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Abstract

Regardless of the success that linear programming and integer linear programming
has had in applications in engineering, business and economics, one has to challenge
the assumed reality that these optimization models represent. In this paper the cer-
tainty assumptions of an integer linear program application is challenged in an attempt
to improve the solution robustness in an uncertain environment. The authors resort to
a two-stage, fixed recourse program to introduce random variables with a uniform dis-
tribution instead of deterministic expected values in a workforce sizing and scheduling
problem. Although the solution to the problem comprises a significantly larger full-
time staff complement than that determined via the problem without the introduction
of random variables, the expected workforce requirements preempt and consider the
costly expense of casual workers.

Key words: stochastic programming, fixed recourse, optimization, integer programming, workforce

sizing, scheduling.

1 Introduction

The formulation of scheduling problems involves the assignment of scarce resources to
complete a number of competing tasks so as to attain a level of performance acceptable to
decision-makers. The ground services function at a higher education institution typically
oversees the overall tidiness of the university’s campuses, and is usually contractually out-
sourced to a private company. In an attempt to assist the contractor to ensure a favourable
outcome when such a contract was reviewed at the University of Pretoria and considered
for renewal at the end of 2004, the authors embarked on an optimization procedure in
a previous paper [6]. In this previous paper the authors attempted to find the optimal
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number of full-time workers that were required during weekdays and weekends, respec-
tively, so that all the work stipulated by the service level agreement would be completed.
The objective of the optimization model was to find the least-cost full-time staff comple-
ment. Although the model produced a detailed and predictive schedule that was used
to provide visibility of the day-to-day schedule, the strategic intent of the decision model
was the capacity check that indicated to management what staff complement to employ.
The purpose of the scheduling endeavour is based on the taxonomy provided by Aytug et

al. (2005). As opposed to the Service Case Scheduling Problem (SCSP), as proposed by
Simmons et al. (2004), where a service provider manages a number of customer cases, the
project described above was concerned with the scheduling of the actual service workers,
and providing management with an aggregated capacity check to determine and predict
the staff complement.

The initiative described in this paper was fueled by an attempt to expose undergraduate
students to a more realistic problem-solving environment by addressing the curriculation
of the undergraduate modules in Operations Research in the Department of Industrial
and Systems Engineering at the University of Pretoria. The encouraging results of the
recurriculation of the modules, and the introduction of a comprehensive semester project,
were published by Joubert and Steyn (2003).

This paper is structured as follows. The original integer linear program is stated in Sec-
tion 2. The deterministic time required for performing tasks is challenged in Section 4,
by introducing random time requirements through a two-stage fixed recourse program. A
similar approach is followed in Section 5, where a random time-based percentage is intro-
duced to determine tool requirements. The way in which the random distributions are
approximated by discrete distributions, as well as which random variables were introduced,
are discussed in Section 6. The results and a few decision implications conclude this paper
in Section 7, where suggestions for future research and proposed model refinements are
also given.

2 The original problem

In the original problem, Conradie and Joubert (2004) defined the decision variables as

xijkm ,











1 if worker k does job i in period j of season m, where i = {1, 2, . . . , 5},

j = {1, 2, . . . , 12}, k = {1, 2, . . . , 50}, and m = {1, 2}

0 otherwise

and

yikm ,











1 if worker k does job i in season m, where i = {1, 2, . . . , 5},

k = {1, 2, . . . , 50}, and m = {1, 2}

0 otherwise.
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Other model parameters include

pijm , the number of workers required to perform task i in period j of season
m, where i = {1, 2, . . . , 5}, j = {1, 2, . . . , 12} and m = {1, 2},

wjm , the number of workers required during weekdays (time period j) in sea-
son m, where j = {1, 2, . . . , 10} and m = {1, 2},

q , the maximum number of workers required during weekdays,

sjm , the number of workers required on Saturdays (time period j) in season
m, where j = {1, 2, . . . , 10} and m = {1, 2},

r , the maximum number of workers required on Saturdays,

tim , the number of person-periods required for task i in season m, where
i = {1, 2, . . . , 5} and m = {1, 2},

nα , the number of tools of type α available, where α = {1, 2, . . . , 8},

bimα , the time-based percentage of a period that task i requires tool α in
season m, where i = {1, 2, . . . , 5}, m = {1, 2} and α = {1, 2, . . . , 8}.

The authors challenge a perfectly balanced schedule and formulated the workforce sizing
and scheduling problem as

min z = 5c1q + c2r, (1)

subject to

5
∑

i=1

pijm ≤ wjm, j ∈ {1, 2, . . . , 10}, m ∈ {1, 2} (2)

wjm ≤ q, j ∈ {1, 2, . . . , 10}, m ∈ {1, 2} (3)

5
∑

i=1

pijm ≤ sjm, j ∈ {11, 12}, m ∈ {1, 2} (4)

sjm ≤ r, j ∈ {11, 12}, m ∈ {1, 2} (5)

12
∑

j=1

pijm ≥ tim, i ∈ {1, 2, . . . , 5}, m ∈ {1, 2} (6)

5
∑

i=1

bimαpijm ≤ nα, j ∈ {1, 2, . . . , 12}, m ∈ {1, 2}, α ∈ {1, 2, . . . , 8} (7)

50
∑

k=1

xijkm = pijm, i ∈ {1, 2, . . . , 5}, j ∈ {1, 2, . . . , 12}, m ∈ {1, 2} (8)

3
∑

h=1

xi,h+j−1,k,m ≤ 2, i ∈ {1, 2, . . . , 5}, j ∈ {1, 2, . . . , 10},

k ∈ {1, 2, . . . , 50}, m ∈ {1, 2} (9)

5
∑

i=1

xijkm ≤ 1, j ∈ {1, 2, . . . , 12}, k ∈ {1, 2, . . . , 50}, m ∈ {1, 2} (10)
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12
∑

j=1

xijkm ≤ Myikm, i ∈ {1, 2, . . . , 5}, k ∈ {1, 2, . . . , 50}, m ∈ {1, 2} (11)

5
∑

i=1

yikm ≥ 3, k ∈ {1, 2, . . . , 50}, m ∈ {1, 2} (12)

bimα ≥ 0, i ∈ {1, 2, . . . , 5}, m ∈ {1, 2}, α ∈ {1, 2, . . . , 8} (13)

xijkm, yikm ∈ {0, 1}, i ∈ {1, 2, . . . , 5}, j ∈ {1, 2, . . . , 12},

k ∈ {1, 2, . . . , 12}, m ∈ {1, 2} (14)

pijm, tim, wjm, sjm, nα ≥ 0 and integer, i ∈ {1, 2, . . . , 5}, j ∈ {1, 2, . . . , 12},

m ∈ {1, 2}, α ∈ {1, 2, . . . , 8}, (15)

where M is a large number. The objective function represented in (1) minimises the total
number of full-time workers employed, where c1 and c2 denote the daily wage for workers
employed on weekdays and on Saturdays, respectively, with constraints (2) through (5)
determining the number of workers employed on the various days of the week. The mini-
mum time allocation for each task is enforced by (6), with the assumption that one person
working one period fulfils one person-period worth of work. The tools required for each
task are stipulated by (7). Workers and tasks are matched in (8), while task repetition is
addressed in (9). A worker is only human according to (10), while (11) and (12) attempt
to assign workers in a multi-skilled fashion [11].

The solution to the original problem saw 20 full-time workers employed during the week
(q = 20), and no full-time workers employed over weekends (r = 0). The original problem
did not take casual workers into account, as all tasks were assumed to be executed by full-
time employees as per schedule. Aytug et al. (2005) confirm in their review that schedules
are often not adhered to. The private contractor required the services of casual workers
over weekends to fulfil service obligations that could not be achieved during weekdays by
full-time employees. The service backlog is attributed to absenteeism, irregular weather
patterns, and events with assignable causes.

3 A random environment

The results of the original problem proved somewhat unreliable in that the ground services
company had to rely on casual workers over weekends to catch up on underperformance,
necessitating some investigation into the model’s underlying assumptions. The decision
to employ casual workers was a purely reactive decision. It was apparent that a situa-
tion in which the execution is reliant on human action, cannot and should not assume
process times and parameters to be known and certain. In their comprehensive review
article that focussed more on scheduling within the manufacturing realm, Aytug et al.
(2005) distinguish between research papers in scheduling as belonging to either determin-
istic or stochastic approaches, and develop a taxonomy for classifying scheduling problem
approaches. Their paper’s implication is not limited to the manufacturing environment,
and valuable insight is to be gained from the taxonomy irrespective of the area of appli-
cation. As opposed to a pure stochastic model that assumes all variables to be stochastic
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in nature, and which primarily focusses on control policies, the authors of this paper ex-
tended the original deterministic approach of Conradie and Joubert (2004) to a situation
containing some form of uncertainty. We support the view that a system that works in
a deterministic environment can be engineered to work under at least certain stochastic
conditions.

Decision makers often prefer a schedule with suboptimal expected performance if such
a schedule limits the performance variability, over a schedule with an optimal expected
performance, but with high variability [7, 8]. A predictive schedule is generated, and some
reactive measures are required only once a specific random parameter value has realized.
In an uncertain environment, each possible realization will result in some reactive measure.
The cost of reacting to the possible realizations are then minimized.

Stochastic integer linear programs are integer linear programs in which some of the param-
eters and problem data are considered uncertain. Recourse programs are those in which
some decisions or recourse can be taken after the extent of the uncertainty is disclosed [5].
The private company under consideration wishes to make a decision regarding its full-time
staff complement. A predictive schedule is generated that does not only provide visibility
of the detail task scheduling, but also indicate the aggregated capacity required to fulfil
the contractual obligations under expected conditions. However, as reality unfolds with
absent staff and unforseen weather implications, they are required to take reactive action
to ensure that they adhere to their contractually established performance requirements.
Casual workers are used to fulfil the additional labour requirements, but are more costly
than full-time employees, as the tax and financial benefit burden becomes the responsibil-
ity of the casual worker. Furthermore, casual workers’ employment stability and security
are compensated for by means of a financial wage premium. The employment of casual
workers therefore become the recourse taken to ensure that adequate service levels are at-
tained. Bard et al. (2001) also include the issue of addressing schedule disruptions within
the scope of their study. Over and above the inclusion of temporary workers, Xinhui and
Bard (2005) have also distinguished between full-time and part-time employees, a situation
that falls outside the scope of this project.

Although Bard (2004) and Bechtold and Brusco (1994) also determine the optimal staff
complement, a multi-skilled workforce is assumed. Whenever a worker is assigned a task
rated at a lower skill level than the worker’s ability (i.e., downgrading occurs), a penalty
is incurred. Such a distinction between skill levels is omitted from this paper.

4 Introducing random task requirements

In two-stage recourse models one explicitly distinguishes between decision variables based
on whether they are implemented before or after an outcome value of a random variable
is observed. The objective of the modelling endeavour is to assist management of the
outsourced company to decide on the first-stage variables, xijkm (i.e., how many workers
to employ during the various task periods). This is achieved by determining the predictive
schedule, and has to be made prior to the realization of random elements that influence the
model. Second-stage decision variables are regarded as reactive and are associated with
the additional ad-hoc casual workers, or the overtime of employed workers, to compensate
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for loss of maintenance activity.

The authors challenge the appropriateness of constraint (6) by not using the expected
value of the number of periods required for task i in season m, denoted by tim, and in
doing so introduce a random variation on the value, such that

tim = ζ̃im, i ∈ {1, 2, . . . , 5}, m ∈ {1, 2}, (16)

where the random variables ζ̃im are modelled using uniform distributions. The introduc-
tion of the random variables into (6) sees the introduction of a recourse variable ωim(ζ̃im),
which simply measures the number of casual workers required to perform task i in season
m. Since the shortage of workers depends on a realization of ζ̃im, so does the correspond-
ing recourse variable and since we are only interested in tracking the positive number of
casual workers required, we replace the deterministic constraints introduced in (6) by

ωim(ζ̃im) = ω+
im(ζ̃im) − ω−

im(ζ̃im), (17)

such that
12

∑

j=1

pijm + ω+
im(ζ̃im) − ω−

im(ζ̃im) = ζ̃im, i ∈ {1, 2, . . . , 5}, m ∈ {1, 2} (18)

with the additional requirement that

ω+
im(ζ̃im), ω−

im(ζ̃im) ≥ 0, i ∈ {1, 2, . . . , 5}, m ∈ {1, 2}. (19)

Instead of the ten single random variables ζ̃11, ζ̃12, ζ̃21, . . . , ζ̃52, it seems convenient to use
a random vector ξ̃ ∈ (ζ̃11, ζ̃12, ζ̃21, . . . , ζ̃52)

T . We assume that casual workers on Saturdays
are paid 1.5 times the amount that employed workers are paid for the same period, and
the objective function of the resulting resource program then becomes

min z = 5c1q + c2r +
5

∑

i=1

2
∑

m=1

E
ξ̃

[

1.5c2ω
+
im(ξ̃)

]

, (20)

where E
ξ̃
represents the expected value with respect to the distribution of ξ̃. If ξγ represents

the γth realization of ξ̃, which has a finite discrete distribution {(ξγ , pγ) , γ = 1, . . . , R}
with (pγ > 0 for all γ), we may establish an ordinary mixed integer program with a dual

composition structure whose objective function is

min z = 5c1q + c2r +
5

∑

i=1

2
∑

m=1

R
∑

γ=1

pγ

[

1.5c2

(

ω+
im(ξγ)

)]

. (21)

The constraints related to the random task requirements then become

...

12
∑

j=1

pijm + ω+
im(ξγ) − ω−

im(ξγ) = ξγ , i ∈ {1, 2, . . . , 5}, m ∈ {1, 2}, γ ∈ {1, 2, . . . , R}

(22)

ω+
im(ξγ), ω−

im(ξγ) ≥ 0, γ ∈ {1, 2, . . . , R} (23)

...
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with all the other constraints remaining as per the original formulation.

5 Introducing random time-based percentages

Although slightly more complex from a computational point of view, the validity of the
assumption that the time-based percentage that tool type α will be used in task i of
season m, namely bimα, as expressed in the original constraint (7) is also challenged in
this section.

A random variable β̃imα is introduced to replace the deterministic value bimα, and is again
modelled using uniform distributions. We introduce a recourse variable zjmα(β̃imα), which
determines the number of tools of type α that one would outsource (or rent) in period
j of season m. As in the case of the time requirements, the additional tools required
are dependent on a realization of β̃imα, and so are the corresponding recourse variables.
As opposed to being interested in the positive occurrences of ωim(ζ̃im) in (18), we are
interested in the negative occurrences of zjmα(β̃imα). We thus replace (7) by

zjmα(β̃imα) = z+
jmα(β̃imα) − z−jmα(β̃imα), (24)

such that

5
∑

i=1

βimαpijm + z+
jmα(β̃imα) − z−jmα(β̃imα) = nα (25)

for all j ∈ {1, 2, . . . , 12}, m ∈ {1, 2}, α ∈ {1, 2, . . . , 8}. We have to introduce the additional
constraints

z+
jmα, z−jmα ≥ 0 and integer, j ∈ {1, 2, . . . , 12}, m ∈ {1, 2}, α ∈ {1, 2, . . . , 8} (26)

for the recourse variables. It is again convenient to include the random variables bimα into
a random vector, ξ̃, such that ξ̃ ∈ (ζ̃11, . . . , ζ̃52, β̃111, β̃112, . . . , β̃528)

T . The ordinary mixed
integer program with dual composition structure is then expressed as

min z = 5c1q + c2r +
5

∑

i=1

12
∑

j=1

2
∑

m=1

8
∑

α=1

R
∑

γ=1

pγ

[

1.5c2

(

ω+
im(ξγ)

)

+ cα
3

(

z−jmα(ξγ)
)]

(27)

subject to

...

5
∑

i=1

ξγpijm + z+
jmα(ξγ) − z−jmα(ξγ) = nα, j ∈ {1, 2, . . . , 12}, m ∈ {1, 2},

α ∈ {1, 2, . . . , 8}, γ ∈ {1, 2, . . . , R} (28)

z+
jmα(ξγ), z−jmα(ξγ) ≥ 0, γ ∈ {1, 2, . . . , R} (29)

...
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with the cost of renting a tool of type α for one scheduling period being denoted by cα
3 ,

and the tool constraints expressed in (28) and (29). With the exception of the adapted
task requirements, the original constraint formulation remains intact. The range γ ∈
{1, 2, . . . , R} is dependent on the discrete distribution of the realizations of ξ̃.

6 Case study

We approximate the uniform distributions of the random variables by discrete distribu-
tions in such a manner that R = 8 in {(ξγ , pγ) , γ = 1, . . . , R} with (pγ > 0 for all γ), as
suggested by Kall and Wallace (1994).

For this purpose we generate large samples for ζ
µ
im, i ∈ {1, 2, . . . , 5}, m ∈ {1, 2}, and

µ = {1, 2, . . . , K}, with the sample size K = 1 000 chosen arbitrarily for this paper. We
choose equidistant partitions for each distribution and partition each into rim subintervals.
In all the calculations for this paper we have chosen rim = R = 8 for all i ∈ {1, 2, . . . , 5},
m ∈ {1, 2} arbitrarily. We calculate, for each subinterval Iimγ , i = {1, 2, . . . , 5}, m =
{1, 2}, γ = {1, . . . , rim}, the arithmetic mean ζ̄

γ
im of sample values ζ

γ
im ∈ Iimγ , yielding

the estimate for the conditional expectation of ζ̃im. For every subinterval we calculate the
relative frequency, pimγ for ζ

γ
im ∈ Iimγ such that

pimγ =
kimγ

K
, i ∈ {1, 2, . . . , 5}, m ∈ {1, 2}, γ ∈ {1, . . . , rim}, (30)

where kimγ is the number of sample values ζ
γ
im contained in subinterval Iimγ . These

discrete distributions are then used as approximations of the uniform distributions for
the random task requirements, as indicated in Table 1. Here U(·, ·) represents a uniform
distribution over the stated interval.

ζ̃11∼U(120, 125)

ζ̃12∼U(40, 55)

ζ̃21∼U(80, 90)

ζ̃22∼U(105, 110)

ζ̃31∼U(40, 50)

ζ̃32∼U(65, 80)

ζ̃41∼U(30, 40)

ζ̃42∼U(50, 60)

ζ̃51∼U(10, 20)

ζ̃52∼U(25, 35)

Table 1: Uniform distributions for the random task requirements.

The same procedure is followed to approximate the uniform distributions for the time-
based percentages that a task will require a specific type of tool. The difference in approach
is that we only consider random variables for limited resources of type α = {1}, as these
are expensive to procure or acquire for a short rental period. The constraints (7) and (28)
are thus combined in a manner such that

5
∑

i=1

ξγpijm + z+
jmα(ξγ) − z−jmα(ξγ) = nα, j ∈ {1, . . . , 12}, m ∈ {1, 2},

α ∈ {1}, γ ∈ {1, . . . , 8} (31)
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∑

i=1

bimαpijm ≤ nα, j ∈ {1, . . . , 12}, m ∈ {1, 2}, α ∈ {2, . . . , 8} (32)

to accommodate random variables in only a limited number of instances. The uniform dis-
tributions that are approximated for the time-based percentages are indicated in Table 2.

β̃111∼U(0.45, 0.55)

β̃121∼U(0.07, 0.10)

Table 2: Uniform distributions for the time-based percentages.

The proposed solution was obtained using a branch-and-bound algorithm and indicates a
requirement of q = 31 full-time weekday workers, and r = 7 full-time weekend workers,
yielding a minimum expected weekly wage bill of R13 640. The incumbent solution was
obtained by programming the integer linear program (ILP) in LINGOTM, and interrupting
the branch-and-bound solution process after a time limit of six hours. The best solution
found after the time limit (incumbent) was taken as the proposed solution. The incumbent
solution is thus an upper bound on the solution of the ILP. The objective function value of
this solution is in excess of 13.6% higher than the original q = 20 full-time weekday workers
and r = 0 full-time weekend workers that yielded theoretical weekly wages of R12 000. It
is argued that the solution proposed in this paper is advantageous in a number of ways.
Not only does it optimize the expected labour costs by taking the stochastic nature of
events into account, thereby addressing expected casual worker requirements that were
omitted in the original problem formulation, but the solution also proposes an increased
staff complement.

7 Conclusion

Although in itself a higher staff complement increases cost and negatively impacts on the
myopic objective function, it addresses unemployment issues in South Africa that could
assist and benefit the actual implementation of the solution. Quantified solutions provided
by Operations Research practitioners (in this case a low wage cost solution) are often
disregarded in favor of suboptimal solutions (i.e., higher wage cost alternatives) generated
without the use of mathematical optimisation, that can be implemented without labour
resistance. Instead of relying heavily on more costly casual labour to address arrears in
maintenance performance, the service contractor can employ in excess of ten full-time
workers more. Robbins (1996) emphasizes the value of work stability and job security
on personal productivity. A larger staff complement thus contributes towards reducing
unemployment, and is expected to be adopted more readily by the service contractor.

Investigating the solution found to the problem, it is interesting to observe that the equip-
ment for which random time-based percentages were introduced, did not impact the final
solution significantly, challenging the general perception that expensive equipment (or
the lack thereof) hampers organizational performance. It is recommended for future re-
search that other equipment requirements be challenged similarly to identify other poten-
tial scarce resources. This, however, requires an exorbitant amount of computer processing
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time. Given the solution strategy employed in this paper to obtain an incumbent solu-
tion, it is proposed that a metaheuristic optimization algorithm rather be used to find
a solution. Although such an endeavour will decrease the computational burden of the
algorithm, it may also impact the quality of the current incumbent solution negatively, as
it may not converge to the global optimum.

The intent of this research paper was to predict a workforce schedule in an environment
where some parameters (in this case the process times and the related equipment require-
ments) are considered stochastic in nature. In the absence of more accurate data, these
parameters were assumed to be uniformly distributed. It would indeed be interesting to in-
vestigate the effects of introducing other random distributions, if more data were available
to justify a particular choice of random distribution.

As opposed to focussing only on the predictive schedule that provides management with
support for capacity decisions, the authors propose that the schedule be used to obtain
visibility on day-to-day task, so as to perform micro-management [1]. An example of micro-
management is identifying scarce equipment resources that need to be transported across
a distance to be available in geographically dispersed locations in consecutive scheduling
periods.

Practitioners in the fields of Industrial Engineering and Operations Research are given an
application of stochastic programming in this paper. The authors challenge the notion
that marginalizing labour costs often result in better solutions, especially in real applica-
tions where human intervention and human reliance are of utmost importance, and where
random events hamper the quality and robustness of deterministic solutions.
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