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Abstract
The Vehicle Routing Problem (VRP) is a well-researched problem in the Operations Research
literature. It is the view of the authors of this paper that the various VRP variants have been
researched in isolation. This paper embodies an attempt to integrate three specific variants of
the VRP, namely the VRP with multiple time windows, the VRP with a heterogeneous fleet,
and the VRP with double scheduling, into an initial solution algorithm. The proposed initial
solution algorithm proves feasible for the integration, while the newly introduced concept of
time window compatibility decreases the computational burden when using benchmark data
sets from literature as a basis for efficiency testing. The algorithm also improves the quality
of the initial solution for a number of problem classes.
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1 Introduction

The Vehicle Routing Problem (VRP) is a well-researched problem in the Operations Re-
search literature. The main objective in this type of problem is to minimize an objective
function value, which is typically distribution cost for individual carriers. The area of ap-
plication is wide, and specific variants of the VRP transform the basic problem to conform
to application specific requirements. It is the view of the authors that the various VRP
variants have been researched in isolation, with little effort to integrate various problem
variants into an instance that is more appropriate to the South African particularity with
regards to logistics and vehicle routing.

The VRP may be described as the problem of assigning optimal delivery or collection
routes from a depot to a number of geographically distributed customers, subject to side
constraints. The most basic version of the VRP may be defined in terms of a bi-directed
complete graph G = (V,E), where V = {v0, v1, . . . , vn} is a set of vertices with v0 rep-
resenting the depot where m identical vehicles, each with capacity Q, are located. The
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remaining vertices, denoted by V \{v0}, represent customers each having a non-negative
demand qi and a non-negative service time si [17]. The edge set connecting the vertices is
given by E = {(vi, vj) | vi, vj ∈ V, i 6= j}. A distance matrix C = {cij} is defined on E.
In some contexts, cij may be interpreted as travel cost or travel distance from vertex vi to
vertex vj . Hence, the terms distance, travel cost, and travel time are used interchangeably.
The VRP consists of designing a set of m vehicle routes having a minimum total length
such that:

• each route starts and ends at the depot,

• each remaining vertex (V \{v0}) is visited exactly once by exactly one vehicle,

• the total demand of a route does not exceed Q, and

• the total duration (including service and travel time) of a route does not exceed a
preset limit L.

The VRP is an NP-hard combinatorial optimization problem for which several exact and
approximate solution methods have been proposed (see Laporte [8] for a review). Early
researchers, such as Clarke and Wright [1], realized that exact algorithms can only solve
relatively small problems, but a number of heuristic algorithms have proved very satisfac-
tory, in many cases yielding near-optimal solutions to relatively large problems.

The basic VRP is based on a number of assumptions, such as utilizing a homogeneous fleet,
a single depot, and allocating one route per vehicle. These assumptions may be eliminated
or relaxed by introducing additional constraints to the problem. This implies increasing
the complexity of the problem, and, by restriction, classifies the extended problem as an
NP-hard problem. It should be noted that most of these additional constraints are often
implemented in isolation, without integration, due to the increased complexity of solving
such problems. Thus the problem statement:

Is it possible to solve a vehicle routing problem with multiple integrated con-
straints?

Finding a feasible, and integrated initial solution to a hard problem is the first step in
addressing the scheduling issue. In this paper an algorithm is proposed that integrates
three specific variants of the VRP. The paper also contributes to reducing the computa-
tional burden by proposing a concept referred to as time window compatibility (TWC) to
evaluate the insertion of customers on positions within routes intelligently. The authors
investigate the feasibility of integrating multiple soft time windows, a heterogeneous fleet
and double scheduling constraints into a single problem instance, referred to simply in this
paper as the Vehicle Routing Problem with Multiple Constraints (VRPMC).

A time window is the period of time during which deliveries can be made to a specific
customer, indexed by i, and has three main characteristics: the earliest allowed arrival time
denoted by ei, the latest allowed arrival time denoted by li, and whether the time window
is considered soft (allowing a penalized late service) or hard (no late service allowed). It
is an extension of the VRP that has been researched extensively [5, 14, 15, 16].
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Gendreau et al. [3] propose a solution methodology for cases where the fleet is heteroge-
neous, that is, where the fleet is composed of vehicles with different capacities and costs.
Their objective is to determine what the optimal fleet composition should be, and is re-
ferred to as either the Heterogeneous Fleet Vehicle Routing Problem (HVRP), or the Fleet
Size and Mix Vehicle Routing Problem (FSMVRP). Taillard [14] formulates the Vehicle
Routing Problem with a Heterogeneous fleet of vehicles (VRPHE) where the number of ve-
hicles of type t in the fleet is limited; the objective being to optimize the utilization of the
given fleet. Salhi and Rand [12] incorporate vehicle routing into the vehicle composition
problem, and refer to it as the Vehicle Fleet Mix problem (VFM).

Double scheduling occurs where vehicles are routed in a manner that allows a vehicle to
complete one route, return to the depot to replenish its capacity, i.e. load for deliveries or
unload collected cargo, before embarking on a subsequent route. The aggregated routes
for a vehicle is referred to as a tour, and a vehicle is required to complete its tour within
the depot’s provided time window.

The concept of TWC is introduced in §2 along with the initial solution algorithm. The
results from simulated data sets are presented in §3, before conclusions are drawn, and a
research agenda is established in §4.

2 An initial solution approach

Heuristics typically use a greedy approach to obtain a good initial solution in an efficient
manner and then incrementally improve the solution by neighborhood exchanges or local
searches. Solomon [13] divides VRP tour-building algorithms into either sequential or
parallel methods. Sequential procedures construct one route at a time until all customers
are scheduled. Parallel procedures are characterized by the simultaneous construction
of routes, while the number of parallel routes may either be limited to a predetermined
number, or formed freely. Solomon concludes that, from the five initial solution heuristics
evaluated, the Sequential Insertion Heuristic (SIH) proved to be very successful, both in
terms of the quality of the solution, as well as the computational time required to find the
solution [9].

When finding an initial solution to a routing problem, the initialization criteria refers to
the process of finding the first customer to insert into a route. The most commonly used
initialization criteria is the farthest unrouted customer, and the customer with the earliest
deadline, or the earliest latest allowed arrival. The first customer inserted on a route is
referred to as the seed customer. Once the seed customer has been identified and inserted,
the SIH algorithm considers, for the unrouted nodes, the insertion place that minimizes
a weighted average of the additional distance and time needed to include a customer in
the current partially constructed route – referred to as determining the insertion criteria.
The third step, the selection criteria, tries to maximize the benefit derived from inserting
a customer in the current partial route rather than on a new direct route. Note that the
terms nodes and customers are used interchangeably. It can easily be shown that the
number of criteria calculations for the SIH algorithm is a third order polynomial function
of the number of nodes in the network.
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A shortcoming of Solomon’s SIH [13] is that it considers all unrouted nodes when calculat-
ing the insertion and selection criteria for each iteration. The fact that all unrouted nodes
are considered makes it computationally expensive. The VRP variant considered in this
paper has multiple additional constraints. The occurrence of infeasible nodes, due to their
incompatible time windows, in a partially constructed route therefore becomes significant.
The introduction of the TWC concept assists in identifying and eliminating the obvious
infeasible nodes. This results in a more effective and robust route construction heuristic.

The purpose of TWC is to determine the time overlap of all edges, or node combinations,
(vi, vj), where i, j ∈ {0, 1, 2, . . . , n}. During the route construction phase, TWC may be
tested, and nodes that are obviously infeasible may be eliminated from the set of considered
nodes. The Time Window Compatibility Matrix (TWCM) is a nonsymmetrical matrix as
the sequence of two consecutive nodes, vi and vj , is critical. The following notation is used
in the problem formulation:

ei: the earliest allowed arrival time at customer i,
li: the latest allowed arrival time at customer i,
si: the service time at node i,
tij : the travel time from node i to node j,
aei

j : the actual arrival time at node j, given that node j is visited directly
after node i, and that the actual arrival time at node i was ei,

ali
j : the actual arrival time at node j, given that node j is visited directly

after node i, and that the actual arrival time at node i was li, and
TWCij : the TWC when node i is directly followed by node j.

Here TWCij indicates the entry in row i, column j of the TWCM. Five scenarios exist and
are covered in more detail by Joubert [6]. The scenarios depend on the level and direction
of overlap between the time windows of two consecutive customers, and are represented
in Figure 1.

Each scenario represents a relationship between ei, li, aei
j and ali

j , and assumes customer j
to be serviced directly after customer i. In its generalized form, the expression for TWCij

is given by

TWCij =

{
min

{
ali

j , lj

}
−max

{
aei

j , ej

}
if lj − aei

j > 0,

−∞ otherwise.
(1)

The higher the value of TWCij in (1), the better the compatibility of the two time windows
considered. Therefore an incompatible time window is defined to have a compatibility of
negative infinity.

Consider an improved case where node vu is considered for insertion between nodes vi and
vj . As the TWCM is already calculated, it is possible to test the compatibility of node vu

with the routed nodes vi and vj . If either TWCiu or TWCuj is negative infinity (−∞),
indicating an incompatible time window, the insertion heuristic moves on and considers the
next edge, without wasting computational effort on calculating the insertion and selection
criteria. Only if the time windows are considered compatible will the insertion and selection
criteria be evaluated. The improvement of the computational burden is a direct function
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Figure 1: Time window compatibility scenarios.

of the characteristics of the customer time windows. The computational complexity is of
the same order as that of the SIH, with expected constant factor improvements possible
due to the TWCM.

As opposed to the two most common initialization criteria, namely customer with earliest
deadline, and furthest customer, as suggested by Dullaert et al. [2], the authors of this
paper also use the TWCM to identify seed nodes based on their TWC (the number of
infeasible TWCs is calculated for each customer). The customer with the highest number
of TWCs is identified as the seed customer. Ties are broken arbitrarily. It may be possible
to not have any infeasible time window instances. In such a case a total compatibility value
may be determined for each node va by means of the expression

M∑
i=1
i6=a

TWCia +
M∑

j=1
j 6=a

TWCaj + TWCaa, (2)

where M denotes the number of unrouted nodes. The customer with the lowest total
compatibility is selected as seed customer. A graphical presentation of the initial solution
algorithm is given in Figure 2.
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Figure 2: Overview of the initial solution algorithm.

3 Results

The algorithm’s objective function is defined as the total scheduling distance. For algorith-
mic evaluation purposes the basic concept of Solomon [13] is used in terms of classifying
benchmark data sets as being either clustered (C), randomly distributed (R), or a combi-
nation of the two (RC), and having either short, or long scheduling horizons.

To incorporate multiple time windows, an extended data set from Homberger [4] is used.
The data set was generated in a similar fashion to that of Solomon [13], but contains 200
customers. The time windows from customers 101 through 200 were used as second time
window for customers 1 through 100. Where an overlap of time windows occurred, a single
(wider) time window was created by combining the two overlapping windows. The earliest
opening time of the two time windows is used along with the latest closing time [7].

The fleet structure proposed by Liu and Shen [11, 10] is used to introduce their insertion
based savings heuristic, and to incorporate a heterogeneous fleet. It is important to
evaluate the contribution that the proposed TWC has on the results of the algorithm.
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For this purpose a comparative control algorithm is created. The control algorithm differs
only in two respects from the proposed algorithm:

• It does not evaluate nodes for TWC when calculating the insertion criteria, and
therefore considers every node for insertion on every edge of a partially constructed
route.

• As no TWC is calculated for any node, the initialization criterium is changed to
identify the seed customer as the unrouted customer with the earliest deadline.

The control algorithm was executed for all problem classes, and the initial solution sum-
maries are provided in Table 1.

Although the results from the various problem classes, and even among the instances
within a problem class, vary significantly, there is sufficient evidence that the notion of
TWC improves the quality of the initial solution, on average from 60 problem instances,
by more than 9%. There is, in general, a direct relationship between the distance saving
and the computational saving for the proposed algorithm. It may be observed that when
there are distance savings, there are also computational savings.

Although the specific problem instance impacts both the quality of the solution found, and
the time required to find such a solution, it is clear that when customers with tight time
windows are either randomly distributed or distributed in a semi-clustered manner, that
the proposed algorithm performs consistently worse than the control algorithm, both in
terms of finding a good quality solution, and in the computational time required. Should
the R1 and RC1 problem classes be omitted, i.e. the proposed algorithm not be applied
to such problem instances, then an average distance saving of 14%, and an average CPU
time saving of 19% may be achieved, respectively.

4 Conclusions

The results of the initial solution algorithm proposed in this paper demonstrate that
multiple variants of the vehicle routing problem, i.e. multiple soft time windows, a hetero-
geneous fleet and double scheduling, may indeed be integrated into a single initial solution
algorithm.

The initial solution algorithm is the first step in obtaining near optimal solutions for ve-
hicle routing and scheduling type problems. In this paper the concept of time window
compatibility is introduced to ease the computational burden of the algorithm, and to find
a better seed customer. The amount by which the proposed algorithm eases the computa-
tional burden is a direct function of the time window characteristics of the customers in the
network. Numerical results indicate that initial solution algorithms are highly sensitive to
the specific problem instance. This paper claims that the proposed algorithm holds both
distance and savings opportunities for problem instances where customers are clustered,
or where longer time windows exist for customers.
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Problem TWC Number of Number of Scheduling Distance CPU time
class included tours routes distance saving saving

C1-01
X 11 22 7 330

18% 43%× 11 39 8 914

C1-02
X 12 23 7 014

12% 20%× 11 33 8 016

C1-03
X 16 21 5 626 −1% 0%× 14 24 5 566

C1-04
X 17 19 6 318 −26% −24%× 17 21 5 020

C1-05
X 14 21 6 110

30% 33%× 11 35 8 668

C1-06
X 12 21 7 280

9% 34%× 11 30 8 020

C1-07
X 18 19 6 462

18% 36%× 9 27 7 886

C1-08
X 17 19 6 134

18% 28%× 11 24 7 518

C1-09
X 18 19 5 842

18% 23%× 10 21 7 142

C1-10
X 18 19 5 434

21% 7%× 12 19 6 838

Table 1a: Results for the C1-class of problems.

Problem TWC Number of Number of Scheduling Distance CPU time
class included tours routes distance saving saving

C2-01
X 4 6 7 240

0% 32%× 4 19 7 246

C2-02
X 4 8 5 820

35% 16%× 4 20 8 968

C2-03
X 5 9 5 744

19% 18%× 5 13 7 052

C2-04
X 5 6 5 138

5% −24%× 4 7 5 410

C2-05
X 4 6 7 152

15% 19%× 4 20 8 382

C2-06
X 4 6 6 478

22% −3%× 4 17 8 294

C2-07
X 3 7 6 608

8% 24%× 4 14 7 148

C2-08
X 4 6 5 874

18% 17%× 3 12 7 186

C2-09
X 5 7 5 966

7% 22%× 4 13 6 438

C2-10
X 4 6 6 088

26% 13%× 4 10 8 220

Table 1b: Results for the C2-class of problems.
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Problem TWC Number of Number of Scheduling Distance CPU time
class included tours routes distance saving saving

R1-01
X 16 72 16 178 −4% −56%× 7 75 15 510

R1-02
X 40 69 11 216 −1% −31%× 30 70 11 068

R1-03
X 56 69 10 770 −0% −15%× 53 69 10 730

R1-04
X 51 70 15 498 −2% −34%× 44 71 15 150

R1-05
X 43 68 11 430

2% −60%× 7 71 11 606

R1-06
X 47 68 10 712

3% −32%× 27 69 11 062

R1-07
X 60 69 10 618

0% −24%× 49 68 10 640

R1-08
X 56 70 16 076 −1% −35%× 44 71 15 898

R1-09
X 41 68 10 816

2% −50%× 8 69 11 042

R1-10
X 47 69 10 756

5% 63%× 10 68 11 362

Table 1c: Results for the R1-class of problems.

Problem TWC Number of Number of Scheduling Distance CPU time
class included tours routes distance saving saving

R2-01
X 5 7 8 722

13% 53%× 2 13 9 990

R2-02
X 4 6 6 162

29% 33%× 2 13 8 636

R2-03
X 2 6 5 412

15% 23%× 2 9 6 336

R2-04
X 3 6 3 474

13% 2%× 2 6 3 988

R2-05
X 5 6 7 874

27% 51%× 2 9 10 792

R2-06
X 3 6 5 520

30% 31%× 2 8 7 848

R2-07
X 4 7 4 544

37% 19%× 2 9 7 228

R2-08
X 5 6 3 544

25% −3%× 1 6 4 722

R2-09
X 5 6 7 320

11% 50%× 2 8 8 198

R2-10
X 5 7 7 792

20% 45%× 2 8 9 768

Table 1d: Results for the R2-class of problems.
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Problem TWC Number of Number of Scheduling Distance CPU time
class included tours routes distance saving saving

RC1-01
X 26 48 8 706

4% −6%× 6 50 9 026

RC1-02
X 32 45 8 662 −1% 1%× 13 46 8 542

RC1-03
X 39 46 8 882 −7% −33%× 26 47 8 268

RC1-04
X 45 46 10 368 −30% −103%× 45 47 7 960

RC1-05
X 34 47 8 754

4% −10%× 10 49 9 142

RC1-06
X 40 47 8 374

11% −16%× 6 48 9 418

RC1-07
X 41 47 8 440

5% −13%× 10 48 8 846

RC1-08
X 41 47 8 702

0% −17%× 12 49 8 742

RC1-09
X 40 47 8 730

8% −26%× 11 48 9 444

RC1-10
X 38 48 8 630

0% −18%× 14 48 8 630

Table 1e: Results for the RC1-class of problems.

Problem TWC Number of Number of Scheduling Distance CPU time
class included tours routes distance saving saving

RC2-01
X 12 19 7 748

10% 24%× 2 21 8 622

RC2-02
X 9 18 6 938

7% 22%× 2 20 7 480

RC2-03
X 10 18 5 914 −14% 7%× 3 18 5 208

RC2-04
X 16 18 6 512 −19% −28%× 14 18 5 452

RC2-05
X 15 19 7 730

2% 27%× 3 19 7 892

RC2-06
X 16 19 6 886

12% 22%× 3 20 7 788

RC2-07
X 18 19 6 362

16% 23%× 3 18 7 612

RC2-08
X 14 18 5 832

18% 13%× 3 19 6 936

RC2-09
X 15 18 5 748

19% 16%× 3 19 7 114

RC2-10
X 16 18 4 804

27% 14%× 2 18 6 622

Table 1f: Results for the RC2-class of problems.
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At worst, the number of evaluative criteria calculations is a third order polynomial function
of the number of nodes in the network, similar to the SIH on which it is based. Currently
the TWC is determined after the selection criteria, and future research could evaluate the
positioning of the TWC portion of the algorithm.

As the proposed algorithm is but the first step in obtaining a final solution, integration with
metaheuristics is required before the algorithm can be implemented. Some metaheuristic
algorithms, such as Tabu Search, are sensitive to the quality of an initial solution. The
concept of TWC should again be introduced and evaluated at metaheuristic level as a
potential performance improvement tool.
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