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Abstract

Parts of the Local Access Telecommunication Network planning problem may be modelled
as an Extended Tree Knapsack Problem. The Local Access Telecommunication Network can
contribute up to 60% of the total network costs. This paper presents partitioning algorithms
that use standard off-the-shelf software coupled with enhanced modelling. Enhancements to
the algorithms and empirical results for both the Tree Knapsack Problem and Extended Tree
Knapsack Problem are presented.
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1 Introduction

The Local Access Telecommunication Network (LATN) connects individual subscribers to
telecommunications networks through switching centres [1]. Generally telecommunication
networks are hierarchically divided into two [3] or three parts [2], with the local access
network contributing a large portion of the total network development cost — according
to [1] as much as 60% in the case of fixed line situations.

Part of the LATN expansion problem may be modelled as an Extended Tree Knapsack
Problem (ETKP) [16]. Expansion may be required when subscriber numbers increase
or if the demand for service from existing subscribers increases beyond the capacity of
the existing network. This problem is treated extensively in [1, 3, 7], where models and
solution strategies for the problem are given. In many cases LATN design and expansion
problems are implemented sequentially, see as example [6, 8]. In some of these cases the
Tree Knapsack Problem (TKP) and ETKP may be used as model. To solve the overall
design problem, it may be necessary to solve many TKP and ETKP models. It is therefore
important to be able to solve these problems efficiently.
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A solution strategy for the ETKP with a fixed charge cost function is proposed in this
paper. The research presented in [18] proposed partitioning algorithms for the TKP
and gives some experimental performance results. In this paper we report on extended
experimental work for TKP algorithms, by testing the algorithms on classes of problem
instances with varying complexity. The algorithmic approaches have been extended to the
ETKP case, where flows and capacities along the links are considered and flow expansion
decisions are part of the LATN design process. Models with non-linear cost functions form
the basis of the empirical work for ETKP presented here. Solving the ETKP is recognised
to be computationally challenging. Algorithmic enhancements are introduced using valid
inequalities and heuristics to obtain tighter lower bounds. Comparative empirical results
are presented.

In the next section a general background on knapsack problems is presented, followed by
a section on the ETKP model. General solution strategies are briefly discussed, followed
by the proposed algorithm for the ETKP which is a major contribution of this paper.
Valid inequalities and a heuristic procedure for the ETKP are also presented. These are
followed by empirical results, conclusions and a brief note on possible future work.

2 Background

Before describing the ETKP model, a brief note on the general knapsack problem, or 0-1
Knapsack Problem (KP), is presented. The KP is a widely studied problem in operations
research and combinatorial optimization. The motivation for this is that it has many
variants and is often a subproblem of other optimization problems. Generally, in the KP
a set of items are available with associated values. A subset of items must be chosen to
maximise the total value, satisfying some capacity constraint. This type of problem occurs
when a hiker or soldier has to fill his knapsack with items from a given set, while satisfying
a suitable capacity constraint. This constraint may involve a maximum allowable weight
or volume, or some other quantity [12].

In the design of LATN networks a special type of KP is encountered where a precedence
order is imposed on the items to be chosen. This means that in order to include a specific
item, it is required that another item is included first. For example, batteries must be
included before a flash light may be included by a hiker. If batteries are included, it may
be possible to pack a radio. TKP and ETKP models are discussed in [4, 5, 15, 16].

3 The ETKP model

The ETKP model considered here may be seen as an extension to the TKP model, as
reported in [18, 19]. In the following discussion the nodes in the ETKP may be seen as
customers who can possibly be serviced. The ETKP may be seen as choosing a subtree
from a potential tree that maximises the profit for nodes included in the subtree while
satisfying feasible flow constraints.

Given a directed tree T = (V,E) rooted at node 0 where V = {0, 1, . . . , n− 1} is the set
of nodes and E is the set of potential arcs or links between the nodes. The direction of
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each arc is assumed to point towards the root node. Also, for each node j we designate
the parent node as the first node encountered along the path to the root node. For each
node j ∈ V it is assumed that a positive integer cj exists representing the profit obtained
by servicing node j, as well as a positive integer dj representing the capacity consumed
by serving node j. The vector x has binary elements xj ∈ {0, 1} denoting the exclusion
or inclusion of a node j in the subtree. Two vital assumptions for the ETKP are:

1. Indivisible demand: Each node is either serviced completely, i.e. all its demand is
serviced or none at all.

2. Contiguity constraint: All nodes on the path between a specific node and the root
node, must also be included if a node is to be included in the subtree.

The root node has limited capacity for servicing the demand of the customers and this
is denoted by a non-negative integer H. Each node also generates flow yj (to the parent
node denoted by pj), with an associated cost fj (yj). This cost function may take on
several forms. In this paper a specific form of the cable expansion cost function fj (yj), as
presented in [16], is used. The expansion cost function is defined as

fj(yj) =
{

0, if yj ≤ bj
Fj + aj(yj − bj), otherwise,

where bj is the current capacity of the link between nodes j and pj , aj is the variable cost
for flow exceeding bj and Fj is the fixed cost for sending flow in excess of bj from node j
to pj .

This cost function represents the case where no cost is incurred for sending flow less than
or equal to bj , from node j to pj . Sending more than bj units of flow incurs a fixed
expansion cost of Fj and a variable cost of aj per extra unit of flow. This may be seen
as an expansion cost incurred for additional flow. In order to formulate the problem as a
Mixed Integer Linear Program (MILP), certain modelling changes are implemented to the
ETKP model presented in [16].

These modelling changes involve splitting the variables yj into two parts, such that yj =
yj1 + yj2, where yj1 is the part of the flow less than or equal to the current capacity
(yj1 ≤ bj) and yj2 the part of the flow exceeding the current capacity of the link. Secondly,
a new set of 0-1 variables δj is introduced, corresponding to the expansion decision for each
j, with logical constraints of the form yj2 ≤ Hδj in order to force yj2 to zero if δj = 0. For
each j, δj corresponds to whether expansion is necessary, i.e. δj = 1 if expansion costs are
incurred at node j. Expansion in this case refers to sending flow in excess of the current
cable capacity bj .

Define the vectors of flows as yT
1 =

[
y11, y21, . . . , y(n−1)1

]
and yT

2 =
[
y12,y22, . . . , y(n−1)2

]
such that y = y1 + y2. Define D as a diagonal matrix with diagonal elements d1, d2, . . . ,
dn−1 and let B be an (n − 1) × (n − 1) incidence matrix of T with the root node row
being excluded. By definition, each row in B corresponds to a node and each column
corresponds to an arc in the directed tree. This means that the i-th column of B has zero
entries, except in row j and row pj , which have values of 1 and −1 respectively.
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The ETKP may now be formulated as a MILP in which the objective is to

maximise
n−1∑
j=0

cjxj−
n−1∑
j=1

(Fjδj + ajyj2) (1)

subject to the constraints

xj − xpj ≤ 0, j = 1, 2, . . . , n− 1, (2)
x0 = 1, (3)

D [x1, x2, . . . , xn−1]T −B (y1 + y2) = 0, (4)
n−1∑
j=0

djxj ≤ H, (5)

0 ≤ yj2 ≤ Hδj , j = 1, 2, . . . n− 1, (6)
0 ≤ yj1 ≤ bj , j = 1, 2, . . . n− 1, (7)

xj ∈ {0, 1} , j = 0, 1, . . . n− 1, (8)
δj ∈ {0, 1} , j = 1, 2, . . . , n− 1. (9)

The set of constraints (4) ensures conservation of generated flow, where B represents the
node-arc incidence matrix. The profit obtained from choosing a subtree may be seen as
the profit resulting from the inclusion of nodes, less the cost of flow generated by the nodes
chosen.

4 General solution strategies

Various solution strategies exist for solving optimization problems, such as standard off-
the-shelf software, heuristics, dynamic programming, metaheuristics, etc. For the TKP
and ETKP models various dynamic programming and branch-and-bound methods are
available; see, for example, [4, 5, 9, 15, 16]. Further approaches to the general planning
problem is presented in [1].

A depth-first dynamic programming algorithm designed specifically for the ETKP is pre-
sented in [16]. Note that the ETKP is represented in a depth-first manner here in order
to facilitate implementation of this algorithm. The depth-first dynamic programming al-
gorithm for the ETKP uses recursive rules to build solutions for subtrees and to generate
an optimal solution value for the problem in a recursive fashion. A negative aspect is that
once an optimal objective function value has been obtained, the optimal solution sub-tree
and flow dimensioning is not known. An additional procedure is presented in [16] which
may be used to obtain the corresponding optimal solution values for the variables.

5 Propossed algorithm

The solution approach proposed here for the ETKP is a method that uses standard off-
the-shelf software combined with enhanced modelling and partitioning. The problems are
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modelled as MILPs. This approach has the following advantages:

• Custom developed algorithms (such as dynamic programming) are seldom readily
available for use by other practitioners. Using standard off-the-shelf software will cut
down on development times. Here standard software refers to third party software,
i.e. proprietary or even open source software.

• Many dynamic programming algorithms give no guarantee regarding the quality of
solutions obtained in cases where time or storage constraints prevent it from running
to completion. The solution process proposed here will create interim feasible solu-
tions with known bounds. This is preferred to methods that only produce solutions
upon completion.

• Advances in the standard off-the-shelf software as vendors improve their products,
will automatically improve the efficiency of the solution process.

The proposed algorithms produce optimal solutions with the added advantage of interme-
diate solutions generated during the solution process. These solutions produce bounds on
the optimal objective function value and improve the performance of the solution process.

A two-phase partitioning of the search space is performed. The first level of partitioning
aims at exploiting the notion of cardinality. The idea of using cardinality is to estimate
the number of variables with value one in an optimal solution. This estimate may be used
to reduce the search space. Also helpful is the knowledge that the cardinality can only
be an integer value. This is called first-order partitioning in this paper. This notion of
cardinality was advocated in [13, 14].

For a specific first-order partition, the linear programming (LP) relaxation is used to
identify a set of promising variables. This set is used to implement a second-order partition.
The overall goal of the partitioning is to solve a number of easier problems, rather than
one difficult problem, where the solution times of the easier problems are relatively short.

An algorithm based on these ideas was developed for the TKP and was published in [19,
20]. An analogous algorithm was developed for the ETKP and the details and performance
in empirical experiments are reported below.

Let ILP(ETKP) denote a MILP model for the ETKP and let ILPR(ETKP) denote the LP
relaxation of the problem. A first-order MILP partitioning constrained to p nodes is de-
noted by ILP(ETKP, p) and the corresponding LP relaxation is denoted by ILPR(ETKP,
p). A second-order partitioning (defined below) is denoted by ILP(ETKP, p, q) for the
MILP and by ILPR(ETKP, p, q) for the LP relaxation. The second-order partition is
based on the observation that if p is a cardinality of a correct first-order partition, and
the set of indices {0, 1, . . . , n− 1} is partitioned into a “promising” set (called S` in the
algorithm below) and a remainder set (referred to as Sn−`), a systematic evaluation as-
signing p − q variables xj (with j ∈ S`,) the value of 1 and q variables xi (i ∈ Sn−`) the
value of 1 for all non-negative integer values of q will solve the problem if q is systemat-
ically enumerated. Solving the resulting problems ILP(ETKP, p, q), the optimal solution
to ILP(ETKP, p), and by assumption ILP(ETKP), must be obtained as the best value
of ILP(ETKP, p, q) over the range of q. The algorithm is given in pseudo-code form in
Algorithm 1.
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Algorithm 1 Partitioning Algorithm
1: procedure PART ETKP
2: CLB ← 0
3: xCLB

j ← 0, j ∈ {0, 1, . . . , n− 1}
4: δCLB

i ← 0, i ∈ {1, 2, . . . , n− 1}
5: P ← {1, 2, . . . , n− 1}
6: Solve parametrically ILPR(ETKP, p) ∀p ∈ P , obtain objective function values ZETKPR(p). If

ILPR(ETKPp) is infeasible, ZETKPR(p) ← −∞.
7: while P 6= ∅ do
8: p′ ← t where t is defined by ZETKPR(t) = max

k

{
ZETKPR(k)|k ∈ P

}
9: For ZETKP (p′) identify the solution values x′j for j ∈ V

10: Sl ←
{
j|x′j = 1, j = 0, 1, 2, . . . , n− 1

}
, Sn−` ← V \S`

11: Q← {|S`|, |S`| − 1, |S`| − 2, . . . ,max {0, p− |Sn−`|}}
12: while Q 6= ∅ do
13: Solve parametrically ILPR(ETKP, p′, q) ∀ q ∈ Q, obtain objective function values of

ZETKPR(p′,q)

14: If ILPR(ETKP,p′, q) is infeasible, ZETKPR(p′,q) ← −∞
15: q′ ← s where s is defined by ZETKPR(p′,s) = max

j

{
ZETKPR(p′,j)|j ∈ Q

}
16: if ZETKPR(p′,q′) > CLB then
17: Solve ILP(ETKP, p′, q′), optimal objective function value ZETKP (p′,q′) with solution

values x′j , j = 0, 1, . . . , n− 1 and δ′i, i = 1, 2, . . . , n− 1
18: if ZETKP (p′,q′) > CLB then
19: CLB ← ZETKP (p′,q′)

20: xCLB
j ← x′j , j = 0, 1, . . . , n− 1

21: δCLB
i ← δ′i, i = 1, 2, . . . , n− 1

22: Q←
{
r|r ∈ Q and ZETKPR(p′,r) > CLB

}
23: end if . ZETKP (p′,q′) > CLB
24: end if . ZETKPR(p′,q′) > CLB
25: if q′ ∈ Q then
26: Q← Q\ {q′}
27: end if
28: P ← P\ {p′}
29: P ←

{
i|i ∈ P and zETKPR(i) > CLB

}
30: end while . Q 6= ∅
31: end while . P 6= ∅
32: return CLB, xCLB

j and δCLB
i , j = 0, 1, . . . , n− 1 and i = 1, 2, . . . , n− 1

33: end procedure

The ETKP partitioning algorithm initially produced poor computational results. This was
due to large integrality gaps and subsequently a large number of second-order partitions
to investigate. Here the term integrality gap refers to the difference between the lin-
ear programming relaxation and integer valued solutions. To enhance the computational
efficiency, several additional ideas were implemented.

The first such idea was to add valid inequalities to the formulation. The notion of valid
inequalities is discussed in more detail in [10, 11]. Adding valid inequalities reduces the
integrality gap and limits the number of second-order partitions to investigate, improving
solution times dramatically. The valid inequalities investigated in this paper are shown be-
low. The procedures presented below add constraints to the formulation during run time,
depending on the data instance, and is presented in pseudo-code form as Algorithms 2–4.

In Algorithm 2 the first set of valid inequalities aims to exploit the fact that capacity is
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used up on a path between a node and the root node. This, in combination with contiguity
constraints, forces capacity expansion higher up in the network if a node is added.

Algorithm 2 Add first set of valid inequalities to ETKP
1: procedure AddInequalities 1
2: for i = 1, 2, . . . , n− 1 do
3: j ← i
4: path capacity ← 0
5: while j 6= 0 do
6: path capacity = path capacity + dj

7: if path capacity ≥ bj then
8: Add constraint xi ≤ δj

9: end if
10: j ← pj

11: end while
12: end for
13: end procedure

The second type of valid inequality (embodied in Algorithm 3) aims to exploit the capacity
required when adding all the child nodes of a specific node. If the sum of the capacities
of the child nodes of node i exceeds the capacity bi available at node i, expansion would
be required before all the child nodes can be added.

Algorithm 3 Add second set of valid inequalities to ETKP
1: procedure AddInequalities 2
2: for i = 1, 2, . . . , n− 1 do
3: Ci ← {j|pj = i}
4: if Ci 6= ∅ then
5: sum demands← di +

∑
k∈Ci

dk

6: if sum demands ≥ bi then
7: Add constraint xi +

∑
j∈Ci

xj − δi ≤ |Ci|
8: end if
9: end if

10: end for
11: end procedure

Before the next type of valid inequality is discussed it is necessary to introduce additional
notation. Let P (i, j) refer to the set of nodes on the path between node i and j, excluding
nodes i and j in the set.

The third type of valid inequality (contained in Algorithm 4) involves the capacity used
up on the path between the root node and the node for which the inequality is added, and
limits the additional flow yi2.

Algorithm 4 Add third set of valid inequalities to ETKP
1: procedure AddInequalities 3
2: for i = 1, 2, . . . , n− 1 do

3: Add constraint yi2 ≤
(
H −

∑
j∈P (0,i) dj − bi

)
δi

4: end for
5: end procedure
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A fourth enhancement is due to the fact that the capacity H used in the inequality
yi2 ≤ Hδi results in a LP relaxation solution that is too optimistic and contributes to a
relativity large integrality gap. It was found that adding the valid inequality

yi2 ≤
(∑

j∈T (i)
dj

)
δi, (10)

where T (j) = {i|i is a descendant of j}∪{j}, decreases the integrality gap. This inequal-
ity implies that yi2 = 0 if δi = 0. If δi = 1 an upper bound on yi1 + yi2 is

∑
j∈T (i) dj . This

means that the inequality in (10) is valid.

Additional heuristic method

In the algorithms developed, a basic step is to choose a first-order partition with a certain
cardinality to be investigated further. This is done on the basis of the objective function
value obtained from a relaxed problem for that cardinality. In certain instances more
than one partition (cardinality) gives the same objective function value. A heuristic is
given below that differentiates between different first-order partitions. The heuristic also
provides good starting solutions that are valid for the overall problem. It produces good
bounds and in some cases solutions are obtained that are proved to be optimal by the
bounds generated.

The heuristic is based on the observation that the variables with solution values of xj = 1
in the relaxed problem define a subtree. Denote this subtree by TB`

. This is due to the
contiguity constraints present in the formulations of both the TKP and ETKP models. The
idea of the heuristic is to focus on child nodes (not in the subtree) of nodes in the subtree
TB`

. The subtree TB`
uses up a certain capacity, but also gives a certain profit. In the case

of the TKP, a simple 0-1 KP may be constructed using as variables the direct child nodes
(that are not in the subtree) of the subtree TB`

. Suppose that TB`
depletes a capacity

of HB`
, then the new 0-1 KP created has a residual capacity of H − HB`

. The nodes
identified by the solution to the 0-1 KP are then added to TB`

to form another extended
subtree that may be used as a feasible solution to the TKP. The optimal objective function
value for the 0-1 KP must be added to the profit obtained for TB`

in order to obtain an
objective function value for the original TKP problem. The empirical experiments with
this heuristic indicated that the 0-1 Knapsack constructed has a relatively small capacity
and is relatively easy to solve. More details on this heuristic for the TKP case are given
in [18]. In this paper the focus is more on the ETKP.

The same type of heuristic cannot be applied directly to ETKP. This is due to the flow
constraints that are present in the problem formulation, which means that the profit
obtained from using a 0-1 KP created by the child nodes of a valid subtree cannot simply
be added to the profit of the subtree. Feasible flows and flow constraints have to be
accounted for. However, a similar type of heuristic is applicable for the ETKP case
that utilises the same idea as discussed previously, but overcomes the problems with flow
conservation and subsequent costs. To implement this heuristic, the objective function of
the original problem must be used. New knapsack type constraints are introduced using
the child nodes of a subtree with limited capacity, but keeping the formulation of the
original problem.
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This heuristic method was implemented after solving an LP relaxation ILPR(ETKP) to
obtain solution values x∗j for j = 0, 1, . . . , n− 1. The set B` is formally defined as the set
of nodes included (with x∗j values of 1) in the solution of ILPR(ETKP). Define the set
BAdl = {j | pj ∈ B`, j /∈ B`}. The capacity depleted by the subtree TB`

(corresponding to
B`) is HB`

=
∑

j∈B`
dj . The capacity available for the Knapsack type heuristic is H−HB`

.
The ILP heuristic ILP(ETKP,HB`

) is then the problem of

maximising
n−1∑
j=0

cjxj−
n−1∑
j=1

(Fjδj + ajyj2) (11)

subject to the constraints

xj − xpj ≤ 0 j = 1, 2, . . . , n− 1, (12)
x0 = 1, (13)

D [x1, x2, . . . , xn−1]T −B (y1 + y2) = 0, (14)
0 ≤ yj2 ≤ Hδj , j = 1, 2, . . . , n− 1, (15)
0 ≤ yj1 ≤ bj , j = 1, 2, . . . n− 1, (16)

xj = 1, j ∈ B`, (17)
xi = 0, i ∈ V \ (B` ∪BAdl) , (18)∑

j∈BAdl

xjdj ≤ H −HB`
, (19)

xj ∈ {0, 1} , j = 0, 1, . . . n− 1, (20)
δj ∈ {0, 1} , j = 1, 2, . . . , n− 1. (21)

This heuristic was integrated into Algorithm 1 given above and the results are presented
in the following section.

6 Results

The results presented in this paper are divided into two parts. The first part consti-
tutes additional results to the empirical results presented in [19]. Complexity classes are
considered similar to those of the 0-1 KP presented in [14], where degrees of correlation
between the profit and demand coefficients are considered. The experience reported in
[14] indicate that the computational difficulty of solving 0-1 KPs often depends on the
interrelationship between the profit and demand coefficients. The performances of the
proposed algorithms are reported for these cases. Data instances were generated using a
pseudo-random number generator.

As both TKP and ETKP aim to choose a subtree from a potential tree, data instances
for these trees are generated in a systematic manner. After a valid candidate tree was
created, profit values (cj) and demand values (dj) for each node were generated. For the
ETKP the existing node capacity (bj), fixed cost (Fj) and variable cost for expansion (aj)
were also generated. These values were generated to fall within specified ranges. This
allowed various classes of data instances to be implemented for each tree setup.
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Four data classes were investigated, given in increasing order of perceived complexity:

• Uncorrelated problems. In this situation there is no direct correlation between the
profit and demand of a specific node. This means that cj ∈ {0, 1, . . . ,UpperLevel}
and dj ∈ {0, 1, . . . ,UpperLevel}.
• Weakly correlated problems. Here a weak correlation exists between the profit and

demand of a specific node. The implementation implies that a demand is chosen,
say dj ∈ {0, 1, . . . ,UpperLevel}. The profit for the node is then generated to have
some correlation to the demand. This is achieved by generating a random integer
value, say r ∈ [−Interval,+Interval] and adding this to the value dj , i.e. cj = dj + r.
If a negative value is generated for cj , the cj value is set to one.
• Strongly correlated problems. Here a strong correlation exists between the profit and

demand of a specific node. In practice this was implemented in the following way.
A demand dj was randomly chosen from the set {0, 1, . . . ,UpperLevel}. The profit
cj was then calculated as cj = dj + r, where r is a non-negative integer value chosen
from a narrow band.
• Subset sum problems. Here the profit and demand is the same for each node. This

means that cj = dj , j = 0, 1, . . . , n − 1. In practice this means that dj is randomly
generated from the set {0, 1, . . . ,UpperLevel}. Afterwards, the value of cj is set to
the same value as dj for all the nodes in the problem instance. This type of data
instance is sometimes referred to as the value-independent case [3].

The values of UpperLevel, Interval, r, the branching factor and an initialisation (seed) value
for the pseudo random number generator have been stored. This gives all the necessary
information required to recreate a specific data instance. It was only necessary to start
the tree generation process with the correct seed value.

6.1 TKP results

The results obtained for the TKP case are presented in this section. For each progressively
larger tree size, four tree configurations were used. For each tree configuration, nine differ-
ent total capacities (H) were used. This means that for each data point displayed in the
Figures 1–4 below, the average corresponding to 36 experiments is given. The partitioning
algorithm presented above was benchmarked against standard software (CPLEX in this
case) and against an implementation of a branch-and-bound algorithm presented in [15],
referred to as Shaw and Cho [15] in the figures below. The branch-and-bound algorithm
developed was implemented from pseudo-code. A dynamic programming algorithm for the
TKP is presented in [4], but according to the authors of [4] the branch-and-bound version
is superior. This is the motivation for comparisons with the branch-and-bound version
presented here.

For the TKP empirical tests a Pentium IV 3.2 GHz with 1Gb of memory running SuSE
10.1 was used. CPLEX 10.1 from ILOG with the GNU C++ 4.3 compiler was used to
solve all MILP and LP problems.

Graphical representations of the relative performance of the different algorithms for the
different classes of data instances are given in Figures 1–4.
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Figure 1: Average solution times for uncorrelated TKP data class.
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Figure 2: Average solution times for the weakly correlated TKP data class.
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Figure 3: Average solution times for the strongly correlated TKP data class.
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Figure 4: Average solution times for the subset sum data TKP class.
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6.2 Conclusions for the TKP results

The empirical results demonstrate that the partitioning TKP algorithm is capable of
performing quite well on all the different types of data described above. In general the
partitioning algorithm solved problem instances in less time, on average, than the standard
software alone or the algorithm in [15]. The algorithm published in [15] exhibited extremely
variable solution times. In some data instances it solved the problem fairly quickly, while
in other cases of the same size it reached the cut-off time of 7 200 seconds. This is partly
true for the standard software as well.

In general it seems that the performance of the partitioning algorithm is more robust than
the other solution approaches tested. It also allows larger problem instances to be solved
with less variable solution times. For the strongly correlated data class and larger problem
sizes (more than 60 000 nodes) CPLEX and the algorithm in [15] often failed to solve the
problem instances. This meant that no comparative times could be produced for larger
problem sizes. The value of the partitioning algorithm is also that it works quite well for
all the types of data classes considered. This means that if no information is available on
the nature of the data of the problems to be investigated, using the partitioning algorithm
should be a good strategy. The algorithm in [15] was often outperformed by the standard
CPLEX software alone and some problem instances were not solved due the memory or
time constraints, meaning that it was intractable to solve the problem on the machine
used.

The empirical experience gained here with the complexity of the data instances largely
corresponds to that reported for the complexity classes of the 0-1 KP, with the exception
of the subset sum case. Both the proposed algorithm and the algorithm in [15] solved this
class surprisingly fast.

6.3 ETKP results

Computational experiments were performed using CPLEX from ILOG as the standard
off-the-shelf optimization software. This software was used to solve all linear-, mixed
integer linear- and integer programming problems. This also presented a benchmark for
the enhanced modelling and partitioning algorithm. Since numerous errors were found
in the algorithm presented in [16] this algorithm was not implemented and could not be
tested for computational efficiency.

Problems were generated using a pseudo-random number generator similar to the process
discussed previously. Problem sizes measured in number of nodes ranged between 500 and
10 000. For the empirical results time cut-off values of 7 200 seconds were imposed for
the solution times of each instance. For each problem size four different tree configura-
tions were again generated and within each configuration nine different capacity sets were
used. Progressively larger capacities were used for larger problems. This is in contrast
to work presented in [16] where the capacities of the problem instances were kept fixed
even when the problem size was increased. It is felt that this practice may have led to a
misrepresentation of the actual performance of the algorithm.

Without the added valid inequalities the partitioning algorithm did not produce viable
solution times to problem sizes with more than 300 nodes. In the empirical work reported
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here the partitioning method with valid inequalities and the heuristic was employed. Much
larger sized problems could be accommodated with these enhancements.

For the empirical work an AMD DL145G2 OPTERON 64 bit running RedHat Linux was
used. The machine had 4Gb of RAM and CPLEX 10.1 was used.
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Figure 5: Average solution times for the patitioning algorithm and CPLEX.

The standard deviations of the solution times for the various problem sizes are shown
in Table 1. It may be seen from the graph in Figure 5 that, on average, the partitioning
algorithm solved ETKP data instances in less time than did standard CPLEX. All solutions
obtained were optimal solutions. It is furthermore evident from Figure 5 that the average
CPLEX solution times were close to the cut-off value of 7 200 seconds for larger problems,
implying that CPLEX could not reliably solve all the data instances.

Generally the standard deviations obtained for the partitioning algorithm were also less
than the deviations of CPLEX, shown in Table 1. This means that the solution times were
less variable for the partitioning algorithm than for CPLEX. The exception was for some
of the larger problem sizes. This is due to fact that in many cases CPLEX reached the
cut-off value. This led to small variations in solution times, but reaching the cut-off time
is not a desirable outcome, as the procedure is stopped before a proven optimal solution
is obtained.

7 Conclusion

The partitioning TKP algorithm performed very well when tested against the other solu-
tion approaches investigated in this paper. Generally, complexity classes identified for the
0-1 KP also hold for the TKP in the experience gained here. The partitioning algorithm



Solving the ETKP with a fixed cost flow expansion function 15

Problem CPLEX Partitioning
size algorithm

500 1.1 0.9
1 000 5.2 2.3
1 500 7.1 6.8
2 000 10.2 10.6
2 500 21.6 17.2
3 000 72.1 23.9
3 500 140.1 27.3
4 000 1 773.9 45.6
4 500 2 713.8 59.6
5 000 2 845.6 135.7
5 500 3 038.5 95.2
6 000 2 307.9 119.2
6 500 1 861.8 129.6
7 000 1 987.1 244.6
7 500 1 849.9 238.3
8 000 1 643.2 318.4
8 500 1 342.2 1 174.5
9 000 896.3 352.9
9 500 23.5 374.2

10 000 796.8 752.1

Table 1: Standard deviations of the solution times for the partitioning algorithm and CPLEX.

appears to be the best strategy to use if nothing is known about the complexity class of
a TKP problem investigated.

Solving ETKP problems with a partitioning algorithm that uses standard off-the-shelf
software employing the enhanced modelling techniques described in this paper, appears to
be a viable solution strategy. This may be very helpful as the ETKP is a basic subproblem
in LATN design problems. A major conclusion is that the empirical experience with the
new algorithms indicates that large problems with more than 6 000 nodes can be reliably
solved, whereas the other methods tested failed to do so in reasonable times.

8 Future work

It is suggested that further future work is done to investigate different cost functions and
to test whether the approach of using standard software with this type of enhanced mod-
elling and partitioning strategies can be used in other models for LATN design. Parallel
computing was not utilised during the computational tests, but may be considered in
future work as the algorithms developed have inherent parallelisation possibilities.
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