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Abstract

In many species, like the Cape Rock Lobster (Jasus lalandii), the life cycles of males and
females differ. This may motivate the use of two-sex models in a stock-assessment analysis.
It is also true for this resource, that juveniles do not reach sexual maturity immediately.
Therefore a delay-difference model is appropriate. In this study we follow a bio-economic
approach and use a two-sex delay-difference model to determine a maximum economic yield
strategy. Thus we determine an economic optimum steady state solution at which to harvest
this resource subject to the biological constraints of the species.
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1 Introduction

In our attempts to model the population structure of species it is often necessary to
include the entire life history of the population, as some events do have an immediate and
homogeneous long term impact. A natural way to model these long term effects on the
population dynamics is by using delay difference equations. The use of such discrete time
population models is popular in fishery management strategies as is the case, for example,
with the Pacific salmon fishery [5].

The standard model reads,
Nt+1 = F (Nt),

where Nt is the density of the population at time t and F (Nt) is a recurrence function.
Note that the population density at time t + 1 depends entirely on the population density
at time t.

The population structure of any developed species, like birds or fish, includes both sexually
mature and immature individuals, depending on their age. Thus, sexual maturity should
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be incorporated into the difference equation. A delay of T years in the model implies that
it takes a newborn T + 1 years to reach sexual maturity. In some cases recruitment (that
is the number of newborns that reach spawning age) is assumed to be independent of
the current population and it is also assumed that a proportion of the current population
survives to the next year. Assume also that the recruitment depends entirely on the density
of the population T + 1 years earlier. Then a delay difference model for the density is

Nt+1 = σNt + F (Nt−T ), (1)

where σ (0 < σ < 1) is the survival coefficient and F the recruitment function [3].

In some species one distinguishes between genders at certain stages in their lifetime. Such
species are called dioecious species. Important considerations in the life cycles of sexes are
mortality, growth and development, and fecundity. As discussed by Caswell and Weeks
(1986) the male mortality of humans almost always exceeds female mortality. They also
addressed some other significant differences among sexes in nature. Often females reach
maturity later than males. For example, the mature female turtle Pseudemys scripta is
2.7 – 3.2 times the mature age of the males, while in some freshwater fish species females
are about 1.3 times the age of males at maturity [1]. Other experiments showed that
sex-specific predation rates of freshwater copepods (Diaptomus) occur [10].

Sexual dimorphism in fish species is of significance in population dynamics, as for instance
the growth rate of the two sexes may differ. It has therefore become important to extend
the standard delay model to a two-sex model, as was done by Cruywagen (1996). He
investigated the effect of the delay time and also that of a constant effort harvesting
strategy, on a population’s stability. We discuss some of these results here. In §1.1 we
consider the recruitment model that was proposed by Cruywagen (1996). As is the case for
the monoecious species (not shown here) periodic solutions result for specific parameter
values. These bifurcations to two-, four- or eight-cyclic solutions are illustrated in §1.2.
We include harvesting in the model in §1.3 and in §1.4 a general bio-economical steady
state solution is determined.

In §2 an application to the Cape Rock Lobster (Jasus lalandii) follows. We formulate
a biological model, based on the work of Cruywagen (1995), in §2.1. In §2.2 the use
of the available data in the model is explained and a maximum likelihood parameter
estimation procedure is used to estimate some outstanding biological parameters in §2.3.
Once all biological parameters are known, it is possible to investigate a bio-economic
modelling solution. Some bio-economic equilibrium results are given and discussed in
§2.4. Conclusions follow in §3.

1.1 The Recruitment Model

Stock-recruitment analysis concerns the empirical relationship between the spawning stock
(or mature population) and the recruitment of individuals to the spawning stock. Usually
it is the spawning stock that is controlled by fishery management procedures. A thorough
knowledge of all life stages prior to joining the mature population is thus necessary to
be able to predict the effect that a possible change in the spawning stock might have on
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recruitment. A stock-recruitment curve attempts to describe how the mean recruitment
rate varies with stock size.

Suppose S is the stock size, then the Ricker stock-recruitment function has the form

F (S) = dSec(1−S), (2)

where c denotes the initial slope of the curve and d is some constant [12].

Now consider a two-sex model. Let Nm
t represent the number of males at time t, while

Nf
t represents the number of females at time t. Assume the survival factors for male and

females to be σm and σf respectively and the time delay factors u and v respectively of the
male and female population. Then a non-harvested population model with a sex-structure
is given by

Nm
t+1 = σmNm

t + H(Nm
t−u, Nf

t−u)

Nf
t+1 = σfNf

t + G(Nm
t−v, N

f
t−v), (3)

where H is a function representing the number of recruits that will develop into males and
G is a function representing the number of recruits that will develop into females [7].

For dioecious populations the relative proportions between males and females become
important and will be modelled here. First we wish to define the recruitment function.
Let the function ψ represent the number of zygotes (first form of newborn) produced as
a proportion of the number produced when an unlimited number of males are available.
Then the number of zygotes, n(t), produced by the mature population in year t is

n(t) = Nf
t ψ(Nm

t , Nf
t ).

See Bergh (1991) for a discussion of the properties of the function ψ. He proposed using
the modified harmonic mean marriage function

ψ(Nm
t , Nf

t ) =
Nm

t

κ + Nm
t + Nf

t

, (4)

where κ is positive and real. This function is an adaptation of the reliable harmonic mean
marriage function that is used to model mammal populations [4].

Here we use (4) to define the recruitment functions H and G. It is likely that in certain
populations the number of male to female zygotes are not equal and this is addressed in
the model. Let θ and (1− θ) be the proportions of the zygotes that are males and females
respectively. Since there is a delay of u years for males and v years for females before the
zygotes become mature, the population density at each year is important and should be
incorporated. In terms of the model above this implies that

H(Nm
t , Nf

t ) = θF (n(t)) and G(Nm
t , Nf

t ) = (1 − θ)F (n(t)) ,

where F (n) is the stock recruitment function [7].
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If F (n) is the Ricker function with d = 1, then

H(Nm
t−u, Nf

t−u) = θn(t − u) exp (c (1 − n(t − u)))

and

G(Nm
t−v, N

f
t−v) = (1 − θ)n(t − v) exp (c (1 − n(t − v))) ,

or

H(Nm
t−u, Nf

t−u) = θ
Nm

t−uNf
t−u

κ + Nm
t−u + Nf

t−u

× exp

[

c

(

1 −
Nm

t−uNf
t−u

κ + Nm
t−u + Nf

t−u

)]

(5)

and

G(Nm
t−v, N

f
t−v) = (1 − θ)

Nm
t−vN

f
t−v

κ + Nm
t−v + Nf

t−v

× exp

[

c

(

1 −
Nm

t−vN
f
t−v

κ + Nm
t−v + Nf

t−v

)]

. (6)
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Figure 1: The dynamical solution at equilibrium of the two-sex model (3) using equations (5)

and (6). (i) Male stock against the parameter c. (ii) Female stock against the parameter c, where

θ = 0.6, σ = 0.0, and male and female delay factors are u = v = 0.0.

1.2 Periodic Solutions and Bifurcations

We now address the assumption made by Botsford (1992), namely that all individuals
contribute equally to recruitment. We repeat the method used by Botsford, but this
section goes further than his studies and differentiates between the sexes. We use (5)
and (6) in the two-sex delay difference model (3) and investigate the effect of an added

age structure on the model by plotting the numerical solution of Nm
t and Nf

t over a
number of time steps (for example 100 steps) after it has reached equilibrium (we take it
that the system has reached equilibrium after 100 steps) as function of c. We first wish
to investigate the effect of the proportion of male to female zygotes on the steady state
solution. Secondly, we introduce a non-zero survival rate and illustrate how the biological
process changes when a fraction of the parental stock survives to the next year. Thirdly,
we also investigate what effect the delay factors on recruitment will have on the solution.
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Example 1

Figure 1 shows the dynamical solution of (3) for the case where u = v = 0 and kf = 0.4.
Note that a series of bifurcations occur. These bifurcations are simultaneous for the male
and female populations. The regions for periodic solutions are listed in Table 1, with the
interval for a stable steady state being 0.0 < c < 3.47. In this example we see that a
smaller proportion of zygotes develop into females (θ = 0.6), which causes a female steady
state solution which is lower than that of the males. Note also that a zero steady state for
the stock size occurs in the lower interval of c, which is certainly not desirable. ¥

Example 1 Example 2 Example 3
θ = 0.6 θ = 0.5 θ = 0.5

σm = σf = 0.0 σm = σf = 0.0 σm = σf = 0.05
Behaviour Parameter, c Parameter, c Parameter, c

stable steady state 0.0 < c < 3.47 0.0 < c < 3.44 0.0 < c < 3.46
2-point cycle 3.47 < c < 3.88 3.44 < c < 3.84 3.46 < c < 3.93
4-point cycle 3.88 < c < 3.98 3.84 < c < 3.94 3.93 < c < 4.07
chaos c > 4.02 c > 3.97 c > 4.13

Table 1: Approximate bifurcation positions for both male and female populations of (3), using

equations (5) and (6).
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Figure 2: The dynamical solution at equilibrium of the two-sex model (3) using equations (5)

and (6). (i) Male stock against the parameter c. (ii) Female stock against the parameter c, where

θ = 0.5, σ = 0.0 and the delay factors are u = v = 0.

Example 2

The proportion of zygotes that develop into females also has an effect on the stability
region, as will be noted by the difference in the stability interval, as shown by Figure 2.
Here the only difference in parameter values from those in Example 1 is that θ = 0.5. The
dynamical behaviour is also listed in Table 1. The interval for a stable steady state is now
0.0 < c < 3.44. Note also that the male and female populations are now equal in size, as
expected. Again, a zero stock size occurs for similar values of c. ¥
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Example 3

Next we wish to illustrate the effect of the survival factor on the stability intervals. In
this example we have introduced an equal survival factor of 0.05 to the male and female
stock in (3). The remaining parameter values were taken as in Example 2. The interval
on c for a stable equilibrium population level here is 0.0 < c < 3.46, while we find chaos in
the region c > 4.13. Thus, the introduction of survival increases stability. Compare also
the regions for periodic solutions of Examples 2 and 3 in Table 1. In Figure 3 this effect,
of an increased survival factor on the stability, may be illustrated even better when we
increase the survival factor to 0.5. The results for the female stock are identical. Here it
is interesting to note that the interval where a zero stock size occurs, is in a lower interval
of c, compared to the interval of Examples 1 and 2. ¥
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Figure 3: The dynamical solution at equilibrium of the two-sex model (3), using equations (5)

and (6). Male stock against the parameter c, where θ = 0.5, σ = 0.5 and the delay factors are

u = v = 0.0.

Examples 4 and 5

Here we use the same model and add a delay factor of u = v = 1. Figure 4(i) illustrates the
stability behaviour of the system with a survival factor of 0.5. The critical value after which
chaos occurs is c = 3.45. To investigate the effect the delay factor has on the biological
behaviour of the stock we now increase the delay to u = v = 3. Here the critical value
is c = 2.69, which indicates a smaller range of c values where stability in the behaviour
exists (see Figure 4(ii)). Thus, increasing the delay factor destabilizes this equilibrium.
Note also that outside the stability region chaos appears immediately, without an interval
where periodic solutions occur. ¥

1.3 Harvesting

We introduce here the model of Cruywagen (1996). Take Nm
t and Nf

t to be the pre-

harvest densities of the breeding male and female populations at time t. Assume that
the harvesting takes place during the time interval [t, t + ∆t], where ∆t is small. Assume
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Figure 4: The dynamical solution at equilibrium of the two-sex model (3), using equations (5)

and (6). Male stock against the parameter c, where θ = 0.5, σ = 0.5 and (i) the delay factors are

u = v = 1.0, (ii) the delay factors are u = v = 3.0.

further that reproduction takes place during the interval [t + ∆t, t + 1 − ∆t] and that

recruitment occurs during the time interval [t + 1−∆t, t + 1]. Let hm
t and hf

t be the male
and female harvest functions, respectively, then the post harvest densities at time t are
Sm

t = Nm
t − hm

t and Sf
t = Nf

t − hf
t . The general two-sex delay difference model (3) then

becomes

Nm
t+1 = σmSm

t + H(Sm
t−u, Sf

t−u),

Nf
t+1 = σfSf

t + G(Sm
t−v, S

f
t−v), (7)

where H(Sm, Sf ) and G(Sm, Sf ) denote the male and female recruitment functions as
before. In this model it takes males u + 1 years to reach maturity, while it takes fe-
males v + 1 years. We expect no recruitment when either the male or female population
has been depleted, and also that the recruitment functions should remain non-negative.
Therefore Cruywagen (1996) assumes the following properties for the functions H(Sm, Sf )
and G(Sm, Sf ):
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• H(Sm, Sf ) = G(Sm, Sf ) = 0 if Sm = 0 or Sf = 0,

• G(Sm, Sf ) > 0 and H(Sm, Sf ) > 0 if Sm > 0 and Sf > 0.

Cruywagen (1996) has shown the existence of a steady state solution and has conducted
various analyses on how the delay periods, the survival factor and the constant harvesting
effort, affect the population stability at the steady state.

1.4 Optimal Harvesting Policy

Finally we introduce bio-economic aspects to the model. Clark (1990) took the total
value of all future net revenue, namely the present value and determined the equilibrium
population for a monocious species that maximizes the present value. This maximum is
subject to the biological model.

We now extend Clark’s work for discrete single-sex delay models to discrete two-sex delay
models. We apply this model and determine an optimal harvesting strategy, by following
Clark’s solution and investigating a maximum economic yield strategy by applying the
standard Lagrangian optimization method.

Given a feasible harvest policy we model future stock levels using equation (7). Thus

with initial population levels, Nm
0 and Nf

0 , and past survival levels Sm
−w and Sf

−w for
w = 1, 2, . . . , β known, the population levels can be determined.

The sole owner’s bio-economic objective is to maximize the present value function

PV =
∞

∑

k=0

αkΠk(N
m
k , Nf

k , hm
k , hf

k),

where

α =
1

1 + i
,

with i the discount rate and Πk the profit in period k. Let Cm and Cf be the total cost
functions of catching male and female fish respectively. We assume that

Cm(Nm) =
r

qmNm
and Cf (Nf ) =

r

qfNf
,

where r is now defined as the cost per unit effort and qm and qf the catchability coefficients
for the male and female populations respectively. If we take pm and pf to be the price per
unit male and female fish, then the net revenue function is

Πk =

∫ Nm
k

Nm
k
−hm

k

[pm − Cm(x)]dx +

∫ N
f
k

N
f
k
−h

f
k

[pf − Cf (x)]dx. (8)

The optimization method with Lagrange multipliers may be used to determine the steady
state population for optimal harvesting. The Lagrangian for the objective functional
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defined above, subject to the two-sex delay model, is

L =
∞

∑

k=0

(

αkΠk(N
m
k , Nf

k , hm
k , hf

k)

−λ(1,k)[N
m
k+1 − σm(Nm

k − hm
k ) − H(Nm

k−u − hm
k−u, Nf

k−u − hf
k−u)]

−λ(2,k)[N
f
k+1 − σf (Nf

k − hf
k) − G(Nm

k−v − hm
k−v, N

f
k−v − hf

k−v)]
)

,

where λ(1,k) and λ(2,k) are the Lagrangian multipliers.

The necessary conditions for optimality on all the unknown variables are

∂L

∂Nm
k

=
∂L

∂Nf
k

=
∂L

∂hm
k

=
∂L

∂hf
k

=
∂L

∂λ(1,k)
=

∂L

∂λ(2,k)
= 0, for k = 0, 1, 2, . . . ,∞.

We wish to find an equilibrium solution that satisfies these equations. Such an equilibrium
is an optimal harvesting level in the management strategy. Also, at the steady states we
may drop the subscript, k, on the populations sizes and hence also on Π. Thus at the
steady states the population sizes satisfy the equations

Nm = σm(Nm − hm) + H(Nm − hm, Nf − hf ),

Nf = σf (Nf − hf ) + G(Nm − hm, Nf − hf ), (9)

where
hm = Nm − Sm and hf = Nf − Sf

as was discussed in §1.3.

Note that ∂H
∂Nm = ∂H

∂Sm , etc., therefore

∂Π

∂hm
− λ(1,0)σm − λ(1,u)

∂H

∂Sm
− λ(2,v)

∂G

∂Sm
= 0, (10)

∂Π

∂hf
− λ(1,u)

∂H

∂Sf
− λ(2,0)σf − λ(2,v)

∂G

∂Sf
= 0 (11)

and

αk ∂Π

∂Nm
− λ(1,k−1) + σmλ(1,k) + λ(1,k+u)

∂H

∂Sm
+ λ(2k+v)

∂G

∂Sm
= 0, (12)

αk ∂Π

∂Nf
+ λ(1,k+u)

∂H

∂Sf
− λ(2,k−1) + λ(2,k)σf + λ(2,k+v)

∂G

∂Sf
= 0, (13)

αk ∂Π

∂hm
− λ(1,k)σm − λ(1,k+u)

∂H

∂Sm
− λ(2,k+v)

∂G

∂Sm
= 0, (14)

αk ∂Π

∂hf
− λ(1,k+u)

∂H

∂Sf
− λ(2,k)σf − λ(2,k+v)

∂G

∂Sf
= 0 (15)

for k = 1, 2, 3, . . . ,∞. Add equation (12) to (14) and equation (13) to (15), then

λ(1,k−1) = αk

(

∂Π

∂Nm
+

∂Π

∂hm

)

(16)

λ(2,k−1) = αk

(

∂Π

∂Nf
+

∂Π

∂hf

)

(17)

for k = 1, 2, 3, . . . ,∞ and substitute equations (16) and (17) into equations (14) and (15).
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Then

αk ∂Π

∂hm
− σmαk+1(

∂Π

∂Nm
+

∂Π

∂hm
) − α(k+u+1)(

∂Π

∂Nm
+

∂Π

∂hm
)

∂H

∂Sm

−αk+v+1(
∂Π

∂Nf
+

∂Π

∂hf
)

∂G

∂Sm
= 0

αk ∂Π

∂hf
− σfαk+1(

∂Π

∂Nf
+

∂Π

∂hf
) − αk+u+1(

∂Π

∂Nm
+

∂Π

∂hm
)
∂H

∂Sf

−αk+v+1(
∂Π

∂Nf
+

∂Π

∂hf
)

∂G

∂Sf
= 0

or
[

σm + αu ∂H

∂Sm

] ∂Π
∂Nm + ∂Π

∂hm

∂Π
∂hm

+ αv ∂G

∂Sm

∂Π
∂Nf + ∂Π

∂hf

∂Π
∂hm

=
1

α
, (18)

[

σf + αv ∂G

∂Sf

] ∂Π
∂Nf + ∂Π

∂hf

∂Π
∂hf

+ αu ∂H

∂Sf

∂Π
∂Nm + ∂Π

∂hm

∂Π
∂hf

=
1

α
. (19)

Use equations (18) and (19) together with the equilibrium equations (9) to solve for Nm,
Nf , hm and hf . When equation (8) is used we find that

∂Π

∂Nm
=

r

qmSm
−

r

qmNm

and
∂Π

∂hm
= pm −

r

qmSm
.

Similar expressions are determined for the females. Equations (18) and (19) are now:

[

σm + αu ∂H
∂Sm

] pm−
r

qmNm

pm−
r

qmSm
+ αv ∂G

∂Sm

pf−
r

qf Nf

pm−
r

qmSm
= 1

α
,

[

σf + αv ∂G
∂Sf

]

pf−
r

qf Nf

pf−
r

qf Sf
+ αu ∂H

∂Sf

pm−
r

qmNm

pf−
r

qf Sf
= 1

α
.

(20)

2 Application to the Cape Rock Lobster

In this section the two-sex delay model is applied to the Cape Rock Lobster Resource
(Jasus lalandii).

2.1 Biological Model

Assume the total number of zygotes in year τ to be Z(Sm
τ , Sf

τ ), where Sm
τ and Sf

τ is the
post harvest male and female densities. Assume also that a proportion, θ, of these zygotes
will develop into males. It is observed in nature that female juveniles take longer than
males to reach sexual maturity. We therefore assume that v > u. The general two-sex
model (7), where

H(Sm
t−u, Sf

t−u) = θZ(Sm
t−u, Sf

t−u)
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and
G(Sm

t−v, S
f
t−v) = (σf )v−u(1 − θ)Z(Sm

t−v, S
f
t−v),

becomes

Nm
t+1 = σmSm

t + θZ(Sm
t−u, Sf

t−u)

Nf
t+1 = σfSf

t + (σf )v−u(1 − θ)Z(Sm
t−v, S

f
t−v). (21)

In §1.1 the adapted harmonic mean marriage function was discussed along with the Ricker
stock-recruitment functions. Here we propose an adapted version of the Ricker-type func-
tion to describe recruitment. For the rock lobster, we assume that enough males are
available so that

Z(Sm
τ , Sf

τ ) = κ + β(Sf
τ − δ) exp(−ωSf

τ ), (22)

where κ, β, δ and ω are positive constants. In general, with this proposed function, re-
cruitment is higher than that in the original Ricker function in §1.1 and decreases asymp-
totically to κ instead of zero. In order to have a zero recruitment with zero stock it is
necessary to shift the entire function to the right with the introduction of δ. Also, as with
the Ricker function, with an increase in stock size the mortality rate increases for high egg
productions.

As the available data are in terms of biomass, rather than in terms of population size,
we have to adapt the above model (22) accordingly. We use the method followed by
Cruywagen (1995) and perform this conversion using the Ford-Walford model [8]. That
is, assume that the growth in mean body weight at age, a, may be described by the linear
relationship

wm(a) = αm + ρmwm(a − 1),

where wm(a) is the weight at age a, and αm and ρm are empirical constants [8]. The
equation for females are analogous, with f as the subscript instead of m.

Assume M(t) to be the total biomass of males at maturity (age u + 1 and older) and
similarly F (t) to be the total female biomass at age v + 1 and older.

Following Cruywagen’s (1995) approach, it is now possible to express biomass, in terms
of numbers multiplied by body weight, namely

M(t + 1) =
∞

∑

a=u+1

Sm
t+1(a)wm(a),

F (t + 1) =
∞

∑

a=v+1

Sf
t+1(a)wf (a), (23)

where Sm
t+1(a) refers to the number of males aged a, in the mature male population in

year t + 1, while Sf
t+1(a) is the equivalent for females. If hm

t+1(a) represents the number
of males of age a that have been harvested, and hm

t+1(u + 1) represents the number of the
previous year’s male recruits that have been harvested, then

Sm
t+1(a) = σmSm

t (a − 1) − hm
t+1(a) if a > u + 1,

Sm
t+1(u + 1) = θZ

(

Sm
t−u, Sf

t−u

)

− hm
t+1(u + 1) if a = u + 1. (24)
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Similar relationships may be obtained for females. After substituting (24) in (23) we have

M(t + 1) = σmαmSm
t + σmρmM(t) − Hm(t + 1) + θwm(u + 1)Z(Sm

t−u, Sf
t−u),

where

Hm (t + 1) =
∞

∑

a=u+1

hm (a)wm (a) ,

and similarly for females.

Average weights, wm(t) and wf (t), for mature males and females respectively in year t,
are defined as

wm(t) =
M(t)

Sm
t

and wf (t) =
F (t)

Sf
t

.

This is similar to what was done by Cruywagen (1995). The equations then reduce to

M(t + 1) = σm

(

αm

wm(t)
+ ρm

)

M(t) − Hm(t + 1)

+ θwm(u + 1)Z

(

M(t − u)

wm(t − u)
,

F (t − u)

wf (t − u)

)

(25)

F (t + 1) = σf

(

αf

wf (t)
+ ρf

)

F (t) − Hf (t + 1)

+ (1 − θ)(σf )v−uwf (v + 1)Z

(

M(t − v)

wm(t − v)
,

F (t − v)

wf (t − v)

)

. (26)

At the population’s pristine level, we assume

M(t) = KM , F (t) = KF , for all t

and the population levels in numbers are

km =
KM

wm
and kf =

KF

wf

.

If we ignore the catches (because we are at the pristine state) we can use the numbers
model (21) and biomass model (25, 26) to derive the relationship between the average
male weight at the pristine state, wm, and the natural male survivorship parameter, σm,
namely

wm =
σmαm + wm (u + 1) [1 − σm]

1 − σmρm
. (27)

For the females the equation is

wf =
σfαf + wf (v + 1) [1 − σf ]

1 − σfρf

. (28)

Equations (25) and (26) at equilibrium may be used to determine the relationship between
the male and female carrying capacities,

KF =
σv−u

f (1 − θ) (1 − σm) wf

θ (1 − σf )wm
KM (29)

[6]. By using the last three equations it is possible to reduce the number of parameters to
be estimated, as three of them are given here in terms of the others.
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2.2 Data

As this is a two sex model we seek data sets on both males and females. We now assume
that the biological parameters u, v, σf , σm and θ are known.

The values of the delay times are taken as u = 6 and v = 7 (according to the base case in
the study by Cruywagen (1995)) and there is no reason not to take θ = 0.5.

Johnston and Berg (1993) were able to estimate the male survivorship parameter to be in
the range 0.82 to 0.95. Here, the values of σm = 0.90 and σf = 0.92 are adopted, as were
used by Cruywagen (1995).

The parameter KF is expressed in terms of the others, by using equation (29).

Other data sets required are the catch per year, catch per unit effort, Ford-Walford pa-
rameters and average weight per year. Parameter values required in the model are the
male carrying capacity, KM and the recruitment modelling parameters κ, δ, ω and β.

Due to an agreement with Marine and Coastal management of South Africa we do not
publish specific data here, but rather discuss the process that was followed. Data that are
available for certain years are the total catch per season, the percentage males in the catch
and the catch per unit effort series. Also available are tagging data of different fishing
areas during different years.

The total catch data is available for the period 1900–1995, together with the proportion
of males in the catch. (We assume the population to have been at its pristine level prior
to 1900.) Refer to Cruywagen (1995) for a detailed discussion on the catch sex ratio.
Note that it is common to find a very high percentage of the catch to be males. It is also
necessary to note that catches dropped drastically after the very high catch rates during
the 1950’s and 1960’s.

The catch-per-unit-effort (CPUE) data are available since 1975. Note here the catch per
unit effort data for males and females are in the same proportion as in the catch. Until
the 1991 season a legal minimum carapace length of 89 mm was enforced. In the 1992
season the legal minimum carapace length was dropped from 89 mm to 80 mm. Since the
1993 season it has been dropped even further to 75 mm, mainly due to the unavailability
of larger lobsters and the market preference for smaller lobsters. As a result, with the
same effort as before, larger catches were taken which thus lead to an increased CPUE.

We use the Ford-Walford growth parameters as was calculated using the tagging data [6].

Next it is also necessary to determine the average weights of males and females per year,
starting at the pristine state. Cruywagen (1995) also reported that a preferred method
of obtaining size-frequencies is by using the results of diving experiments, rather than
the examination of catches, as these are selective catching. Such experimental results are
reported in [6].

We follow Cruywagen (1995) and assume that the decline in the average weights is pro-
portional to the total of catches over years. He uses a linear interpolation method that
reduces the weights wm(1900) and wf (1900) towards the average weights of males, wm(t)
and females, wf (t) per year. This decline is proportional to the total catch taken until
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that year, namely,

wm(t) = wm(1901) +
[wm(1995) − wm(1901)]

∑t
t
′
=1901

Hm(t
′

)
∑1995

τ=1901 Hm(τ)
,

where only the pristine average weights, wm(1901) and wf (1901) and the 1995 average
weights, wm(1995) and wf (1995), are known. Equations (27) and (28) were used to
calculate the pristine average male weights. In terms of lengths that is 101 mm for males,
and 71 mm for females. Take the 1995 average mature male weight to be that of a 75 mm
animal and that of the females of a 68 mm animal. (These lengths agree well with the
experimental data for males, but differ to some extent from those of the females.) The
calculated average weights for males and females are given in Figure 5. It is noticeable
that the male curve has a very steep decline compared to that of the female curve. The
decline is the direct result of very high catches of earlier years and the fact that most of
the catches landed, consists of males as they are naturally larger (in size) than the females.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Year

A
ve

ra
ge

 W
ei

gh
t (

kg
)

Average Male weight
Average Female weight

Figure 5: Calculated average male and female weight time series for the Cape Rock Lobster

resource given in kg.

The parameter estimation procedure that is described in the following section was used
to estimate the other six parameters, KM , Kf , κ, δ, ω and β. Equation (29) is used to
determine Kf . Three parameters, κ, δ and ω were fixed at some chosen values and by
fitting the model the two remaining parameters could be estimated, namely β and the
male carrying capacity KM . The Powell optimization method was used in the parameter
estimation process [11].
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κ δ β ω Km − ln L

0 0 23.5 1.00 × 10−6 2.24 × 109 38.13
2.97 × 107 0 3.86 × 104 8.00 × 10−8 4.18 × 108 42.00
3.00 × 107 6.00 × 107 1.05 × 104 2.00 × 10−6 5.12 × 108 43.14
3.00 × 107 6.00 × 107 927.60 5.00 × 10−8 4.64 × 108 42.73
3.00 × 107 3.00 × 107 734.95 5.00 × 10−8 4.63 × 108 42.67
3.00 × 107 5.00 × 106 624.90 5.00 × 10−8 4.62 × 108 42.64
3.00 × 107 1.00 × 106 610.30 5.00 × 10−8 4.61 × 108 42.64

Table 2: The results of the model application on the Cape Rock Lobster with various parameter

choices in the model. The parameters κ, δ and ω are chosen while the algorithm searches for Km

and β.

2.3 Estimation of Biological Parameters

We use the maximum likelihood parameter estimation procedure to estimate the male
CPUE. Assume that the CPUE is proportional to the average between the pre- and post
harvest male population sizes, namely

ĈPUEm(t) =
Hm(t)

E(t)
=

qm

2
(2M(t) + Hm(t)) ,

where qm is the male catchability coefficient and E(t) the effort level at time t. Similarly
the female CPUE is modelled by

ĈPUEf (t) =
Hf (t)

E(t)
=

qf

2

(

2F (t) + Hf (t)
)

,

where qf is the female catchability coefficient.

It is standard practice to assume that the observed catch-per-unit-efforts, CPUEm(t) and
CPUEf (t) have a lognormal distribution [8]. The model predicted CPUE may then be

expressed as ĈPUEm(t) = CPUEm(t)eε, with ε = N(0, σ2) a normal distribution with
mean 0 and standard deviation σ. A similar expression holds for the female CPUE.

By fitting the modelled CPUE series to the observed series the unknown parameters in
the delay model (25, 26) could be estimated.

Define the likelihood function as

L{ε |0, σ} =

(

1
√

2πs2
m

)p

exp

(

−

p
∑

t

[ln CPUEm(t) − ln
qm

2
(2M(t) + Hm(t))]2/(2s2

m)

)

×





1
√

2πs2
f





p

exp

(

−

p
∑

t

[ln CPUEf (t) − ln
qf

2
(2F (t) + Hf (t))]2/(2s2

f )

)

,

where p refers to the number of years for which data are available. We have discussed
earlier why the catchability coefficient differs before 1992 and thereafter. Thus take qm,1

to be the catchability coefficient for males during the period 1990–1991 and qm,2 to be the
coefficient for the period since 1993. Similar notation is used for the females.
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At the maximum for the log-likelihood function the catchability coefficients satisfy

qm,1 =
1991
∏

t=1975

(

2CPUEm(t)

(2M(t) + Hm(t))

) 1

17

,

qm,2 =
1995
∏

t=1993

(

2CPUEm(t)

(2M(t) + Hm(t))

) 1

3

,

qf,1 =
1991
∏

t=1975

(

2CPUEf (t)

(2F (t) + Hf (t))

) 1

17

,

qf,2 =
1995
∏

t=1993

(

2CPUEf (t)

(2F (t) + Hf (t))

) 1

3

with standard deviations

s2
m,1 =

1

17

1991
∑

t=1975

[

ln CPUEm(t) − ln
qm,1

2
(2M(t) + Hm(t))

]2
,

s2
m,2 =

1

3

1995
∑

t=1993

[

ln CPUEm(t) − ln
qm,2

2
(2M(t) + Hm(t))

]2
,

s2
f,1 =

1

17

1991
∑

t=1975

[

ln CPUEf (t) − ln
qf,1

2
(2F (t) + Hf (t))

]2
,

s2
f,2 =

1

3

1995
∑

t=1993

[

ln CPUEf (t) − ln
qf,2

2
(2F (t) + Hf (t))

]2
.
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Figure 6: The proposed recruitment function for the application to the Cape Rock Lobster

resource, namely Z(Sm, Sf ) = κ + β(Sf − δ)e(−ωSf ). The parameters are taken as κ = 3.0 × 107,

β = 610, δ = 1.0 × 106, ω = 5.0 × 10−8.

The Powell minimization method was used to perform the CPUE fit to the observed
data. Various choices for the three parameters κ, δ and ω of the recruitment function
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were investigated and compared (see Table 2). As it is not easy to estimate all unknown
parameters by the fitting procedure we used a trial and error process to decide on realistic
parameters for the recruitment function in (22). A typical set is κ = 3.0×107, δ = 1.0×106

and ω = 5.0 × 10−8. The best fit for this set estimates β = 610 and Km = 4.614 × 108.
The recruitment curve with these parameter values is given in Figure 6.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

8

Year

B
io

m
as

s 
(m

t)

Male population
Female population

Figure 7: Predicted male and female population size in biomass for the Cape Rock Lobster.

Figure 7 shows the predicted male and female stock size of the model (25) and (26) for
each year. Note the general decline since 1900 in stock size for both the males and females.
Again, as was the case with the average weights predicted, the difference in the male and
female curves is due to the difference in male and female catches.

Figures 8 (a) and (b) illustrate the fits of the modelled CPUE to the observed male and
female CPUE values.

2.4 Bio-economic Modelling

It is possible to determine expressions for the optimal bio-economic population and catch
levels in terms of the production function given in §2.1, namely equations (21) and (22).

At the bio-economic equilibrium the biological model (21) and equation (20) have to be
satisfied. Here,

H(Sm, Sf ) = θZ(Sm, Sf )

and

G(Sm, Sf ) = (σf )(v−u)(1 − θ)Z(Sm, Sf )
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Figure 8: (a) Male modelled CPUE fit to observed data for the Cape Rock Lobster. (b) Female

modelled CPUE fit to observed data for the Cape Rock Lobster.

and the set of equations becomes

Nm = σmSm + θZ,

Nf = σfSf + (1 − θ)σv−u
f Z,

σm

(

pm −
r

qmNm

)

=
1

α

(

pm −
r

qmSm

)

,

(

σf + αv(1 − θ)σv−u
f

∂Z

∂Sf

) (

pf −
r

qfNf

)

+αuθ
∂Z

∂Sf

(

pm −
r

qmNm

)

=
1

α

(

pf −
r

qfSf

)

.

(30)

Thus we have four equations in the four unknowns Nm, Nf , Sm, Sf , as all other param-
eters have been estimated in the previous section.

Let us now consider a steady state solution for equations (30), using the estimated biolog-
ical parameters of the previous paragraph. Take Γ = exp(−ωSf ) in equation (22). Then
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Γ → 0 when Sf → ∞. To assume Γ ≈ 0 is not general, but possible for large female stock
sizes. Under conditions where the function ∂Z

∂Sf → 0 the set of equations (30) simplifies to
the point where they may be solved analytically. The equations reduce to a pair of second
order polynomials and the steady state solution thus tends to the roots of these polyno-
mials as Sf → ∞. Without describing the analytical expressions here, we rather show
some results. Take the biological parameter values as in the previous section, then Table
3 shows some of these solutions for different economic values. The results of the stock
sizes are given in numbers. This table gives the equilibrium stock level to be maintained
in order to maximize the total present value for different economical factors.

pm pf r α Nm(107) Nf (108) Sm(107) Sf (108) hm(107) hf (106) Π(109)

100 100 80 0.98 3.53 1.34 2.26 1.3 1.27 3.38 1.61
100 100 70 0.98 3.37 1.25 2.07 1.21 1.29 4.16 1.71
100 100 50 0.98 3.00 1.05 1.66 1.00 1.33 5.84 1.92
80 80 50 0.98 3.23 1.18 1.93 1.13 1.31 4.76 1.43
50 50 50 0.98 3.84 1.50 2.60 1.48 1.24 1.97 0.72
100 80 50 0.98 3.00 1.18 1.66 1.13 1.33 4.76 1.71
80 100 50 0.98 3.23 1.05 1.93 1.00 1.31 5.84 1.63
100 100 50 0.97 2.92 1.04 1.58 0.98 1.34 5.99 1.94
100 100 50 0.95 2.79 1.01 1.43 0.94 1.36 6.25 1.98

Table 3: The bio-economic equilibrium results for different economic values when using the

biological values given in Table 2 (last row). Nm is the male pre-harvest stock size in numbers, Nf

is the female pre-harvest stock size in numbers, Sm is the male post-harvest stock size in numbers,

Sf is the female post-harvest stock size in numbers, hm is the annual male harvest, hf is the annual

female harvest and Π is the annual net revenue from such a strategy.

Table 3 shows that the female stock size decreases as the price per female increases, due
to a higher catch demand. On the other hand, the female stock increases with an increase
in the cost per unit effort as the catch will probably decrease. As expected, the female
stock size decreases as the interest rate increases, because future stock will be worth less
under higher rates.

Another interesting result from Table 3 is that the male catch size is independent of the
price per female fish and vice versa.

3 Conclusion

For species like the South African West Coast rock lobster there is a delay before newborns
reach sexual maturity. This phenomenon has been addressed by using a delay difference
model. For many species the population dynamics of the male and female population are
different and it may become necessary to use a two-sex delay difference model in order to
distinguish between the sexes, as was done in this paper.

The overlap of generations has been incorporated in the model by the use of a survival
factor. As an age structure (or increase in survival) is added to the Ricker model the
critical value, where bifurcation occurs, increases such that increased survival increases
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stability. Contrary to this we saw that with the addition of the delay factor, the critical
value decreases and delay is thus destabilizing.

We used the theoretical framework of Cruywagen (1996) and added bio-economic features
to the model. By applying optimal control theory we arrived at the four equations in (9)
and (20) to solve for the four unknowns, Nm, Nf , Sm, Sf , at equilibrium.

In §2 the proposed two-sex delay difference model was applied to the Cape Rock Lobster
resource. Data on this fishery are available only in biomass. Consequently a conversion
from length to weight was necessary in the model. The pristine average male and female
lengths were calculated from equations (27) and (28), and the female lengths differ slightly
from the range on average length from experimental data. This difference may indicate
that the model does not properly describe the population, but note that the experimental
data are only for certain exploited areas and may therefore only be taken as an indication.

A best fit of the modelled CPUE to the observed CPUE was performed. Shortcomings of
this attempt include the drawback that the total outcome relies only on a CPUE series
beyond 1975, when catches were already low. Earlier data are not available. Better model
fits are anticipated in situations where a longer time series is available.

Nevertheless, the model provides a much more detailed description of the resource than
the usual surplus production model. Although we have made assumptions on the recruit-
ment function and harvesting outcome, the above model and results could be usefull in
planning specific future management strategies for male and female populations. Also,
environmental effects on the current stock will influence the recruitment T + 1 years in
the future as the recruitment depends on the delay factors.

We have emphasized the bio-economic approach as opposed to the pure biological approach
for formulating a management strategy. As we have shown, the economic factors do affect
the optimal catch size significantly. Thus, maximizing the total net revenue rather than
maximizing the total catch per year does give a marginally improved management strategy.

Future work may address much more complex models (e.g. stage class- or spatial models).
Such models require detailed data series for their application. However, a more complex
model does not necessarily give more accurate predictions. Given the available data the
delay difference model, such as we have described here, may be of value.
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