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Abstract

In this paper, a user-friendly, Excel program is developed to search for the optimal values
of the parameters in minimizing the total cost function in both economic and economic
statistical designs of the X̄-control chart. Two assumptions are considered in the development
and use of the economic or economic statistical models. These assumptions are potentially
critical. It is assumed that the time between process shifts can be modelled by means of
the exponential distribution. It is further assumed that there is only one assignable cause.
Based on these assumptions, economic or economic statistical models are derived using a
total cost function per unit time as proposed by a unified approach. In this approach the
relationship between the three-control chart parameters as well as the three types of costs
are expressed in the total cost function. The optimal parameters are usually obtained by
the minimization of the expected total cost per unit time. Nevertheless, few practitioners
have tried to optimize the design of their X̄-control charts. One reason for this is that the
cost models and their associated optimization techniques are often too complex and difficult
for practitioners to understand and apply. Therefore, a user-friendly Excel program has
been developed in this paper and the numerical examples illustrated are executed on this
program. The optimization procedure is easy-to-use, easy-to-understand, and easy-to-access.
Moreover, and not least important, it is a low cost option unlike previous approaches which
can be found in expensive software packages only. The results and the execution times of
all numerical examples show that our optimization procedure using Excel is accurate and
efficient.
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1 Introduction

Statistical quality control is a useful and economically important applications of operations
research in industry. The purpose of statistical quality control is to ensure, in a cost
efficient manner, that the products shipped to customers meet their specifications. One
of the basic tools in statistical quality control is the statistical control chart technique
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which may be considered a graphical display of statistical hypothesis testing. It was
developed in the 1920s by Dr Walter A. Shewhart as a statistical approach to the study of
manufacturing process variation for the purpose of improving the economic effectiveness
of the process (Shewhart, 1931). The major function of control charting is to detect the
occurrence of assignable causes so that the necessary corrective action may be taken before
a large number of nonconforming products are manufactured.

Saniga and Shirland (1977) indicated that the X̄-chart is used more often than any other
control chart when quality is measured on a continuous scale. The effective use of control
charts is largely dependent upon their design, that is, the selection of the decision variables
such as the sample size, n, the sampling period or sampling interval, h, and the control
limit parameter, k, based on some subjective and/or objective criteria.

Due to the economic implications of the control chart design it has received much attention
over the years. These economic considerations involve various expenses, such as the costs
of sampling and testing, costs associated with investigating out-of-control signals and
possibly correcting assignable causes and costs of allowing nonconforming units to reach
the customer, etc. Since all these costs are affected by the choice of the three control
chart parameters, it is reasonable to consider the design of the X̄-control charts from an
economic viewpoint.

Consequently, several general methodologies have been developed in order to improve on
the design suggested by Shewhart. Economic designs and economic statistical designs are
the most important designs that affect the cost and statistical considerations. The concept
of an economic design was first introduced by Girschick and Rubin (1952). Although the
optimal control rules in their model are too complex to have practical value, their work
provided the basis for most cost-based models in control chart designs. Duncan (1956)
developed the first economic design model and applied it to an X̄-control chart. In the
economic design, the objective is to determine the control chart parameters, i.e. the sample
size, n, sampling interval, h, and control limit parameter, k, that minimize the expected
loss cost accrued by a production process. A considerable amount of research has been
done in the economic design of various control charts after Duncan’s paper. Lorenzen and
Vance (1986) provided a unified approach to the economic design of process control charts.
They considered various options regarding continuation of production during search for
or repair of the assignable cause. The economic statistical model was first proposed by
Saniga (1989). The objective is to minimize the expected total cost per unit time, as in the
economic design, subject to constraints on the average run lengths (ARL), or equivalently
type I and type II error probabilities or average time-to-signal (ATS ).

With regard to the economic and economic statistical designs of the X̄-control chart, it can
be said that very few practitioners have adopted optimization procedures when designing
their X̄-control charts. The main reason is that the cost models and their associated opti-
mization techniques are often seen as too complex and difficult for practitioners to apply.
Duncan (1956), Gibra (1971), Chiu and Wetherill (1974) and Montgomery (1982) devel-
oped the optimization procedures for determining optimal parameters for the X̄-control
chart. The methodologies described in these papers were difficult to use in practice. The
optimization procedure presented by Lorenzen and Vance (1986), for example, employed
Newton’s method, the golden section search method and the Fibonacci search method.
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This may be one of the reasons for the limited application of these methods. In this paper
we propose an alternative optimization procedure, which is a modification to the preceding
optimization procedures and we develop a user-friendly Excel program that may be used
to calculate the optimal parameter values based on the unified approach of the Lorenzen
and Vance model for both economic and economic statistical designs of the X̄-control
chart. Hypothetical examples are used to show that the proposed optimization procedure
works well. Based on this optimization procedure, comprehensive comparisons of the eco-
nomic and economic statistical designs of the X̄-control chart are made. The optimization
procedure is easy-to-use, easy-to-understand, and easy-to-access. Moreover, it is a low
cost option unlike the previous approaches. The results and the execution times of all
numerical examples show that our Excel-implemented optimization procedure is accurate
and efficient.

In §2 two a general review of the approach to the economic statistical design of the X̄-
control chart is given. This is followed in §3 by a detailed discussion of the model, while §4
contains a discussion of the optimization procedure together with the code. The article is
concluded in §5 with two examples together with a detailed discussion of how the results
are obtained and interpreted, followed by a brief conclusion (§6).

2 Design of the X̄-control chart — A unified approach

The control chart design has received much attention since the design has behavioural,
economic, as well as quality implications (Saniga, 1992). As a result, several general
methodologies have been developed to improve on the design suggested by Shewhart.
There are two general methods of designing control charts in use today. These methods
are the statistical design and the economic design. In statistical design, one considers
statistical properties, such as the type I and type II error and the average run length,
when selecting the parameters for the control chart (Saniga, 1991). Here the objective is
to have control charts signal shifts in the process quickly and accurately, and to keep false
signals to a minimum. In the case of the purely statistical design, cost is of no significance.
Woodall (1985) addressed the issue of statistical design. In economic design, however, the
objective is to determine the control chart parameters that minimize the expected loss
cost occurring in a production process.

An alternative to statistical and economic designs has been proposed by Saniga (1989) and
is known as the economic statistical design. The economic statistical design is a method
in which statistical constraints, such as a minimum value (lower bound) on the in-control
ARL (ARLL) and maximum value (upper bound) on the out-of-control ARL (ARLL),
are placed in the pure economic model so as to yield a design that meets statistical
requirements at which the loss cost function is minimized (Montgomery et al., 1995).
Economical statistical design was proposed by Saniga (1989) in order to improve both
the statistical properties and the economical properties of the resulting control charts
(McWilliams, 1994).

Alternatively, the average run length in units of time to a signal (ATS ) may be used to
replace ARL in the formulation of the design model (Montgomery et al., 1995). Linderman
and Love (2000a) showed that on the basis of the selected statistical constraints, control
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charts are designed to have large ARL0 or ATS0 values when the process is in control,
and small ARL1 or ATS1 values when the process is out of control.

The problem of optimal economic statistical design of control charts may be formulated
using ARL and ATS constraints. Let F be the loss cost function for an economic model.
In the model for an economic statistical design the objective is to

minimize F (n, h, k)
subject to ARL0 ≥ ARLL,

ARL1 ≤ ARLU ,

where ARLL and ARLU denote the desired bounds at the expected shift level. The
solution to this model is an improvement to the pure statistical design, because it has
the required statistical properties and still minimizes the lost cost function. A solution
without the constraints will give the optimal economic design. Montgomery et al. (1995)
showed that additional constraints may be added to the design model if sensitivity to
shifts that are different from the expected shifts is required.

Economic statistical designs are determined via non-linear constrained optimization tech-
niques. The objective is to minimize the expected total cost per unit time, as in the
economic design case, subject to constraints on the type I error rate, power, and ATS
(Montgomery et al., 1995). Alternative and additional constraints may be specified de-
pending on the designer’s needs. Economic statistical designs are the constrained version
of economic designs. If the constraints alone are used in determining design parame-
ters, without considering the cost objectives, they become statistical designs. Zhang and
Berardi (1997) showed that economic statistical designs are generally more costly than
economic designs due to the additional constraints. However, the tight limits on the sta-
tistical properties of the control charts may lead to low process variability that enhances
output quality which leads to a reduction in the cost of comebacks and rewards.

3 The model

3.1 Assumptions and notation

The following assumptions are made for the economic and economic statistical design of
control charts:

• The process is subject to a single assignable cause.
• The time between occurrences of the assignable cause is exponential with a mean of
θ occurrences per hour (hence 1/θ hours is the mean time in the in-control state).
• The process starts in a state of statistical control with mean µ0 and standard devi-

ation σ.
• The occurrence of the assignable cause results in a shift in the process mean from
µ0 to µ0 + δσ, where the shift size δ is known.
• If a single sample point falls outside the control limits, the process is assumed to be

out-of-control and a search for the assignable cause is initiated.
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• The economic and economic statistical designs of control charts assume a renewal
reward process. In essence, the corrective actions are assumed to return the process
to the initial state of statistical control.

Lorenzen and Vance (1986) established a unified approach to the economic and economic
statistical design of the X̄-control chart and a unification of notation. The parameters in
the formulation of the cost function may be classified into four categories, namely cost
and operating parameters, indicator variables and control chart design parameters. The
definitions of these parameters are given in the subsections that follow.

3.2 Cost and operating parameters

Denote the expected time of occurrence of the assignable cause between two samples, while
in control, by τ and let θ denote the mean time between occurrences. Furthermore, let s
denote the expected number of samples taken while in control, and denote the fixed cost
per sample by a. Denote the shift size in the mean and the cost per unit sampled by δ
and b, respectively. Moreover, let Y and W denote respectively the cost per false alarm
and the cost to locate and repair the assignable cost. Also let C0 denote the quality cost
per hour while producing in control, and denote this cost while producing out of control
by C1. Denote the time to sample and chart one item by g. Furthermore, let T0 denote
the expected search time when the signal is a false alarm, let T1 denote the expected
time to discover the assignable cause and let T2 denote the expected time to repair the
process. Also, denote the total cost per cycle by C and the total cost per time unit by L.
Moreover, let ARL0 denote the average run length while in control and let ARL1 denote
the average run length while out of control, letting ARLL and ARLU denote the lower
bound and upper bound of the average run length while in and out of control, respectively.
Lastly, let ATS denote the average time to signal and denote the upper bound of average
time-to-signal by ATSU .

3.3 Indicator variables

The indicator variables

γ1 =
{

1, if production continues during search,
0, if production ceases during search,

and

γ2 =
{

1, if production continues during repair,
0, if production ceases during repair,

are used in the model formulation.

3.4 Three control chart design parameters

We denote the sample size by n and the sampling interval by h. Finally, the width of the
control interval (in terms of the number of standard errors from the mean) is denoted by
k.
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3.5 The mathematical model

The production cycle is defined as the length of time from when the process is started in
the in-control state to when it shifts to the out-of-control state, and onwards to where in
time the detection and elimination of the assignable cause takes place.

It is known that the expected cycle time is

E(T ) =
1
θ

+ (1− γ1)s
T0

ARL0
− τ + ng + h(ARL1) + T1 + T2 (1)

(Lorenzen and Vance, 1986). The costs per cycle are incurred by defective production
while in-control as well as out-of-control, by false alarms, by locating and repair of the
assignable causes, and also by sampling and inspection procedures.

Lorenzen and Vance (1986) showed that the total quality cost per cycle is

E(C) =
C0

θ
+ C1 (−τ + ng + h(ARL1) + γ1T1 + γ2T2) +

sY

ARL0
+W

+ (a+ bn)

(
1
θ − τ + ng + h(ARL1) + γ1T1 + γ2T2

h

)
. (2)

Because the cycle time is variable and is a function of n, h and k, the cost function must
be expressed per unit of time (e.g. in hours), and not per cycle. Note that since this is
a renewal reward process (Ross, 2000), the expected cost per unit of time is found by
dividing the total quality cost per cycle, by the expected cycle length, resulting in

E(L) =
C0
θ + C1 (−τ + ng + h(ARL1) + γ1T1 + γ2T2) + sY

ARL0
+W

1
θ + (1− γ1)s T0

ARL0
− τ + ng + h(ARL1) + T1 + T2

+
a+ bn

h

(
1
θ − τ + ng + h(ARL1) + γ1T1 + γ2T2

1
θ + (1− γ1)s T0

ARL0
− τ + ng + h(ARL1) + T1 + T2

)
. (3)

4 The optimization procedure

As stated above, the function E(L) represents the expected cost per unit of time for the
present model and it should be noted that E(L) is a function of the three quality control
chart parameters (i.e. the sample size n, the sampling period h, and the control limit
width parameter k). Note that ARL0 and ARL1 are functions of α and 1− β, whereas α
and 1− β are, in turn, also functions of n and k. As a result, the function E(L) is highly
nonlinear in each of the three parameters n, h and k.

As mentioned, the algorithm by Lorenzen and Vance (1986) for finding the most economical
design is complicated as it consists of Newton’s method, the golden section search method
and the Fibonacci search method. Montgomery (2001) noted that very few practitioners
have implemented economic models for the design of control charts, and one of the reasons
for this may be as a result of the complexity of the solution approach. Thus there are at
least two reasons for the lack of the practical implementation of this methodology. First,
the mathematical models and their associated optimization schemes are relatively complex
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and are often presented in a manner that is difficult for practitioners to understand and
to use. A second problem is the difficulty in estimating costs and other model parameters.

Here we present a user-friendly Excel program that may be used to determine an eco-
nomic or economic statistical design for a X̄-control chart. This program uses the model
of Lorenzen and Vance, and is configured to be applicable to most actual production
situations.

Lorenzen and Vance (1986) showed that the expected loss cost per hour of operation may
be expressed as in (3) and may be rewritten as

E(L) =
NUM1

DEN
+
NUM2

DEN
, (4)

where

NUM1 =
C0

θ
+ C1(−τ + ng + h(ARL1) + γ1T1 + γ2T2) +

sY

ARL0
+W,

NUM2 = (a+ bn)

(
1
θ − τ + ng + h(ARL1) + γ1T1 + γ2T2

h

)

and

DEN =
1
θ

+ (1− γ1)s
T0

ARL0
− τ + ng + h(ARL1) + T1 + T2.

The expected number of samples, s, taken while in control is

s =
∞∑
i=0

iP (assignable cause occurs between the ith and (i+ 1) st sample)

=
∞∑
i=0

i
(
eθhi − eθh(i+1)

)
=

1
eθh − 1

and the average time of occurrence of the assignable cause within the i-th and (i + 1)-st
interval is given by

τ =

∫ (i+1)h

ih
θ (t− hi) e−θt dt∫ (i+1)h

ih
θe−θt dt

=
1− (1 + θh)e−θh

θ(1− e−θh)
=

1
θ
− h

eθh − 1

(Montgomery, 2001). This is an exact solution in contrast to Duncan’s approximate ap-
proach.

Note that the input parameters are θ, δ, a, b, Y,W,C0, C1, g, T0, T1, T2, γ1 and γ2 which are
therefore entered as fixed values. Note further that n, h and k are input as variables.

The program for which the implementation code may be found in the Appendix, calculates
the optimal control limit width parameter k and the sampling interval h for several sample
sizes n, and displays the corresponding values of the expected cost function E(L).
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5 Illustrative examples

In this section, the economic optimal design is compared to the economic statistical optimal
design by means of examples using the routines as defined in the Appendix.

Based on the unified approach of the cost model developed by Lorenzen and Vance (1986),
a more detailed comparison and analysis of the economic and economic statistical designs
will be performed in a follow-up article in order to investigate the effects of the input
parameters as well as the effect of adding constraints to the statistical performance mea-
surements of the loss function.

5.1 The optimal economic design

Torng et al. (1995) provide an application of the single objective design of an X̄-control
chart based on the approach of Lorenzen and Vance. Suppose that the fixed cost of
sampling is R0.50 (i.e. a = 0.50), and the variable cost of sampling is estimated at R0.10
(i.e. b = 0.10). Suppose that it takes approximately three minutes (i.e. g = 0.05) hours
to acquire and analyze each observation. The magnitude of the process shifts are assumed
to be one standard deviation (i.e. δ = 1), and process shifts occur according to the
exponential distribution with a mean frequency of about one every hundred hours of
operation (i.e. θ = 0.01). It takes two hours to investigate an action signal (i.e. T1 = 2).
The cost of investigating a false alarm is R50 (i.e. Y = R50), and a true action signal
costs R25 to investigate (i.e. W = R25). The hourly costs for operating in the in-control
state and in the out-of-control state are R10 (i.e. C0 = R10) and R100 (i.e. C1 = R100),
respectively. The process continues operation during the search and repair periods of the
assignable cause (i.e. T0 = T2 = 0).

The Excel implementation searches for the set of design parameters that minimizes the
total cost. The optimal control limit k and sampling interval h are computed for several
values of n. The values of the cost function together with the associated in-control and
out-of-control average run lengths are shown in Table 1. This is the same approach
used by Alexander et al. (1995), Linderman and Love (2000b), and Montgomery (2001).
Using the output, Table 1 reveals that the optimal design has n = 12, k = 2.6, h = 1.9
hours, with a minimum cost of approximately R14.84 per hour. The in-control and out-of-
control average run lengths for this control chart design are 107.268 and 1.240, respectively.
Note that the design at n = 13 has a minimum cost close to the optimum and also has
slightly better statistical properties than the optimal design at n = 12 in the sense that
the probability of a false alarm, α, is 0.006 934 instead of 0.009 322. Furthermore, the
power is improved from 0.806 234 to 0.817 413 at n = 13. The improvement in statistical
performance leads to a wider control limit parameter, i.e. from 2.6 to 2.7.

In the next example the same economic parameters are used, but we apply statistical
constraints in terms of ARLL, ARLU and ATS. This illustrates the approach of finding
an economic statistical design.

Table 1 shows that the probability that a single point falls outside the limits when the
process is in-control, is 0.009 322. That is, even if the process remains in-control, an out-of-
control signal will be generated every 107 samples, on average. In other words, the average
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E(L)
n k h α β (1− β) ARL0 ARL1 ATS0 ATS1 R/hr

1 2.1 0.7 0.035 729 0.863 366 0.136 634 27.989 7.319 19.592 5.123 19.22
2 2.3 0.7 0.021 448 0.812 032 0.187 968 46.624 5.320 32.637 3.724 17.36
3 2.3 0.9 0.021 448 0.714 938 0.285 062 46.624 3.508 41.962 3.157 16.43
4 2.4 0.9 0.016 395 0.655 416 0.344 584 60.994 2.902 54.895 2.612 15.87
5 2.4 1.1 0.016 395 0.565 106 0.434 894 60.994 2.299 67.093 2.529 15.51
6 2.4 1.3 0.016 395 0.480 264 0.519 736 60.994 1.924 79.292 2.501 15.28
7 2.5 1.3 0.012 419 0.442 059 0.557 941 80.519 1.792 104.675 2.330 15.11
8 2.5 1.5 0.012 419 0.371 294 0.628 706 80.519 1.591 120.779 2.386 14.99
9 2.5 1.6 0.012 419 0.308 538 0.691 462 80.519 1.446 128.831 2.314 14.92
10 2.6 1.6 0.009 322 0.286 963 0.713 037 107.268 1.402 171.629 2.244 14.87
11 2.6 1.7 0.009 322 0.236 803 0.763 197 107.268 1.310 182.356 2.227 14.85
12 2.6 1.9 0.009 322 0.193 766 0.806 234 107.268 1.240 203.809 2.357 14.84
13 2.7 1.9 0.006 934 0.182 587 0.817 413 144.216 1.223 274.010 2.324 14.85
14 2.7 2.0 0.006 934 0.148 785 0.851 215 144.216 1.175 288.432 2.350 14.86
15 2.7 2.1 0.006 934 0.120 401 0.879 599 144.216 1.137 302.853 2.387 14.89
16 2.7 2.2 0.006 934 0.096 801 0.903 199 144.216 1.107 317.275 2.436 14.92
17 2.8 2.2 0.005 110 0.092 900 0.907 100 195.680 1.102 430.496 2.425 14.96
18 2.8 2.3 0.005 110 0.074 561 0.925 439 195.680 1.081 450.064 2.485 15.01
19 2.8 2.4 0.005 110 0.059 510 0.940 490 195.680 1.063 469.632 2.552 15.06
20 2.9 2.4 0.003 732 0.057 960 0.942 040 267.970 1.062 643.128 2.548 15.11

Table 1: Optimal economic design of the X̄-control chart.

run length while in-control, ARL0, is equal to 107. This large number of false alarms
introduces additional variability into the process through over-adjustment and destroys
confidence in the control procedure. It is desirable to have this value larger so that false
alarms are avoided as far as possible. Therefore, an economic statistical design should be
investigated due to the high false alarm rate associated with the economic design.

5.2 Optimal economic statistical design with ARL constraints

This example illustrates the economic statistical design of the control chart with ARL
constraints, using the same parameter values as in the previous example. The starting
points for this example are the arbitrarily specified bounds ARLL = 267 and ARLU = 40
for δ = 1. The reason for using ARL bounds is to constrain the economic statistical design
to an in-control ARL value of at least 267, while keeping the out-of-control ARL at a value
of at most 40.

The first ARL0 constraint is equivalent to requiring that α ≤ 1
267 = 0.003 745, and the

second ARL1 constraint is equivalent to requiring that 1− β ≥ 1
40 = 0.025 when a one σ

shift occurs. Thus, to obtain an economic statistical design, we add two constraints, i.e.
ARL0 ≥ ARLL and ARL1 ≤ ARLU such that ARL0 ≥ 267 and ARL1 ≤ 40.

The results are shown in Table 2. The optimal design has n = 13, k = 2.9, h = 1.7 hours,
with a minimum cost of R14.90 per hour. The in-control and out-of-control average
run length for this control chart design are 267.970 and 1.316, respectively compared to
107.268 and 1.240 in the economic design. Note that the designs at n = 12 and n = 14
has minimum cost close to the optimum.



10 PJU van Deventer & ZG Manna

E(L)
n k h α β (1− β) ARL0 ARL1 ATS0 ATS1 R/hr

1 2.9 0.2 0.003 732 0.971 235 0.028 765 267.970 34.765 53.594 6.953 21.44
2 2.9 0.3 0.003 732 0.931 324 0.068 676 267.970 14.561 80.391 4.368 18.50
3 2.9 0.4 0.003 732 0.878 585 0.121 415 267.970 8.236 107.188 3.294 17.16
4 2.9 0.5 0.003 732 0.815 939 0.184 061 267.970 5.433 133.985 2.716 16.41
5 2.9 0.6 0.003 732 0.746 633 0.253 367 267.970 3.947 160.782 2.368 15.91
6 2.9 0.8 0.003 732 0.673 829 0.326 171 267.970 3.066 214.376 2.453 15.59
7 2.9 0.9 0.003 732 0.600 348 0.399 652 267.970 2.502 241.173 2.252 15.36
8 2.9 1.1 0.003 732 0.528 529 0.471 471 267.970 2.121 294.767 2.333 15.20
9 2.9 1.2 0.003 732 0.460 172 0.539 828 267.970 1.852 321.564 2.223 15.08
10 2.9 1.3 0.003 732 0.396 554 0.603 446 267.970 1.657 348.361 2.154 15.00
11 2.9 1.5 0.003 732 0.338 476 0.661 524 267.970 1.512 401.955 2.267 14.95
12 2.9 1.6 0.003 732 0.286 342 0.713 658 267.970 1.401 428.752 2.242 14.91
13 2.9 1.7 0.003 732 0.240 234 0.759 766 267.970 1.316 455.549 2.238 14.90
14 2.9 1.8 0.003 732 0.199 990 0.800 010 267.970 1.250 482.346 2.250 14.90
15 2.9 1.9 0.003 732 0.165 281 0.834 719 267.970 1.198 509.143 2.276 14.91
16 2.9 2.0 0.003 732 0.135 666 0.864 334 267.970 1.157 535.940 2.314 14.94
17 2.9 2.1 0.003 732 0.110 645 0.889 355 267.970 1.124 562.737 2.361 14.97
18 2.9 2.2 0.003 732 0.089 694 0.910 306 267.970 1.099 589.534 2.417 15.01
19 2.9 2.3 0.003 732 0.072 297 0.927 703 267.970 1.078 616.331 2.479 15.06
20 2.9 2.4 0.003 732 0.057 960 0.942 040 267.970 1.062 643.128 2.548 15.11

Table 2: Optimal economic statistical designs with ARL constraints.

A comparison between the pure economical design and the economic statistical design of
the X̄-control chart with an ARL constraint shows that the economic statistical design
with ARL constraints have wider control limits and smaller sampling intervals than the
economic design. The ARLL constraint of the second example leads to a significant reduc-
tion in the frequency of false alarms, while the additional cost incurred by imposing the
ARLU and ARLL constraints is minimal. Table 2 shows that it is not expensive to achieve
the desired statistical properties. We have calculated the percentage increase in the cost of
the economic statistical design over that of the economic design, and the increase in overall
expected cost is only 0.41%, i.e. from R14.84 to R14.90, which, in many situations, may
be a relatively small price to pay in order to achieve the improved statistical performance
of the control charts. The false alarm rate is also reduced from 0.009 322 to 0.003 732.

The output of the two examples agree very closely with the results of the two examples
in the statistical constrained economic EWMA control chart presented by Torng et al.
(1995), but since it is sometimes more appropriate in process monitoring to express shift
detection performance in time units, economic statistical designs for the X̄-control chart
also often incorporate average time-to-signal as the statistical constraint (Montgomery et
al, 1995). The desired ATS bounds are then computed by multiplying the ARL by its
corresponding sampling interval. The constraint may be written as

ATS1 =
h

1− β
= h ·ARL1,

where each signal shows an out-of-control situation.
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5.3 Optimal economic statistical design with ATS constraints

Here we apply the same input parameters as in the previous two examples, but add the
ATS constraint to the pure economic model of the X̄-control chart. Suppose the statistical
constraint ATS1 ≤ 1.90 is added to the example of Torng et al. (1995).

The optimal economic statistical design of the X̄-control chart for the proposed model
with ATS bound is shown in Table 3. The table shows that the optimal design has
n = 12, k = 2.6, h = 1.5 hours, with a minimum cost of R14.90 per hour. The average
time-to-signal is 1.861.

To illustrate the effect of the ATS constraint in the economic statistical design, once more
using Excel, we compare it to the pure economic design. Table 3 points out that the
economic statistical design has a smaller sampling interval, (i.e. h = 1.5) for the economic
statistical model with ATS constraint (compared to h = 1.9 for the pure economic model).
The out-of-control ATS1 for the economic statistical design is much better than the corre-
sponding ATS1 for the pure economic design, i.e. 1.861 against 2.357, resulting in a cost
increase of only about 0.37%, i.e. from R14.84 to R14.90. Similar results were reported
by Saniga (1989) and Montgomery et al. (1995).

The three examples above indicate that economic statistical designs are generally more
expensive than economic designs due to the additional constraints. However, the tighter
limits on control chart statistical properties are able to guarantee long-term product or
service quality and low process variability. This results directly from the requirement that
the economic statistical design assures a satisfactory statistical performance.

E(L)
n k h α β (1− β) ARL0 ARL1 ATS0 ATS1 R/hr

1 2.2 0.2 0.027 807 0.884 243 0.115 757 35.962 8.639 7.192 1.728 23.13
2 2.4 0.3 0.016 395 0.837 813 0.162 187 60.994 6.166 18.298 1.850 18.50
3 2.5 0.4 0.012 419 0.778 730 0.221 270 80.519 4.519 32.208 1.808 17.00
4 2.3 0.7 0.021 448 0.617 903 0.382 097 46.624 2.617 32.637 1.832 16.20
5 2.4 0.8 0.016 395 0.565 106 0.434 894 60.994 2.299 48.795 1.840 15.68
6 2.5 0.9 0.012 419 0.520 142 0.479 858 80.519 2.084 72.468 1.876 15.36
7 2.5 1.0 0.012 419 0.442 059 0.557 941 80.519 1.792 80.519 1.792 15.20
8 2.6 1.1 0.009 322 0.409 657 0.590 343 107.268 1.694 117.995 1.863 15.05
9 2.5 1.3 0.012 419 0.308 538 0.691 462 80.519 1.446 104.675 1.880 14.97
10 2.6 1.3 0.009 322 0.286 963 0.713 037 107.268 1.402 139.448 1.823 14.93
11 2.6 1.4 0.009 322 0.236 803 0.763 197 107.268 1.310 150.175 1.834 14.90
12 2.6 1.5 0.009 322 0.193 766 0.806 234 107.268 1.240 160.902 1.861 14.90
13 2.6 1.6 0.009 322 0.157 316 0.842 684 107.268 1.187 171.629 1.899 14.90
14 2.7 1.6 0.006 934 0.148 785 0.851 215 144.216 1.175 230.746 1.880 14.92
15 2.8 1.6 0.005 110 0.141 639 0.858 361 195.680 1.165 313.088 1.864 14.95
16 2.7 1.7 0.006 934 0.096 801 0.903 199 144.216 1.107 245.167 1.882 14.99
17 2.8 1.7 0.005 110 0.092 900 0.907 100 195.680 1.102 332.656 1.874 15.04
18 2.9 1.7 0.003 732 0.089 694 0.910 306 267.970 1.099 455.549 1.868 15.09
19 3.0 1.7 0.002 700 0.087 089 0.912 911 370.379 1.095 629.645 1.862 15.16
20 2.8 1.8 0.005 110 0.047 249 0.952 751 195.680 1.050 352.224 1.889 15.22

Table 3: Optimal economic statistical designs with ATS constraints.
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6 Conclusion

This paper shows that an optimization procedure implemented in Excel is easy to use in
finding optimal solutions to the designs of both the economic and the economic statistical
X̄-control charts. It is clear that few practitioners have adopted the economic modeling
approach to design their control charts, because the cost models and their associated
optimization techniques are often too complex and difficult for practitioners to apply and
or the cost of the appropriate software may have a negative effect. However, the numerical
examples produced in this paper were executed on an Excel program, and the proposed
procedure is easy to use, easy to understand and implies low cost as no expensive software is
required. Moreover, the proposed procedure is also able to obtain an exact optimal design
rather than the approximate designs as derived by Duncan (1956) and other subsequent
researchers. Therefore, this procedure may be used to implement both economic and
economic statistical designs of X̄-control charts. The results and the execution times of
all numerical examples show that our optimization procedure using the Excel program, as
outlined is accurate and efficient.
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Appendix

This appendix contains an illustrative example of the procedure described in the paper,
as implemented in Microsoft Excel. The procedure described here is for the example in
§4.1.1 and produces inter alia Table 1. Table 1 (in the main text) shows only the basic
results, i.e. the optimum result for each value of n ranging over the interval [1, 25] in steps
of 1, but some calculation steps have been left out.

It is worthwhile noting that the initial parameter values are in a sense arbitrary, but
common sense gives an indication of real world values. The sampling size, n, runs through
the options of 1 through 25. For each value of n, the width of control limits parameter, k,
typically runs from 2.1 to 3.1 in steps op 0.1. For each combination of the values of the
sampling size and the width of control limits parameter, the sampling interval parameter,
h, runs from 0.1 to 5 in steps of 0.1 time units. This then creates 25×10×50 rows, each
with the expected cost value for that particular row.

The parameters are as defined in the first two rows of the spread-sheet according to the
example in §4.1.1. The values of γ1 and γ2 require some explanation. According to §3.3
these two parameters are both equal to 1 as the process continues operation during the
search and repair periods of the assignable cause.

The spreadsheet calculations start in row 6; therefore the initial references are with respect
to that row, except for the fixed values according to the specific problem, as defined in
row 2. One has to complete columns A, B and C for n, k and h, respectively. Then the
remaining entries follow as shown below. Thereafter the remaining calculations are made
using the extension facility of Excel. The column definitions are given with comments
where deemed necessary. The reader is referred to §3.2 for clarification of the parameters
and formulae.
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Figure 1: Screen shot of the Excel worksheet in which the model described in this paper has

been implemented.
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Column Excel code
A: n as descibed above.
B: k as descibed above.
C: h as descibed above.
D: α = 2*NORMDIST(-B6,0,1,TRUE). The probability of the type I error.
E: β = NORMDIST(B6-$B$2*SQRT(A6),0,1,TRUE)

-NORMDIST(-B6-$B$2*SQRT(A6),0,1,TRUE). The probability of the type
II error.

F: 1 − β = 1 - E6. The power of the underlying hypothesis of an in control
system.

G: τ = 1/$A$2-C6/((2.7182818)^($A$2*C6)-1). Refer section 4.
H: s = 1/((2.7182818)^($A$2*C6)-1). Refer section 4.
I: NUM1 =$I$2/$A$2+$G$2*(-G6+A6*$H$2+C6*N6+$M$2*$K$2+$N$2*$L$2)

+H6*$E$2/L6+$F$2. See equation (4) and refer to the explanation for row
P.

J: NUM2 =(($C$2/$D$2*A6)/C6)*(1/$A$2-G6+A6*$H$2+C6*N6+$M$2*$K$2
+$N$2*$L$2) See equation (4) and refer to the explanation for row P.

K: ARL0 = 1/D6.
L: ARL0 = IF(K10>10,K6,"1"). Put a lower limit of 11 on the average run

length if in control. This means that for all practical purposes there is no
limit on the ARL0 in this example.

M: ARL1 = 1/F6
N: ARL1 = IF(M6<=5000,M6,"10000"). Put an upper limit of 5000 on ARL

if out of control. This means that for all practical purposes there is no limit
on the ARL1 in this example.

O: DEN = 1/$A$2+(1-$M$2)*(H6*$J$2)/L6-G6+A6*$H$2+C6*N6+$K$2
+$L$2. See equation (4) and refer to the explanation for row P. Then use
the results of columns I, J and O to calculate the cost value for this row
with E(L) = NUM1

DEN + NUM2
DEN

P: E(L) = (I6+J6)/O6.
R: MIN = MIN(P6:P12505), which was found to be 14.8383 as seen in Table

1, This is an optimal solution with n = 12, k = 2.6 and h = 1.9.
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