAm 1
1987BerkeyWangClass6.44.csv IAm Hybrid GA 0
2000BerkeyKendallWhitwellN4.csv SRA, Hybrid GA Hybrid GA 1
...

...
...

...
1999Hifi2.csv IAm IAm 1
1998MartelloVigoClass4.47.csv Hybrid GA, SRA Hybrid GA 1
2001WangValenzuelaPath11.100.csv ISH, CIBA, IA CIBA 1

Accuracy 91%

Table 6: Classification results for 618 problem instances. The column ‘Match’ indicates if the

predicted algorithm is correct (its value equal to 1) or not (its value equal to 0).

5 Discussion

The result presented in the previous section suggests that the methodology adopted in this paper
achieves a 91% accuracy in correctly predicting the best performing algorithm for a new strip
packing instance. This could be considered as a highly accurate prediction of algorithm performance
on the basis of packing instances grouping according to their underlying features. The systematic
selection of the features that characterise the problem instances was crucial for obtaining this result
accuracy. Four different characteristics, extracted from various parameters and factors used in
popular packing generators, were considered to group the benchmark instances into four categories
in this work. These chosen features have proven to be sufficient for discovering the properties of
the benchmark instances.

It should be noted that the decision to include a clustering process before the classification step
has meant that the meaningful characteristics that best describe the data instances are identified
and that the relationship between the identified features and algorithm performance is accurately
explored. Each cluster was assigned one best performing algo- rithm and that it is learned into
classifiers for predicting the best algorithm for a new given instance. Obviously the result depends
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on the clustered instances output. One could expect a different result by directly classifying the
instances based on their characteristics and best performing algorithms. This research direction is
the focus in an ongoing project of the author.

Besides, the majority of the instances incorrectly classified are tied results. In fact, it was assumed
a definition of a best algorithm as an algorithm with performance ratio relatively 1% higher than
others and that ties are solved by randomly choosing one of the algorithms. In reality, however, the
assigned algorithm may be best for some proportion (possibly, not for all) of problem instances in
a cluster and that it may perform well for a specific instance of other clusters. An example is the
classification result of the 1987BerkeyWangClass6.44.csv instance shown in Table 6, whereby the
real best algorithm of the instance is the IAm algorithm, while the classification model predicts
the Hybrid GA algorithm as its best algorithm. A more robust condition is probably needed to
avoid such biased prediction and to improve on the performance accuracy.

While this paper has focused on application of the methodology to strip packing problem, the
proposed framework can be applied to any type of packing problem and could also be easily adopted
for automated algorithm selection in other combinatorial optimisation problems. The adaptation
of the methodology to other problems presents no difficulties aside from the challenge of selecting
and deriving relevant features to characterise the problem instances, which might require careful
check.

6 Conclusion

A methodology capable of modelling the relationship between packing instance characteris- tics
and algorithm performance for an automated packing algorithm selection was proposed in this
paper. The model was applied to predict best performing algorithms for unseen packing instances
with high accuracy.

It has been shown, through a case study of strip packing problems, that data mining techniques
like clustering analysis and decision trees can be employed to explore the high-dimensional feature
space of the problem instances, to cluster the test problems into different classes of instances
according to their features, and to learn the clusters into classifiers for an effective automated
packing algorithm selection. The result obtained suggested a 91% accuracy in predicting the best
performing algorithms on a new set of packing problem instances based on their characteristics.

While the chosen features have proven to be sufficient for discovering the properties of instances,
it is suggested that further features be added to complement the characterisation of the problem
benchmark instances. The inclusion of other features is expected to result in a more robust
classification of the various problem instances. Possible future work might also involve incorporating
additional test problems in the analyses carried out in this paper. The author is aware of other
existing problem generators, such as the 2DCPackGen of Silva et al. [45] which may be employed
to generate various problem instances. Incorporating such additional test problems may facilitate
identification of other important features prevailing in the data, and also render the methodology
more realistic and robust in the sense of being able to accommodate a large variety of problem
instances. This research direction together with an extension of the framework in order to improve
on the prediction accuracy is the focus in an ongoing project of the author.

Finally, it remains for future investigation the adjustment of the framework, by omitting the cluster
analysis step and directly applying classification techniques to classify the instances based on their
characteristics and best performing algorithms, and assess the effect of this adaptation on the
accuracy of the prediction result.
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[45] Silva E, Oliveira JF & Wäscher G, 2014, 2DCPackGen: a problem generator for two-dimensional
rectangular cutting and packing problems, European Journal of Operational Research, 237(3), pp.
846–856.

[46] Smith-Miles K, Baatar D, Wreford B & Lewis R, 2014, Towards objective measures of algorithm
performance across instance space, Computers and Operations Research, 45, pp. 12–24.

[47] Smith-Miles K & Lopes L, 2012, Measuring instance difficulty for combinatorial optimization
problems, Computers and Operations Research, 39(5), pp. 875–889.

[48] Smith-Miles K, Wreford B, Lopes L & Insani N, 2013, Predicting metaheuristic performance on
graph coloring problems using data mining, Talbi EG (Eds), Hybrid metaheuristics, SCI, Heidelberg.

[49] Smith-Miles K, 2009, Cross-disciplinary perspectives on meta-learning for algorithm selection, ACM
Computing Surveys, 41(1), pp. 1–25.

[50] Valenzuela CL & Wang PY, 2001, Heuristics for large strip packing problems with guillotine
patterns: An empirical study, Proceedings of the 4th Metaheuristics International Conference, Porto,
pp. 417–421.

[51] Van Vuuren JH & Rakotonirainy RG, 2018, The 2D rectangular strip packing problem (clustered
benchmarks), [Online], [Cited July 7th, 2020], Available from http://www.vuuren.co.za/main.php.

[52] Von Luxburg U, 2007, A tutorial on spectral clustering, Statistics and Computing, 17(4), pp.
395–416.

[53] Wei L, Hu Q, Leung S & Zhang N, 2017, An improved skyline based heuristic for the 2D strip
packing problem and its efficient implementation, Computers and Operations Research, 80), pp.
113–127.

[54] Wei L, Qin H, Cheang B & Xu X, 2016, An efficient intelligent search algorithm for
the two-dimensional rectangular strip packing problem, International Transactions in Operational
Research, 23(1–2), pp. 65–92.

[55] Xu R & Wunsch D, 2005, Survey of clustering algorithms, IEEE Transactions on Neural Networks,
16(3), pp. 645–678.

[56] Yang S, Han S & He W, 2013, A simple randomized algorithm for two-dimensional strip packing,
Computers and Operations Research, 40(1), pp. 1–8.

[57] Zelnik-Manor L & Perona P, 2005, Self-tuning spectral clustering, Advances in neural information
processing systems, 17, pp. 1601–1608.




