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Abstract

A volatility measurement that overcomes the respective problems encountered when imple-
menting the realised and Discrete Sine Transform volatility measurements is defined and
discussed in this paper. First the shortcomings of these measurements are briefly discussed.
Then a modified realised volatility measurement is defined and relevant theoretical results are
derived. Finally simulation results are used to evaluate these three volatility measurements.
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1 Introduction

In Anderson, et al. (2001a, 2001b), Barndorff-Nielsen and Shepard (2001, 2002a, 2002b,
2002c) and Comte and Renault (1998), a model-free (non-parametric) volatility measure-
ment is specified and studied. This measurement, termed realised volatility, satisfies the
criteria of a good measurement. Given this measurement, volatility may be seen as “ob-
servable.” For this measurement, no model is specified and it is relatively error-free (in
the sense that it approximates the second moment of returns very well). Hence it has
considerable advantages relative to other methods. Since it makes it possible for volatility
to be observed relatively error-free, its characteristics, known as stylised facts, are easily
observable and examinable. This leads to the construction of an appropriate volatility
model that can be tested for forecasting purposes.

The problem with the realised volatility measurement is that as the sample frequency in-
creases, market microstructure effects increasingly undermine the assumption that returns
are independently distributed. Bid-ask spread and price discreteness are the main causes
of microstructure effects (Cohen et al., 1981; Glosten, 1994; Roll, 1984; Glottlieb and
Kalay, 1985). Owing to these microstructure effects, it no longer holds that the variance
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of the sum of returns is the sum of the variances of returns. Corsi and Cursi (2003) demon-
strated how to measure volatility in the presence of non-zero autocorrelation of returns
based on the Discrete Sine Transform (DST) approach. This method is appropriate if the
instantaneous volatility is constant, but it is well-known that in practice this is not the
case. Nevertheless, this measurement still gives good estimates of annualised volatility, if
the instantaneous volatility does not change too much as a result of a weighted average
instantaneous volatility over the time horizon being used. In practice, this method cannot
be employed to obtain volatility estimates over short time intervals, e.g. daily or weekly
estimates. Although this measurement may yield good annualised volatility estimates for
any given year, it produces constant daily volatility estimates, which is not satisfactory in
most real practical situations. One way of overcoming this problem is to sample returns
over a short enough time interval for the instantaneous volatility over that period to be
approximately constant. In reality though, too short time intervals are then used, resulting
in noisy volatility estimates. Hence there is still a need for a volatility measurement that
can simultaneously manage microstructure effects and varying instantaneous volatility.

The realised volatility measurement based on quadratic variation martingale theory han-
dles varying instantaneous volatility effectively, but fails to deal with the microstructure
effects. On the other hand, the volatility measurement based on the DST approach man-
ages the microstructure effects efficiently, but breaks down under a changing instantaneous
volatility environment.

A modified realised volatility measurement, which we term microstructure realised volatil-
ity, is subsequently defined in §3. It attempts to address some of the problems of realised
volatility based on the quadratic variation and the DST approaches respectively. This
method is also based on quadratic variation theory, but the underlying return model is
more realistic and incorporates microstructure effects. This measurement is therefore bet-
ter equipped to deal with both microstructure effects and non-constant volatility. Only
the derivation for the first-order autocorrelation version of the model is given, but the
model can easily be extended for higher order lags.

2 Definitions, notation and background

Let St be the market value of the security or index at time t, with pt = log(St). Assume
that the security or index of interest is very marketable, so that at any instant a trade
occurs. We may therefore model the return process and the volatility process in continuous
time. The continuous return process is defined as rt = pt − p0, with t ∈ [0, T ], i.e.
St = S0e

rt . A general return model is

rt = At + Mt, (1)

where At denotes the predictable process, and where Mt denotes the unpredictable process
(local martingale).

For Xt, a semi martingale, the quadratic variation process [X, X]t is given by

[X, X]t = X2
t − 2

∫ t

0
Xs−dXs. (2)
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Anderson, et al. (2001a) showed that

p lim
n→∞

n∑
k=1

(
rtk − rtk−1

)2 = [r, r]t, (3)

where to = 0 and tn = t, and hence

[r, r]t = p lim
n→∞

n∑
k=1

(
rtk − rtk−1

)2 = p lim
n→∞

n∑
k=1

(
rtk , rtk−1

)2 (4)

with rtk,tk−1
= log Stk/Stk−1

. The quadratic variation process [r, r]t may thus be approx-
imated by

∑n
k=1[rtk,tk−1

]2, where t0 = 0, tn = t, and n is as large as possible. For the
model (1) it may easily be shown that

[r, r]t = [M,M ]t. (5)

Anderson, et al. (2001a) defined realised volatility as

RVt,t−h =
n∑

k=1

r2
tk,tk−1

, (6)

where t0 = t − h, tn = t, and n is as large as possible. The time interval considered is
therefore [t− h, t] with length h. Since

[r, r]t − [r, r]t−h = p lim
n→∞

n∑
k=1

r2
tk,tk−1

= p lim
n→∞

RVt,t−h, (7)

[r, r]t− [r, r]t−h may be approximated by the realised volatility measurement RVt,t−h. Let
Ft be the σ field that reflects the information at time t. Then the important result

Var (rt|Ft−h) ≈ E
(
[r, r]t − [r, r]t−h |Ft−h

)
(8)

(over relatively small time intervals) derived by Anderson, et al. (2001a) suggests an
estimator for the variation of the return process between times t−h and t. The expression
in (6) is thus an approximate unbiased estimator for Var (rt|Ft−h) for small h. In practice
Var (At|Ft−h) ≈ Cov(AtMt|Ft−h) ≈ 0 and differs from 0 only over long-time horizons.

Although Var (rt | Ft−h) is unobservable, it may be estimated via (7). By studying the
stylised facts of [r, r]t − [r, r]t−h as an estimate of Var (rt|Ft−h) , a model may be built
for the latter for forecasting purposes. Recall that

∑n
k=1[rtk,tk−1

]2, where t0 = t− h, and
tn = t converges to [r, r]t − [r, r]t−h and not to E

(
[r, r]t − [r, r]t−h |Ft−h

)
. We would like

to have

Var (rt|Ft−h)− E

(
n∑

k=1

[rtk,tk−1
]2|Ft−h

)
= op(1), (9)

but only have Var (rt | Ft−h) ≈ E
(
[r, r]t − [r, r]t−h |Ft−h

)
. However, under some weak

conditions (9) will be true.
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Given (1), these conditions are (Barndorff-Nielsen and Shepard, 2002b):

• At must be continuous,

• Var(At | Ft−h) = Cov(AtMt | Ft−h) = 0,

• E
(∑n

k=1

(
Atk −Atk−1

)2 | Ft−h

)
−→ 0, and

• E
(∑n

k=1

(
Atk −Atk−1

) (
Mtk −Mtk−1

)
| Ft−h

)
−→ 0 as n →∞.

3 A modified realised volatility measurement

The model (1) is not realistic when the sampling frequency is very small, because it
assumes that returns are independent. A model that can handle dependency of returns of
one or more lags is required. A more applicable return model is

rt = At + Mt + φMt−s, (10)

where s is the time between consecutive trades and where At denotes the predictable pro-
cess. Here Mt and Mt−s are unpredictable single processes (local martingales) at different
times as before with 0 ≤ φ ≤ 1. The model (10) assumes first order autocorrelation of
returns. Let h > 2s. Then

Cov{(rt − rt−s)(rt−s − rt−2s)|Ft−h}

= E{(At −At−s + Mt −Mt−s + φ (Mt−s −Mt−2s)) ·
(At−s −At−2s + Mt−s −Mt−2s + φ (Mt−2s −Mt−3s))|Ft−h}
− E (At −At−s|Ft−h) E (At−s −At−2s|Ft−h)

= E{(At −At−s) At−s −At−2s | Ft−h}+ φE{(Mt−s −Mt−2s)2|Ft−h}
− E (At −At−s|Ft−h) E (At−s −At−2s|Ft−h)

= φE{(Mt−s −Mt−2s)2|Ft−h}+ E(At −At−s | Ft−h) E (At−s −At−2s|Ft−h)
− E (At −At−s|Ft−h) E (At−s −At−2s|Ft−h) (11)

because the {At} are independent in a time window of length s. Therefore

Cov{(rt − rt−s)(rt−s − rt−2s)|Ft−h} = φE{(Mt−s −Mt−2s)2 | Ft−h} (12)

and if we assume Mt to follow a Brownian motion process, it follows that

Cov{(rt − rt−s)(rt−s − rt−2s)|Ft−h} =
φ

1 + φ2
(MA(1)− process) . (13)

The same path as was taken for model (1) has to be taken for model (10) in order to
obtain an ex-post measurement for the volatility of model (10). In the following theorem
the variance of the return process is expressed in terms of Mt.
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Theorem 1 Over short time horizons,

Var(rt|Ft−h) = E(M2
t |Ft−h)−M2

t−h + φ (φ + 2) (E(M2
t |Ft−h)−M2

t−h). (14)

Proof

Var(rt|Ft−h) = E{(rt − E(rt|Ft−h))2|Ft−h}
= E{(At + Mt + φMt−s − E(At + Mt + φMt−s|Ft−h))2|Ft−h}
= E{(At + Mt + φMt−s − E(At|Ft−h)−Mt−h − φMt−h)2|Ft−h}
= E{(At − E(At|Ft−h) + (Mt −Mt−h) + φ(Mt−s −Mt−h))2|Ft−h}
= E{(Mt −Mt−h)2 |Ft−h}+ φ2E{(Mt−s −Mt−h)2 |Ft−h}

+ 2φE{(Mt −Mt−h) (Mt−s −Mt−h) |Ft−h}+ Var(At|Ft−h)
+ 2φ Cov(AtMt|Ft−h) + 2φCov(AtMt−s|Ft−h)

= E(M2
t |Ft−h)−M2

t−h + φ2(E(M2
t−s|Ft−h)−M2

t−h)
+ 2φE{(Mt −Mt−s + Mt−s −Mt−h) (Mt−s −Mt−h) |Ft−h}
+ Var(At|Ft−h) + 2φCov(AtMt|Ft−h) + 2φCov(AtMt−s|Ft−h)

= E(M2
t |Ft−h)−M2

t−h + φ2(E(M2
t−s|Ft−h)−M2

t−h)

+ 2φE{(Mt−s −Mt−h)2 |Ft−h}+ Var(At|Ft−h)
+ 2φCov(AtMt|Ft−h) + 2φCov(AtMt−s|Ft−h)

= E(M2
t |Ft−h)−M2

t−h + φ (φ + 2) (E(M2
t−s|Ft−h)−M2

t−h)
+ Var(At|Ft−h) + 2φCov(AtMt|Ft−h) + 2φCov(AtMt−s|Ft−h).(15)

The last three terms in (15) are usually negligible and will only have an influence over
long time horizons. This proves the theorem. �

For Yt, a stochastic process, the quadratic variation process [Y, Y ]t may be approximated
by

p lim
n→∞

n∑
k=1

(
Ytk − Ytk−1

)2
if
∫

Ys−dYs exists, i.e. if
∫

Ys−dYs may be written in terms of Ito integrals.

The quadratic variation process of the model (10) follows as

[r, r]t = r2
t − 2

∫ t

0
rq−drq

= (At + Mt + φMt−s)2 − 2
∫ t

0
(Aq− + Mq− + φMq−s−)drq

= A2
t + M2

t + φ2M2
t−s + 2AtMt + 2φAtMt−s + 2φMtMt−s

− 2
∫ t

0
Aq−dAq − 2

∫ t

0
Mq−dAq − 2φ

∫ t

s
Mq−s−dAq − 2

∫ t

0
Aq−dMq

− 2
∫ t

0
Mq−dMq − 2φ

∫ t

s
Mq−s−dMq − 2φ

∫ t−s

0
Aq−dMq−s

− 2φ

∫ t−s

0
Mq−dMq−s − 2φ2

∫ t

0
Mq−s−dMq−s
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= [M,M ]t + φ2 [M,M ]t−s

+ 2φ

(
MtMt−s −

∫ t

s
Mq−s−dMq −

∫ t−s

0
Mq−dMq−s

)
(16)

because the terms involving {At} are all zero. Define

[M,M−s]t = MtMt−s −
∫ t

s
Mq−s−dMq −

∫ t−s

0
Mq−dMq−s.

In this notation [r, r]t may be written as

[r, r]t = [M,M ]t + φ2 [M,M ]t−s + 2φ [M,M−s]t . (17)

The above definition has a significant implication for ex-post volatility measurements if
the return process is given by (10). Note that

[M,M−s]t = MtMt−s −
∫ t

s
Mq−s−dMq −

∫ t−s

0
Mq−dMq−s

= MtMt−s − p lim
n→∞

n∑
k=s

Mtk−s−1
[Mtk −Mtk−1

]

− p lim
n→∞

n∑
k=s

Mtk−1
[Mtk−s

−Mtk−s−1
]

= MtMt−s − p lim
n→∞

n∑
k=s

(Mtk−s−1
[Mtk −Mtk−1

] + Mtk−1
[Mtk−s

−Mtk−s−1
])

= p lim
n→∞

n∑
k=s

(MtkMtk−s
−Mtk−1

Mtk−s−1
)

− p lim
n→∞

n∑
k=s

(Mtk−s−1
[Mtk −Mtk−1

] + Mtk−1
[Mtk−s

−Mtk−s−1
])

= p lim
n→∞

n∑
k=s

(MtkMtk−s
−Mtk−1

Mtk−s−1
−Mtk−s−1

[Mtk −Mtk−1
]

− Mtk−1
[Mtk−s

−Mtk−s−1
])

= p lim
n→∞

n∑
k=s

(MtkMtk−s
−Mtk−1

Mtk−s−1
−Mtk−s−1

[Mtk −Mtk−1
]

− Mtk−1
[Mtk−s

−Mtk−s−1
])

= p lim
n→∞

n∑
k=s

(MtkMtk−s
−MtkMtk−s−1

−Mtk−1
Mtk−s

+ Mtk−1
Mtk−s−1

)

= p lim
n→∞

n∑
k=s

(Mtk [Mtk−s
−Mtk−s−1

]−Mtk−1
[Mtk−s

+ Mtk−s−1
])

= p lim
n→∞

n∑
k=s

(Mtk −Mtk−1
)(Mtk−s

−Mtk−s−1
).
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Therefore [r, r−s]t may be approximated by
n∑

k=s

(rtk,tk−1
)(rtk−1,tk−2

),

where n is made as large as possible and s = 1. Hence the variance of the model (10) may
be written in terms of (17) and [r, r−s]t. But first note that

[r, r−s]t = rtrt−s −
∫ t

s
rq−s−drq −

∫ t−s

0
rq−drq−s

= (At + Mt + φMt−s) (At−s + Mt−s + φMt−2s)

−
∫ t

s
(Aq−s− + Mq−s− + φMq−2s−)drq −

∫ t−s

0
(Aq− + Mq− + φMq−s−)drq−s

= AtAt−s + AtMt−s + φAtMt−2s + MtAt−s + MtMt−s + φMtMt−2s

+ φMt−sAt−s + φM2
t−s + φ2Mt−sMt−2s −

∫ t

s
Aq−s−dAq −

∫ t

s
Aq−s−dMq

− φ

∫ t

s
Aq−s−dMq−s −

∫ t

s
Mq−s−dAq −

∫ t

s
Mq−s−dMq − φ

∫ t

s
Mq−s−dMq−s

− φ

∫ t

s
Mq−2s−dAq − φ

∫ t

s
Mq−2s−dMq − φ2

∫ t

s
Mq−2s−dMq−s

−
∫ t

s
Aq−dAq−s −

∫ t

s
Aq−dMq−s − φ

∫ t

s
AqdMq−2s −

∫ t

s
Mq−dAq−s

−
∫ t

s
Mq−dMq−s − φ

∫ t

s
MqdMq−2s − φ

∫ t

s
Mq−s−dAq−s

− φ

∫ t

s
Mq−s−dMq−s − φ2

∫ t

s
Mq−sdMq−2s

= [M,M−s]t + φ[M,M−2s]t + φ[M,M ]t−s + φ2[M,M−s]t−s (18)

because the terms involving At are zero.

Theorem 2 E [M,M−s]t = 0.

Proof
E([M,M−s]t − [M,M−s]t−h|Ft−h)

= E
(

MtMt−s −
∫ t

s
Mq−s−dMq −

∫ t−s

0
Mq−dMq−s −Mt−hMt−s−h +

∫ t−h

s
Mq−s−dMq

+
∫ t−s−h

0
Mq−dMq−s|Ft−h

)
= E(MtMt−s|Ft−h)− E

(∫ t

t−h
Mq−s−dMq|Ft−h

)
− E

(∫ t−s

t−s−h
Mq−dMq−s|Ft−h

)
− Mt−hMt−s−h

= E(Mt −Mt−s + Mt−s)Mt−s|Ft−h)− E
(∫ t

t−h
Mq−s−dMq

)
− E

(∫ t−s

t−s−h
(Mt−s −Mt−s + Mq−)dMq−s|Ft−h

)
−Mt−hMt−s−h
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= 0 + E(M2
t−s|Ft−h)− 0− E

(∫ t−s

t−s−h
Mt−sdMq−s|Ft−h

)
+
(

E
∫ t−s

t−s−h
(Mt−s −Mq−)dMq−s|Ft−h

)
−Mt−hMt−s−h

= E(M2
t−s|Ft−h)− E(Mt−s(Mt−s −Mt−s−h)|Ft−h) + 0−Mt−hMt−s−h

= E(M2
t−s|Ft−h)− E(M2

t−s|Ft−h) + Mt−hMt−s−h −Mt−hMt−s−h

= 0.

This completes the proof. �

From (16), (18) and Theorem (2) the expected values of [r, r]t and [r, r−s]t are

E
(
[r, r]t − [r, r]t−h |Ft−h

)
= E([M,M ]t + φ2 [M,M ]t−s − [M,M ]t−h

+ φ2 [M,M ]t−s−h |Ft−h)

= E
(
M2

t |Ft−h

)
−M2

t−h

+ φ2E
(
M2

t−s|Ft−h

)
− φ2M2

t−s−h (19)

and

E
(
[r, r−s]t − [r, r−s]t−h+s |Ft−h

)
= E(φ[M,M ]t−s − φ[M,M ]t−h|Ft−h)

= φE
(
M2

t−s|Ft−h

)
− φM2

t−h (20)

respectively. Combining (19) and (20) it follows that

E
(
[r, r]t − [r, r]t−h | Ft−h

)
+ 2E

(
[r, r−s]t − [r, r−s]t−h+s | Ft−h

)
= E

(
M2

t | Ft−h

)
−M2

t−h + φ2E
(
M2

t−s | Ft−h

)
− φ2M2

t−s−h

+2
(
φE
(
M2

t−s | Ft−h

)
− φM2

t−h

)
= E

(
M2

t | Ft−h

)
−M2

t−h + φ (φ + 2)
(
E
(
M2

t−s | Ft−h

)
−M2

t−h

)
+φ2

(
M2

t−h −M2
t−s−h

)
= Var(rt | Ft−h) + φ2

(
M2

t−h −M2
t−s−h

)
.

The bias of this estimator is φ2
(
M2

t−h −M2
t−s−h

)
. However, in practice φ2 should be

small, and M2
t−h −M2

t−s−h should be of the order of s. So

Var(rt | Ft−h) ≈ E
(
[r, r]t − [r, r]t−h | Ft−h

)
+ 2E

(
[r, r−s]t − [r, r−s]t−h+s | Ft−h

)
and

[r, r]t − [r, r]t−h ≈
n∑

k=1

[rtk,tk−1
]2

[r, r−s]t − [r, r−s]t−h+s ≈
n∑

k=2

(rtk,tk−1
)(rtk−1,tk−2

)

with s = 1.
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The variance of the model (10) may therefore be approximated by

n∑
k=1

[rtk,tk−1
]2 + 2

n∑
k=2

(rtk,tk−1
)(rtk−1,tk−2

).

The term 2
∑n

k=2(rtk,tk−1
)(rtk−1,tk−2

) is approximately the difference between the variances
of returns for the models (1) and (10). If a lag m return model is used, i.e.

rt = At + Mt + φ1Mt−s + φ2Mt−2s + . . . + φnMt−ms, (21)

then

n∑
k=1

[rtk ,tk−1
]2 + 2

n∑
k=2

(rtk ,tk−1
)(rtk−1

,tk−2
) + 2

n∑
k=3

(rtk ,tk−1
)(rtk−2

,tk−3
)

+ . . . + 2
n∑

k=m+1

(rtk ,tk−1
)(rtk−n

,tk−(m+1)
)

is an ex-post measurement of volatility. The mathematics becomes rather cumbersome,
so the derivation of the variance of the model in (19) is not given here.

4 Practical simulations and results

The same method used to model the influence of microstructure effects as described in
Hasbrouck (1993, 1996) and as used in Corsi and Cursi (2003) is used here. Seventy-two
thousand (i.e. (250 days)·(24 hours)·(60 minutes)/5) returns of length 5 minutes were
simulated a 100 times, with different characteristics in each simulation. We compared
the microstructure realised volatility (micr.RV) with the realised volatility (RV), the 30
minutes realised volatility (every 6th return is to be taken) and the DST measurement.
In Tables 1–5, the mean, the mean squared error (MSE), and the variance (Var) of the
four measurements are given. In determining the DST measurement, m is taken as 40,
and the bias is subtracted. The DST measurement is therefore unbiased.

Mean MSE Var

micr.RV 29.5350 0.0175 0.0173
DST 28.5715 0.9107 0.0186
RV 29.5233 0.0044 0.0044
RV.30min 29.5356 0.0335 0.0334

Table 1: Simulation 1. Constant instantaneous volatility and no autocorrelation. Annualised

volatility: 29.5161%.

In simulation 1 the returns are independent with constant instantaneous volatility. From
Table 1 it is clear that all estimators perform well. The respective means are all close to
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the annualised volatility of 29.5161. The mean squared errors and variances are small,
with the realised volatility measurement outperforming the others in this regard.

A non-zero signal to noise ratio was used in the simulations that follow. The signal to
noise ratio is defined as

√
σ1/σ, where σ is the tick-by-tick (5 minutes) volatility and σ1

is the tick-by-tick (5 minutes) first-order auto-covariance.

In simulations 2 and 3 the returns have first order autocorrelation with constant instan-
taneous volatility. We notice in Table 3 that if the noise to signal ratio and the auto-
correlation are very high, the DST measurement performs best, but this is in an unrealistic
environment. As the noise to signal ratio decreases, the microstructure realised volatility
quickly becomes the best estimator. Even at a very high noise to signal ratio and with an
autocorrelation of 0.92 and −0.32 respectively, the microstructure realised volatility easily
out-performs the other measurements, as may be seen in Table 2.

mean MSE Var

micr.RV 29.5372 0.0713 0.0716
DST 28.2334 1.8505 0.2072
RV 47.9422 369.4281 30.2076
RV.30min 47.9396 368.8906 29.7636

Table 2: Simulation 2. Constant instantaneous volatility and p(1) = −0.32 with noise to signal

ratio 0.92. Annualised volatility: 29.5161%.

mean MSE Var

micr.RV 29.9199 5.6545 5.5470
DST 29.1315 0.5399 0.3959
RV 155.2504 16 408.39 605.3382
RV.30min 155.1981 16 392.86 602.9326

Table 3: Simulation 3. Constant instantaneous volatility and p(1) = −0.48 with noise to signal

ratio 3.5. Annualised volatility: 29.5161%.

In simulation 4 a changing instantaneous volatility was assumed. In this simulation a high
annualised volatility, seldom seen in real life, was assumed in order to illustrate how the
other measurements break down under non-constant instantaneous volatility and under
microstructure effects, as my be seen in Table 4.

In simulation 5 non-zero second order autocorrelation of returns was assumed. It is clear
from Table 5 that in the presence of second order autocorrelation the microstructure
realised volatility again performs the best. The DST measurement is fairly robust against
model misspecifications.

The microstructure realised volatility is the only measurement that performs well in all
the simulations. It is also the only estimator that is unbiased and which has a small mean
square error. In real life return data, where volatility changes and where microstructures
are present, the microstructure realised volatility is the only measurement that still gives
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mean MSE Var

micr.RV 100.3488 0.5413 0.6693
DST 90.8785 97.9993 9.0542
RV 119.0969 996.8801 651.9170
RV.30min 119.1650 992.2786 644.6082

Table 4: Simulation 4. Autocorrelation and changing instantaneous volatility. Annualised

volatility: 100.3243%.

mean MSE Var

micr.RV 29.5086 0.0326 0.0326
DST 28.2386 1.7895 0.1596
RV 46.3981 304.2548 19.5824
RV.30min 47.9396 304.5106 19.7060

Table 5: Simulation 5. Constant instantaneous volatility and p(1) = −0.36, p(2) = 0.124 with

noise to signal ratio 0.92. Annualised volatility: 29.5161%.

satisfactory results.

5 Conclusions

In the last few years many attempts have been made to define a volatility measurement
that is able to deal with all the characteristics present in returns data in practice. The two
problematic characteristics of volatility of high frequency returns are non-zero autocorre-
lations of lag greater than or equal to one, and changes in the instantaneous volatility.
While some volatility measurements capture one of the two characteristics quite well, no
previous measurement has been able to deal with both. To the best knowledge of the
authors the microstructure realised volatility proposed in this paper is the first volatility
measurement to successfully do so.

We have demonstrated the derivation of a microstructure realised volatility measurement
that can deal with first order autocorrelation and have mentioned that by adding the cor-
rect terms, the model can easily be extended to deal with any autocorrelation lag. In the
simulations reported in this study, the superiority of this measurement over previous mea-
surements has been shown under realistic situations. Ultimately, a volatility measurement
must lead to improved volatility forecasts to be considered superior to other measurements.
Studies that examine how well the raw measurement proposed in this paper performs to
other measurements (under various volatility models) will deliver the final verdict on its
effectiveness.
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