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Abstract

A maximum likelihood estimator (MLE), a consistent asymptotically normal (CAN) esti-
mator and asymptotic confidence limits for the expected waiting time per customer in the
queues of M |M |1|∞ and M |M |1|N are obtained.
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1 Introduction

Parametric estimation is one of the essential tools to understand the random phenomena
when using stochastic models. Whenever the systems are fully observable in terms of their
basic random components such as inter-arrival times and service times, standard paramet-
ric estimation techniques of statistical theory are quite appropriate. Most of the studies
on several queueing models are confined to only obtaining expressions for transient or
stationary (steady state) solutions and do not consider the associated inference problems.
Recently, Bhat (2003) has provided an overview of methods available for estimation, when
the information is restricted to the number of customers in the system at some discrete
points in time. Narayan Bhat has also described how maximum likelihood estimation is
applied directly to the underlying Markov chain in the queue length process in M |G|1 and
GI|M |1. The MLE, CAN and asymptotic confidence limits for the expected waiting time
per customer in the queues of M |M |1|∞ and M |M |1|N , are obtained in this paper. In
the following section, these two models and the expected waiting time per customer for
each model are explained briefly.
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2 System Descriptions

Model I (M |M |1) : (FCFS|∞|∞) queue
It can be readily seen [1] that the difference-differential equations governing M |M |1 are
given by

p′n(t) = λpn−1(t) − (λ + µ)pn(t) + µpn+1(t), n = 1, 2, 3, . . .

p′0(t) = −λp0(t) + µp1(t), (n = 0).

As t → ∞, the steady state solution can be proved to exist, when λ < µ. Assuming that
p′n(t) → 0 and pn(t) → pn as t → ∞, for n = 0, 1, 2, . . . , we have

−λp0 + µp1 = 0, (n = 0)

λpn−1 − (λ + µ)pn + µpn+1 = 0, n = 1, 2, 3, . . .

Solving these difference-differential equations, we have

pn = (1 − ρ)ρn, n = 0, 1, 2, . . . (1)

where ρ = λ
µ

< 1. Clearly (1) corresponds to the probability mass function of the geometric
distribution and it can easily be shown that the expected waiting time per customer in
the queue is given by

1WQ =
λ

µ(µ − λ)
. (2)

Model II (M |M |1) : (GD|N |∞) queue
This model is essentially the same as Model I, except that the maximum number of
customers in the system is limited to N (maximum queue length is N −1) [1]. The steady
state equations for this model are given by

−ρp0 + p1 = 0, (n = 0)

ρpn−1 − (ρ + 1)pn + pn+1 = 0, n = 1, 2, 3, . . . , N − 1

ρpN−1 − pN = 0, (n = N).

The solution of these difference-differential equations is given by

pn =
(1 − ρ)

(1 − ρN+1)
ρn, n = 0, 1, 2, . . . , N.

The expected number in the system is given by

Ls =
ρ

{

1 − (N + 1)ρN + NρN+1
}

(1 − ρ)(1 − ρN+1)
, ρ 6= 1.

Since there is a limit on the queue length and some customers are lost, it is necessary to
compute the effective arrival rate λeff , which is given by λeff = λ(1 − pN ). Further, it can
be shown that the expected number of customers in the queue is

LQ = Ls −
λeff

µ
=

ρ2
[

1 − NρN−1 + (N − 1)ρN
]

(1 − ρ)(1 − ρN+1)
.
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Hence, the expected waiting time per customer in the queue is given by

2WQ =
LQ

λeff
=

λ
[

(µN − λN ) − NλN−1(µ − λ)
]

µ(µ − λ)(µN − λN )
. (3)

3 MLE and CAN estimator for the expected waiting time

3.1 ML Estimator

Let Xi1, Xi2, . . . , Xin (with i = 1, 2 representing Models I and II) be random samples of
size n, each randomly drawn from different exponential inter-arrival time populations with
the parameter λ. Also, let Yi1, Yi2, . . . , Yin(with i = 1, 2 representing Models I and II) be
random samples of size n, each drawn from different exponential service time populations
with the parameter µ. It is clear that E(X̄i) = 1

λ
and E(Ȳi) = 1

µ
, where X̄i and Ȳi, i = 1, 2,

are the sample means of inter-arrival times and service times respectively corresponding
to Models I and II. It can be shown that X̄i and Ȳi (with i = 1, 2 representing Models I
and II) are the MLEs of 1

λ
and 1

µ
respectively. Let θ1 = 1

λ
and θ2 = 1

µ
respectively.

Model I

The average waiting time per customer in the queue, given in (2), reduces to

1WQ =
θ2
2

(θ1 − θ2)

and hence the MLE of WQ is given by

1ŴQ =
Ȳ 2

1

(X̄1 − Ȳ1)
. (4)

Model II

The average waiting time per customer in the queue, given in (3), reduces to

2WQ =
θ2
2[(θ

N
1 − θN

2 ) + NθN−1
2 (θ2 − θ1)]

(θ2 − θ1)(θN
2 − θN

1 )
. (5)

and hence the MLE of WQ is given by

2ŴQ =
Ȳ 2

2 [(X̄N
2 − Ȳ N

2 ) + NȲ N−1
2 (Ȳ2 − X̄2)]

(Ȳ2 − X̄2)(Ȳ N
2 − X̄N

2 )
(6)

It may be noted that iŴQ, given in (4) and (6), are real valued functions in X̄i and Ȳi,
i = 1, 2, which are also differentiable. Consider the following application of multivariate
central limit theorem [3].

3.2 Application of multivariate central limit theorem

Suppose T ′
1, T ′

2, T ′
3, . . . are independent and identically distributed k-dimensional random

variables such that T ′
n = (T1n, T2n, T3n, . . . , Tkn), n = 1, 2, 3, . . . having the first and

second order moments E(Tn) = µ and Var(Tn) = Σ. Define the sequence of random

variables T̄ ′
n = (T̄1n, T̄2n, T̄3n, . . . , T̄kn), n = 1, 2, 3, . . . where T̄in =

∑n
j=1

Tij

n
, i =

1, 2, . . . , k and j = 1, 2, . . . , n. Then,
√

n(T̄n − µ)
d−→ N(0, Σ) as n → ∞.
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3.3 CAN Estimator

Model I

By applying the multivariate central limit theorem [4], it readily follows that
√

n[(X̄1, Ȳ1)−
(θ1, θ2)]

d−→ N(0, Σ) as n → ∞, where the dispersion matrix Σ = ((σij)) is given by

Σ = diag(θ2
1, θ

2
2). Again, from Rao [3], we have

√
n(1ŴQ − 1WQ)

d−→ N(0, 1σ
2(θ)), as

n → ∞, where θ = (θ1, θ2) and

1σ
2(θ) =

2
∑

i=1

(

∂1WQ

∂θi

)2

σii =
θ2
2[θ

2
1 + θ2

2(2θ1 − θ2)
2]

(θ1 − θ2)4
. (7)

Hence, 1ŴQ is a CAN estimator of 1WQ. There are several methods for generating CAN
estimators — the Method of Moments and the Method of Maximum likelihood are com-
monly used to generate such estimators [4].

Model II

As in Model I, here too, we have
√

n(2ŴQ − 2WQ)
d−→ N(0, 2σ

2(θ)), as n → ∞, where

θ = (θ1, θ2), and where 2WQ and 2ŴQ are given by (5) and (6) respectively. Further,

2σ
2(θ) is computed from the partial derivatives

(

∂2WQ

∂θi

)

, i = 1, 2 as in Model I. Thus

2ŴQ is a CAN estimator of 2WQ.

4 Confidence limits for expected waiting time

Let iσ
2(θ̂) be the estimator of iσ

2(θ) (with i = 1, 2 representing Models I and II) obtained
by replacing θ by a consistent estimator iθ̂ = (X̄i, Ȳi), i = 1, 2. Let iσ̂

2 = iσ
2(θ̂). Since

iσ
2(θ) is a continuous function of θ, iσ̂

2 is a consistent estimator of iσ
2(θ), i.e., iσ̂

2 P−→
iσ

2(θ) as n → ∞, i = 1, 2. By the Slutsky theorem, we have

√
n(iŴQ − WQ)

iσ̂

d−→ N(0, 1),

i.e., Pr
[

−kα
2

<
√

n(iŴQ−iWQ)

iσ̂
< kα

2

]

= (1− α), where kα
2

is obtained from normal tables.

Hence, a 100(1 − α)% asymptotic confidence interval for iWQ is given by

iŴQ ± kα
2

iσ̂√
n

, i = 1, 2.

5 Numerical Results

As is to be expected, Wq is an increasing function of λ, and a decreasing function of µ,
for both M |M |1|∞ and M |M |1|N queuing systems [See Tables 1 and 2].
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µ \ λ 0.04 0.06 0.08 0.1

0.01 (8.289842877 : 8.376823789) (3.316926722 : 3.349739944) (1.777150118 : 1.794278453) (1.105858754 : 1.116363468)
0.02 (24.83223528 : 25.16776472) (8.286718407 : 8.37994826) (4.144904413 : 4.18842892) (2.487402722 : 2.512597278)
0.03 (74.16104529 : 75.83895471) (16.55477386 : 16.77855947) (7.456343866 : 7.543656134) (4.262400695 : 4.309027877)

Table 1: M |M |1|∞ : FCFS with 99% confidence interval and sample size of 20.

µ \ λ 0.04 0.06 0.08 0.1

N=10

0.01 (8.331269275 : 8.334920554) (3.331916366 : 3.334744788) (1.784518941 : 1.786909398) (1.110057009 : 1.112165194)
0.02 (24.75248955 : 24.7587519) (8.328275966 : 8.332745576) (4.164721818 : 4.168373097) (2.498408635 : 2.501570885)
0.03 (60.07542472 : 60.08759256) (16.50061597 : 16.50687832) (7.490679322 : 7.495571505) (4.283054105 : 4.287193479)

µ \ λ 0.04 0.06 0.08 0.1

N=20

0.01 (8.331507591 : 8.335159075) (3.33191912 : 3.334747547) (1.784519057 : 1.786909514) (1.110057019 : 1.112165204)
0.02 (24.99636102 : 25.0026853) (8.33109717 : 8.335569306) (4.164840925 : 4.168492408) (2.498418861 : 2.501581139)
0.03 (73.40387298 : 73.41482651) (16.66318663 : 16.66951092) (7.497549755 : 7.502448733) (4.283644082 : 4.287784475)

µ \ λ 0.04 0.06 0.08 0.1

N=40

0.01 (8.331507591 : 8.335159075) (3.33191912 : 3.334747547) (1.784519057 : 1.786909514) (1.110057019 : 1.112165204)
0.02 (24.99683772 : 25.00316228) (8.331097265 : 8.335569401) (4.164840925 : 4.168492409) (2.498418861 : 2.501581139)
0.03 (74.98446701 : 74.99541962) (16.66350439 : 16.66982894) (7.49755051 : 7.50244949) (4.283644089 : 4.287784482)

Table 2: M |M |1|N : FCFS with 99% confidence interval and sample size of 20.



6 VSS Yadavalli, K Adendorff, G Erasmus, P Chandrasekhar & SP Deepa

6 Acknowledgements

The authors wish to thank the referees for their valuable comments.

References

[1] Taha HA, 1976, Operations research, Mac Millan Publishing Co. Inc., New York (NY).

[2] Bhat NU, 2003, Parameter estimation in M |G|1 and GI|M |1 queues using queue

length data, pp 96-107 in Srinivasan SK & Vijayakumar A (Eds.), Stochastic

point processes, Narosa Publishing House, New Delhi.

[3] Rao RC, 1974, Linear statistical inference and its applications, Wiley Eastern Pvt.
Ltd, New Delhi.

[4] Sinha SK, 1986, Reliability and life testing, Wiley Eastern Ltd., New Delhi.


