
Volume 27 (1), pp. 17–43

http://www.orssa.org.za

ORiON
ISSN 0529-191-X

c©2011

Water distribution systems design optimisation
using metaheuristics and hyperheuristics

DN Raad∗ A Sinske† JH van Vuuren‡

Received: 4 February 2011; Revised: 22 May 2011; Accepted: 24 May 2011

Abstract
The topic of multi-objective water distribution systems (WDS) design optimisation using
metaheuristics is investigated, comparing numerous modern metaheuristics, including sev-
eral multi-objective evolutionary algorithms, an estimation of distribution algorithm and a
recent hyperheuristic named AMALGAM (an evolutionary framework for the simultaneous
incorporation of multiple metaheuristics), in order to determine which approach is most capa-
ble with respect to WDS design optimisation. Novel metaheuristics and variants of existing
algorithms are developed, for a total of twenty-three algorithms examined. Testing with re-
spect to eight small-to-large-sized WDS benchmarks from the literature reveal that the four
top-performing algorithms are mutually non-dominated with respect to the various perfor-
mance metrics used. These algorithms are NSGA-II, TAMALGAMJndu, TAMALGAMndu

and AMALGAMSndp (the last three being novel variants of AMALGAM). However, when
these four algorithms are applied to the design of a very large real-world benchmark, the
AMALGAM paradigm outperforms NSGA-II convincingly, with AMALGAMSndp exhibiting
the best performance overall.

Key words: Water distribution systems design optimisation, metaheuristic, hyperheuristic.

1 Introduction

A water distribution system (WDS)1 is a network of components designed to supply treated
drinking water to human settlements. WDS design optimisation (WDSDO) involves the
specification of a layout and the sizing of components for a WDS design, in order to min-
imise costs and maximise various system benefits. Multi-objective WDSDO has gained
in popularity, yielding a Pareto-optimal set of solutions which embody a trade-off be-
tween various objectives, and enables more informed decision-making. The design of a
WDS is subject to performance constraints, most importantly the satisfaction of con-
sumer water demands within acceptable pressure ranges throughout the system. The

∗Corresponding author: Department of Logistics, University of Stellenbosch, Private Bag X1,
Matieland, 7602, South Africa, email: darianraad@gmail.com
†GLS Software (Pty) Ltd, PO Box 814, Technopark, Stellenbosch, 7599, South Africa
‡(Fellow of the Operations Research Society of South Africa), Department of Logistics, Uni-

versity of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
1A list of acronyms is provided in the appendix at the end of the paper.

17

18 DN Raad, A Sinske & JH van Vuuren

primary WDS components to be sized and placed include pipes, pumps, valves, tanks,
and reservoirs. Historically, the WDSDO problem was often simplified to that of selecting
pipe diameters for a fixed layout network from a discrete set of commercially available
options in order to minimize capital cost. The WDS pipe-sizing problem is a classical
combinatorial optimisation problem, classified as NP-hard. The vast number of permuta-
tions of potential WDS designs makes brute force analysis impossible for most real-world
WDS cases.

The WDSDO problem may also include the selection of operational modes or settings
for components, the staged construction of the network over time, the rehabilitation of
existing components (e.g. pipe cleaning and relining), and considerations of water qual-
ity maximisation and leakage abatement. WDSDO is significantly complicated by the
dynamic nature of a WDS, as exhibited by constantly varying water demands and the
natural growth and aging of the WDS over time. Finally, the optimization problem itself
is complicated by the need to conduct computationally expensive hydraulic simulations
for every candidate design, sometimes for a large number of demand loading conditions,
especially if tanks are to be designed [29, 48]. Water demand is estimated from guidelines
or historic records and grouped at the network nodes [48].

Apart from cost minimization, the objective of maximizing WDS reliability has received
substantial attention in the literature. However, there is still no universally accepted
definition for WDS reliability, and numerous different reliability quantification schemes
exist [16]. Possibly the most scientific interpretation is probabilistic hydraulic reliability,
whereby a Monte Carlo simulation (MCS) is conducted with stochastic demands, and
the proportion of the time that a design solution is hydraulically feasible is taken as the
reliability of the WDS [22]. A major problem regarding this methodology is that a full
MCS implementation may call for thousands of hydraulic simulations, which becomes
impractical as the WDSs grow in size. Alternative techniques for addressing reliabil-
ity have included analytical approximation techniques, such as the first order reliabil-
ity method (FORM) [53], the incorporation of such techniques within genetic algorithms
[43], and integration-based methodologies [3]. These methods all have their limitations,
particularly in terms of scalability. As an alternative to probabilistic reliability, some
researchers have proposed reliability surrogate measures, which measure some desirable
property, excess capacity or redundancy of the WDS, in order to quantify how resilient
the system might be during stressed conditions. Examples include the Resilience Index of
Todini [42], dating from 2000, and the Network Resilience metric of Prasad and Park [33],
dating from 2004.

This paper is focused on multi-objective WDSDO, considering the design of network lay-
outs and the assignment of pipe diameters with respect to a number of WDS benchmarks
from the literature. More specifically, metaheuristics and hyperheuristics are used to solve
the bi-objective problem of cost minimisation and reliability maximisation (employing
the Network Resilience surrogate measure). It was the goal of this study to investigate
novel algorithms towards WDSDO, expanding knowledge within the field and striving to
identify algorithms which yield improved efficiency and solution quality. For this pur-
pose twenty-three algorithms were selected or developed for comparison, on the basis of
representing several different metaheuristic design paradigms (including traditional multi-

WDSDO using Metaheuristics and Hyperheuristics 19

objective evolutionary algorithms (MOEAs), auto-adapting MOEAs, local-search heuris-
tics, estimation of distribution algorithms (EDAs), metaheuristics derived from nature,
and hyperheuristics). Of particular note is the hyperheuristic AMALGAM, developed by
Vrugt and Robin [45] in 2007, which employs multiple metaheuristics simultaneously in a
dynamic fashion in an attempt to improve performance. Several variants of AMALGAM
were developed for this study in order to address the shortcomings of the original algo-
rithm. This study updates a 2009 paper, namely Raad et al. [34], in which a smaller
subset of the metaheuristics and WDS benchmarks were examined, and in which a less
rigorous testing methodology was employed.

2 A Brief History of Multi-objective WDSDO

Prior to the late 1990s, WDSDO was focused on single-objective, least-cost design, sub-
ject to performance constraints, rarely considering the trade-off between cost and various
system benefits. The failure to incorporate numerous important WDS evaluation criteria
meant that WDSDO could not become a part of standard engineering practise [47].

The first widely available model that considered multiple objectives was the WADISO
program by Walski and Gessler in 1985 [13], which used a partial enumeration method to
produce solutions, showing the trade-off between cost and minimum pressure. Unfortu-
nately this method quickly becomes impractical as the size of the WDS grows. Halhal
et al. [17] were arguably the first to popularise multi-objective WDSDO in 1997, using a
multi-objective genetic algorithm (GA) approach to address the problem of WDS reha-
bilitation under a limited budget. They accommodated the goals of maximizing ben-
efit (carrying capacity, physical integrity and system flexibility) and minimizing cost,
using the concepts of Pareto rank and fitness sharing introduced by Goldberg in 1989
[14]. They used the idea of incremental solution building to develop a structured messy
GA (SMGA), which incrementally builds longer genetic chromosomes up to a maximum
number of rehabilitation options, effectively pruning the search space enormously. Their
technique is impressive, but suffers from several drawbacks, including a lack of scalabil-
ity, and having to specify weighting factors between incommensurate system properties.
Also in 1997, Savic and Walters [38] used a standard GA integrated with the EPANET
hydraulic solver of Rossman [36], which they tested with respect to three WDS bench-
marks from the literature. They found that the results were sensitive to Hazen-Williams
head-loss coefficients of the pipes. Halhal et al. [17] enforced the structural restriction
of recombining chromosomes of the same length only. In 2001, Wu and Simpson [51]
demonstrated that this is unnecessary, applying the full version of the fast messy GA
(FMGA) designed by Goldberg et al. [15] to least-cost WDS design. The FMGA employs
probabilistically complete initialization and explicit building-block (or schemata) filtering
and juxtaposition to find good gene combinations very quickly. They demonstrated dra-
matically improved performance for the design of a real-world Moroccan WDS. In 2004,
Tolson et al. [43] combined the FORM of Xu and Goulter [53] with a basic GA to find
Pareto-optimal solutions for WDS design by means of goal-programming (numerous single-
objective problems solved for different reliability goals). This method is computationally
expensive and requires intensive calculation of derivatives and matrix inversions.

20 DN Raad, A Sinske & JH van Vuuren

In 2003, Farmani et al. [9] compared four MOEAs for WDSDO and concluded that the
Nondominated Sorting Genetic Algorithm II (NSGA-II) [5] was the best. A self-adaptive
penalty function was incorporated into a multi-objective version of the FMGA by Wu
and Walski [50] in 2004, and applied to the optimisation of the Hanoi network. In the
same year Nicolini [31] compared three MOEAs (the Efficient Nondominated GA (ENGA),
NSGA-II, and a controlled elitist NSGA-II) towards the design of the two-loop network
introduced by Alperovits and Shamir [2], finding that the latter two outperformed the
ENGA. In 2005, Farmani et al. [11] compared the NSGA-II to the Strength Pareto Evo-
lutionary Algorithm 2 (SPEA-II) with respect to three WDS benchmarks, and found
that SPEA-II produced improved solution quality (at the cost of increased running time).
They applied these algorithms to the large Exeter WDS benchmark [8] with three ob-
jectives, and concluded that while both algorithms were somewhat successful, further re-
search was needed in locating better Pareto-optimal sets, particularly in high-dimensional
spaces. In another study [10], they applied the NSGA-II to the multi-objective design
of the Anytown WDS [46], which includes the design and placement of tanks, using the
Resilience Index as an objective. In 2005, Kapelan et al. [22] implemented an adapted
robust version of the NSGA-II algorithm (RNSGA-II) which uses reduced sampling fitness
evaluation (requiring fewer hydraulic simulations) to solve the stochastic WDS design
problem with the objectives of minimizing cost and maximizing probabilistic reliability.
They employed RNSGA-II to solve the famous NYTUN problem [39] in a multi-objective
fashion.

In 2009, Olsson et al. [32] compared three estimation of distribution algorithms (EDAs),
concluding that the Univariate Marginal Distribution Algorithm (UMDA) was superior.
Also in 2009, di Pierro et al. [7] analyzed two multi-objective hybrid algorithms, namely
ParEGO [26] and LEMMO [21], with respect to the design of a real, medium-sized network
in Southern Italy, and a real, large-sized network in the UK. Both algorithms employ
machine learning techniques and were designed for dealing with expensive multi-objective
optimisation problems, able to operate under a scenario of severely restricted function
evaluations. They demonstrated that both hybrid algorithms were capable of dramatic
speed enhancements, and although ParEGO was shown to be unsuitable for designing
large systems, LEMMO could be successfully extended to the efficient design of large-
scale WDSs.

A notable problem with all of these studies is the relatively few WDS benchmarks em-
ployed, making it difficult to draw general conclusions about algorithmic performance.

3 Multi-objective WDSDO Model

Consider a WDS system with discrete variables xd (including np pipe diameters and other
discrete component sizes, settings and locations), continuous variables xc (including tank
dimensions and valve settings), nr reservoirs and n nodes. A complete solution is therefore
x = {xd,xc}. The multi-objective WDSDO problem for such a system may be expressed
as that of finding an approximation to the Pareto-optimal solution set of designs with the

WDSDO using Metaheuristics and Hyperheuristics 21

objectives of

minimizing C = Cc(x) + Co(x,d, e), [Cost]

minimizing P̂ = P̂ (d,h, q,o), [Penalty]
maximizing R = R(x,d,h, q), [Reliability]
maximizing K = {K1,K2, . . . ,Km}, [Misc]
subject to xd = [xd1 , x

d
2 , . . . , x

d
r], xdi ∈ X i, [Discrete]

xc = [xc1, x
c
2, . . . , x

c
s], x

c
i,min ≤ xci ≤ xci,max, [Continuous]

g(h, q) = 0, [Hydraulic]
h(d)min ≤ h(d) ≤ h(d)max, [Pressure]
wmin ≤ w(x,h, q,d,o) ≤ wmax, [Other]


(1)

where d denotes the demand loading conditions at the nodes, h is a 1 × n vector of
computed nodal pressure heads, q is a 1×np vector of pipe flows, o denotes other computed
hydraulic properties such as tank capacity and water level deviations from those required
at the end of a cycle. Here C denotes the cost of the network as a function of the decision
variables, including the capital investment cost Cc and operational costs Co (which may
include the present value of energy costs e for pumping as well as maintenance and repair
costs). P̂ = P̂ (d,h, q,o) is a penalty function which depends on the magnitudes of
pressure and other constraint violations. The objective R denotes some reliability measure
(such as Network Resilience) as a function of the components, nodal heads and pipe flows,
and K denotes a set of miscellaneous objective functions, such as maximizing water quality.

The hydraulic constraints g = 0 ensure continuity of flow and zero head loss around loops.
These are hard constraints and may be satisfied intrinsically by means of a hydraulic
solver which is called to evaluate the flows and pressures for every network configuration.
EPANET2 [36] was employed for this purpose in this paper. The remaining constraints
are usually considered soft constraints, in that slight violations may still be acceptable.
Therefore these constraints are typically handled by means of a penalty function, such as
the objective P̂ . If the penalty function is zero, then all constraints are satisfied. The
nodal pressure constraints specify a vector of minimum heads hmin, which ensure a mini-
mum customer service level, and a vector of maximum heads hmax, which guards against
leakage and component damage. The discrete design constraints specify that every de-
cision variable takes on a value from a discrete set X i =

{
x1o, . . . , x

ω
o

}
, where xio is the

i-th available discrete option. Continuous constraints impose maximum and minimum lim-
its on xc. The other constraints, denoted by w, may include upper limits on flow velocity,
tank operational constraints, and budgetary constraints. A truly generic formulation of
this problem is difficult, owing to the large variety of potential objectives and constraints,
and the option to incorporate phased design over time [48].

With conflicting objectives, one is interested in obtaining an approximation to the true
Pareto-optimal set of solutions in cost/reliability space. This necessarily invokes the con-
cept of Pareto-dominance, whereby a solution x dominates another solution y, denoted
by x � y, if x is better in terms of all objective function values than y, and two solu-
tions are nondominated with respect to each other when each is better than the other for
some objective function value. The goal of MOO is to find a good approximation of the
Pareto-optimal set. However, this is an idealization; since the true Pareto-set is typically
not available in real world problems, it is not possible to test whether the algorithm has

22 DN Raad, A Sinske & JH van Vuuren

attained any Pareto-set members. There may exist many different approximations, and
different algorithms may produce sets of differing quality in terms of their closeness to
the true Pareto-optimal front, and their diversity along it. Performance assessment must
necessarily take the form of comparative analysis between approximation sets, for which
several indicators exist. A Pareto-approximation set A is said to dominate a set B if for
each y ∈ B there exists an x ∈ A, such that x � y. Similarly, a set A is said to weakly
dominate a set B if for each y ∈ B, either y ∈ A or there exists an x ∈ A, such that x � y
[57].

In evolutionary optimization it is not normally possible to handle constraints explicitly. A
penalty term is often added to the basic cost in order to guide the optimization towards
feasible solutions. This penalty is based on the magnitude of the constraint violation,
multiplied by a penalty factor which scales the violation to the same order of magnitude
as the cost. Ideally, this should result in an infeasible solution being slightly more expensive
than any feasible one. The penalty factor typically requires trial and error fine-tuning,
although some researchers have suggested methods for auto-adaptation thereof [1]. An
example of such a penalized cost function is C(h,v,d) = Cc(d) + P (h,v), where Cc(d) is
the capital cost and P (h,v) is a penalty term as a function of nodal pressure heads and
pipe velocities v. The penalty term incorporated in this paper takes the form

P (h,v)

αp
=

p∑
j=1

vj−vmin

vmax−vmin
− 1, if vj > vmax +

n∑
i=1

 −
hi−hmin
hmax−hmin

, if hi < hmin

hi−hmin
hmax−hmin

− 1, if hi > hmax,
(2)

where αp is the penalty factor. This function has been designed to penalize constraint vio-
lations normalized by the size of the feasible range, which enables meaningful aggregation
of minimum and maximum constraint violations. Velocity here refers to absolute velocity,
since flow may occur in either direction. In this paper it was decided to take vmin = 0 and
pressure head limits are only enforced at nodes with non-zero demand.

4 Reliability Surrogates

Introduced by Todini [42] in 2000, the Resilience Index is an indicator of excess system
power. Since internal energy losses will increase when demand increases or pipe failure
occurs, it is desirable to provide more hydraulic power at each node in a looped network
than is required, so that a sufficient surplus exists to be dissipated internally in case of
failures. This surplus is used to characterize the resilience of the network.

If Ptot = γ
∑nr

k=1QkHk is the total available power supplied to the system, where Qk is
the flow and Hk is the pressure head supplied by the kth reservoir, and γ is the specific
weight of water, then Ptot = Pint + Pext, where Pint is the power dissipated in the pipes,
while Pext = γ

∑n
i=1 qihi is the power delivered to users in terms of flow qi and head hi at

node i, where n and nr denote the number of nodes and the number of reservoirs in the
network, respectively. Todini introduced the Resilience Index Ir = 1 − P ∗int/P ∗max, where
P ∗int = Ptot−γ

∑n
i=1 q

∗
i hi is the power dissipated in the network to satisfy the total demand

(at any given pressure — typically in excess of that required) and P ∗max = Ptot−γ
∑n

i=1 q
∗
i h
∗
i

is the maximum power available to be dissipated internally if the constraints in terms of

WDSDO using Metaheuristics and Hyperheuristics 23

both demand and head are satisfied at the nodes. After appropriate substitutions, the
Resilience Index may be written as

Ir =

∑n
i=1 q

∗
i (hi − h∗i)∑nr

k=1QkHk −
∑n

i=1 q
∗
i h
∗
i

. (3)

Prasad and Park [33] developed the Network Resilience metric in 2004 in response to the
above measure by Todini. The advantage of Network Resilience is that it explicitly rewards
reliable loops of similarly sized pipes by penalizing sudden changes in pipe diameter. The
Todini Resilience Index does not explicitly reflect the effects of redundancy. A branched
network with sufficient surplus head may therefore still appear desirable, providing insuffi-
cient conditions for a reliable network. Prasad and Park demonstrated that using Network
Resilience as an objective instead of the Resilience Index produced more robust designs
in terms of pipe failure, which is why it was selected for use in this paper.

The notion of Network Resilience incorporates the effects of both surplus power and reliable
loops. The surplus power at node i is given by Pi = γqi(hi−h∗i). A loop may be considered
reliable if the pipes incident with a node are not widely varying in diameter. If d1 > d2 > d3
are the diameters of three pipes incident with node i, then the uniformity of that node is
given by Ci = (d1 + d2 + d3)/(3d1) and in generalized form as

Ci =

∑ni
p

j=1 dj

nip ×max
{
d1, . . . , dnp

} ,
where nip is the number of pipes incident with node i. Note that Ci = 1 if pipes incident
with a node all have the same diameter, while Ci < 1 otherwise. For nodes incident with
only one pipe, the value of Ci is taken to be 1. The combined effect of both surplus power
and connecting pipe uniformity of node i, called weighted surplus power, is expressed as
Xi = CiPi. For the network as a whole, it is given by

X =
n∑
i=1

Xi =
n∑
i=1

CiPi =
n∑
i=1

Ciqi(hi − h∗i).

This expression may be normalized by dividing by the maximum surplus power to obtain
the Network Resilience,

In =
X

Xmax
=

∑n
i=1Ciq

∗
i (hi − h∗i)∑nr

k=1QkHk −
∑n

i=1 q
∗
i h
∗
i

, (4)

where Xmax is the maximum surplus power. Network resilience may also be viewed as
equivalent to the Resilience Index with surplus power at node i given a weight of Ci based
on the uniformity in diameter of pipes incident with it [33].

5 Multi-objective Algorithms

Twenty-three WDSDO algorithms were selected or developed for comparison purposes
in this paper. This selection includes three typical MOEAs, namely the NSGA-II [5],

24 DN Raad, A Sinske & JH van Vuuren

the Strength Pareto Algorithm II (SPEA-II) [56], and generalised Differential Evolution
(DE) [27]; two estimation of distribution algorithms, namely the (UMDA) [32] and the
novel Partitioned UMDA (PUMDA); two self-adaptive MOEAs, namely Another Dynamic
Multi-objective Evolutionary Algorithm (ADMOEA) and a novel algorithm called ANIMA;
a population-based greedy heuristic algorithm, appropriately entitled GREEDY; a multi-
objective Particle Swarm Optimization (PSO) algorithm [24], and finally fourteen different
implementations of AMALGAM, including eleven implementations of novel variants de-
veloped for this study. These algorithms are discussed in the following sections.

5.1 Non-dominated Sorting Genetic Algorithm II

The NSGA-II was developed by Deb et al. [5] in 2002 in an attempt to improve upon
the performance of its predecessor, the NSGA. Its design objectives were to reduce the
number of optimization parameters, improve its elitism scheme, and improve upon the
computational complexity of the non-dominated sorting algorithm used in most MOEAs
at the time. It is still considered an advanced MOEA, and has outperformed many of
its brethren for numerous optimization problems. NSGA-II is also frequently used as a
benchmark algorithm in MOO studies (Farmani et al. 2003 [9]; Kapelan et al. 2005 [22];
Olsson et al. 2009 [32]; Prasad and Park 2004 [33]).

The NSGA-II is notable for the relatively low computational complexity of its dominance
rank (depth of front to which a solution belongs) sorting algorithm, called the Fast Non-
dominated Sorting Algorithm (FNSA). The NSGA-II further uses the concept of crowding
distance to distinguish between solutions of identical rank. This yields a measure of
how isolated a solution is in objective space, and solutions with larger crowding distance
values are favoured in order to explore less crowded regions of that space. NSGA-II was
implemented in this paper using an SBX crossover [6] for all variable types (including the
discrete variables, for which rounding to the nearest integer was employed), since it was
found that this produced superior results to binary crossover, including the standard SBX
operator (with nc = 2 and a crossover probability of 0.5 for each corresponding gene pair)
and TD mutation (using a component-wise mutation probability of 0.005) [35].

5.2 Strength Pareto Algorithm II

SPEA-II was developed by Zitzler et al. [56] in order to improve upon its predecessor and
take advantage of new MOEA techniques. It has proven very competitive when compared
to the NSGA-II algorithm, particularly in terms of solution diversity. SPEA-II employs
an evolutionary population of solutions and a fixed-size archive to store non-dominated
solutions. Fitness assignment uses the concept of dominance strength (the number of
solutions an individual dominates), the distance to the k-th nearest neighbour in objective
space, as well as a special truncation operator, designed to prevent clustering and preserve
boundary solutions [56]. Although SPEA-II has a similar computational complexity to
NSGA-II, it generally performs slower than NSGA-II in comparative studies [11]. However,
SPEA-II generally achieves a more even solution distribution in objective space. The same
variational operators as used for NSGA-II were employed here for SPEA-II.

WDSDO using Metaheuristics and Hyperheuristics 25

5.3 Differential Evolution

DE was first proposed by Storn and Price in 1997 [41] as a generic metaheuristic for
the optimization of nonlinear and non-differentiable continuous space functions, and has
proven very robust and competitive with respect to other evolutionary algorithms. At the
heart of its success lies a very simple differential operator, whereby a trial solution vector
is generated by mutating a random target vector by some multiple of the difference vector
between two other random population members. For three distinct random indices i, j
and k, this has the form

yi = xi + f̂ × (xj − xk),

where xi is the target vector, yi is the trial vector and f̂ is a constant factor in the range
[0, 2] which controls the amplification of differential variation, typically taken as 0.5. If
the trial vector has a better objective function value, then it replaces its target vector.
The original DE method was formulated for single-objective optimization only. Several
adaptations of DE have been proposed in order to extend it for MOO, such as Generalized
DE in various versions [27, 28]. The version used in this paper creates two offspring as the
addition and subtraction of the solution difference vector, one of which replaces the target
vector if it is nondominated with respect to it. In a sensitivity analysis, it was found that
a difference factor f̂ of 0.7 produced the best results overall for WDSDO.

5.4 Univariate Marginal Distribution Algorithm

The UMDA is a simple EDA, that makes no assumptions regarding interaction between
variables. In each generation it builds anew separate probability distributions for each gene
using allele frequencies in the population. These univariate probability density functions
are then stochastically sampled in order to generate new gene values for offspring creation.
The probability of generating a particular individual is the product of the individual’s
allele probabilities. This simple technique is surprisingly effective when combined with
a Pareto-based selection scheme and an anti-crowding mechanism, such as that of the
NSGA-II which is employed here.

In 2009 Olsson et al. [32] compared three EDAs for MO WDSDO, including the Hierar-
chical Bayesian Optimization (HBO) algorithm, the Chi-square matrix method (CSM) for
building block identification, and the UMDA. They found that HBO was ineffective for
designing large WDSs, CSM maintained good performance for the larger systems, demon-
strating a better solution spread than UMDA, but UMDA was clearly the best algorithm
overall in terms of Pareto-dominance.

A variant of the UMDA, called the Partitioned UMDA (PUMDA), was developed for this
paper, whereby in each generation the objective space is partitioned along the reliability
axis. The size of each partition is generated independently using half of the absolute value
of a normal distribution sample with a mean of zero and a standard deviation equal to
one third of the reliability range (rmin,rmax), sampled iteratively until the full range is
partitioned. For each sub-range of the reliability range, all the solutions that fall into that
partition are then employed to generate a UMD probability model for that partition. In
order to generate new solutions, a partition is selected at random and its UMD model
sampled to produce offspring. Different levels of reliability correspond to different design

26 DN Raad, A Sinske & JH van Vuuren

paradigms (described by critical solution schemata), which can only be exploited fully by
honing in on these regions of the objective space. By allowing variable-sized partitions
and redefining them during each generation, PUMDA allows for paradigm overlap and
mixing. PUMDA was found to outperform the UMDA for many of the test cases. Both
the UMDA and PUMDA algorithms were implemented within the NSGA-II framework.

5.5 A Multi-objective Greedy Algorithm

A WDS design heuristic named GREEDY was developed for this study. It was adapted
from four prior WDS design heuristics, namely those of Keedwell and Khu [23] in 2006,
Afshar et al. [1] in 2005, Todini [42] in 2000, and Saldarriga et al. [37] in 2008, using
design strategies similar to those that might be used by a human engineer. In addition to
these heuristics, it also employs several practical adjustment steps to improve performance
based on engineering judgement. The new combined algorithm is greedy in the sense that
it conducts a neighbourhood search in which the best improvement step is followed for each
of the different heuristic rules. The practise of incorporating different search mechanisms
reduces the probability of becoming trapped in local optima.

Todini presented a goal-programming design heuristic for rapidly approximating the Pareto-
optimal curve in cost/resilience space. For a given solution, if no pressure deficit occurs,
a reduction of diameters is performed with respect to the pipe p∗i for which the largest
decrease in cost per unit of power dissipation occurs during a single step reduction in pipe
diameters (jλ → jλ−1). That is,

p∗i = max
i=1,...,p

{
−
Cλ−1i − Cλi
P λ−1r,i − P λr,i

}
,

where Cλi and P λr,i are the cost and power, respectively, of pipe i at the current diameter

xi = jλ. The diameter reduction only takes place if velocity constraints are not exceeded,
if the Resilience Index does not fall below the current target value, and if the new diameter
does not cause a nodal pressure deficit. When a pressure deficit occurs in the system, the
inverse procedure is followed: Pipe diameters are iteratively increased according to the
largest decrease of internal power dissipation per unit cost [42]. A similar procedure may
be followed for the unitary power metric of Saldarriga et al. [37], which is defined as pipe
discharge qi, multiplied by the difference between the pressure head at the pipe’s initial
(hi,init) and final (hi,fin) nodes, such that hi,init − hi,fin > 0. The pipe unitary power
is therefore Pru,i = qi(hi,init − hi,fin). The diameter of the pipe with the largest Pru,i

value may be increased to the next diameter size, and similarly, the pipe with the smallest
unitary power may be decreased to the next smallest commercial diameter.

The heuristic of Afshar et al. [1] identifies a node with the maximum head deficit. All
paths conveying water from any source to this node are established using flow direction,
and a pipe is selected for diameter increase that results in the maximum decrease in
a total penalized system cost (for which a function similar to (2) is employed). This
algorithm may also be applied in the reverse direction, by decreasing pipe diameters on
paths towards a node with a maximum head violation. A similar process is used for pipe
velocity violations, considering all pipes that exit the source node of the violating pipe.

WDSDO using Metaheuristics and Hyperheuristics 27

Keedwell and Khu [23] developed a cellular automata approach towards initializing WDS
optimization searches with healthy designs instead of using random initial configurations.
The method is called the Cellular Automaton Network Design Algorithm (CANDA). It
considers each demand node as a cell in an automaton and iteratively evaluates the head
deficit or excess of that node. If a node experiences a pressure deficit, all the pipes sup-
plying water to that node are increased to the next largest size. Similarly, if a node
experiences a head excess, the incoming pipes are downsized. These changes are imple-
mented for every node in the network before the next hydraulic simulation is conducted.
It was shown that this method converges rapidly to semi-realistic configurations, but was
of limited use in further refining designs.

Finally, the additional heuristic steps implemented in GREEDY are: incrementing / decre-
menting the diameter of the pipe which has the largest / smallest head loss, and similar
steps for head loss per unit length. During each generation GREEDY generates offspring
by selecting solutions without replacement from the population, and then executing each
of the aforementioned heuristic transition steps (in both the increasing and decreasing ca-
pacity directions) on each solution to generate new offspring, forming a child population.
These offspring are selected for propagation into the next generation using an NSGA-II
environmental selection framework. Duplicate solutions are replaced by a random solution
modified using randomly between five and ten CANDA steps.

5.6 Multi-objective Particle Swarm Optimisation

PSO is a metaheuristic inspired by the flocking behaviour of birds and insect swarms.
Kennedy and Eberhart [24] proposed the original PSO algorithm in 1995, and it has
steadily gained popularity, owing to its features of robustness and rapid convergence.
Although PSO was originally developed for continuous optimisation, it may be adapted
for discrete optimisation [20].

In PSO, solutions in a population are treated as particles flying through the decision space,
each associated with a current velocity v, a memory of its previous personal best position
pbest, knowledge of the global best position gbest and sometimes, a local best position lbest,
within some neighbourhood — defined either in terms of Euclidian distance in objective
space, or by some neighbourhood topology. Particles are initialized with a random velocity
at a random starting position. For particle i at position xti during iteration t, velocity and
position are updated as

vt+1
i = wvti + c1u1(pi,best − xti) + c2u2(gbest − xit) and (5)

xt+1
i = xit + vt+1

i + u3x
t
i, (6)

respectively, where w denotes the inertial weight, controlling the effect of a particle’s
previous velocity, where c1 and c2 are the learning factors for cognitive and social learning
respectively, where u1, u2 ∈ [0, 1] are uniform random variables, and where u3 ∈ [−1

2 ,
1
2] is

a uniform random variable controlling turbulence [45].

A basic multi-objective version of PSO was developed for inclusion in this paper. This
version calculates PSO fitness as the crowding distance of a solution divided by the square
root of its Pareto-rank. No global best position is used, only a local best, which is identified

28 DN Raad, A Sinske & JH van Vuuren

for each dominated individual as the Pareto-solution which yields the largest PSO fitness
value normalized by the Euclidean distance between the solutions in objective space. Par-
ticle collisions are accommodated by randomly generating a new solution with a random
initial velocity. In this paper, MOPSO is implemented using an inertial weight of w = 0.75
and learning factors c1 = c2 = 2. Finally, the algorithm was adapted to round continuous
positions to discrete component values.

5.7 Dynamic Multi-objective Evolutionary Algorithm

The DMOEA, developed in 2003 by Yen and Lu [54], is a cellular multi-objective evolu-
tionary algorithm. It is ‘cellular’ because the objective space is divided into a grid of a
user-specified granularity with the intention of improving algorithmic efficiency. The grid
is used as an environmental model to store solution quality information (Pareto-rank and
density) organized per grid cell, such that the solutions need not be compared directly to
one another, but rather interact only with the grid in order to determine their comparative
quality. Grid cells may dominate each other in the usual Pareto fashion and a solution
takes on as rank the domination count of the cell in which it lies. Similarly, the number
of solutions in a particular grid cell provides a density estimate for these solutions. The
DMOEA has a slightly inauspicious name, since this could easily pertain to an entire class
of MOEAs that exhibit some dynamic behaviour. DMOEA employs population growth
and decline strategies in order to obtain a so-called ‘optimal’ population size, where size
optimality is defined in terms of user solution density preferences rather than in terms of
algorithmic performance.

An algorithm was developed for this paper based on the original DMOEA [54], using an
identical grid model for the cellular rank and density information, but differing in terms of
the population growth and decline strategies, since the original DMOEA failed to produce
satisfactory convergence to reasonable sizes. This algorithm was called Another DMOEA
(ADMOEA) to distinguish it from its forerunner. The algorithm incorporates a number
of advanced features, including:

1. A growth strategy whereby a number of new solutions are generated as a function
of the grid-size (a 200× 200 grid size was employed) and the current Pareto-set size.

2. This growth strategy incorporates three different search mechanisms (a differential
evolution operator with difference factor f = 0.7, an SBX operator with exponent
nc = 2, and a PUMDA operator) and a probability vector to control mechanism
selection, updated iteratively based on each mechanism’s success rate.

3. A solution age that is incremented during each generation. Solutions may not be
removed from the population before they reach a certain age (taken as at = 5 in this
paper), allowing them sufficient time to propagate their genes.

4. A probabilistic population decline strategy that selects solutions for removal on the
basis of their age, cellular rank and density.

5. A regeneration strategy that recreates the entire population using PUMDA once
limited hypervolume improvement has occurred for fifty consecutive generations.

6. An epsilon-archive to hold Pareto-optimal solutions, updated before regeneration.

WDSDO using Metaheuristics and Hyperheuristics 29

7. Compression and growth mechanisms to alter the dimensions of the grid in order
to zoom in on the important region of the objective space, or to accommodate new
solutions outside of the current grid dimensions.

The finer details of its operation are not provided in this paper, since ADMOEA did not
outperform the other algorithms. For full details, the reader is referred to Raad [35].

5.8 ANIMA: A Self-adaptive Evolutionary Algorithm

ANIMA is an auto-adaptive MOEA based on the NSGA-II framework and was devel-
oped for this paper. It employs two different variation mechanisms, namely the SBX
crossover with triangular mutation and a differential evolution operator. What makes
ANIMA unique is that it encodes the variation operator parameters and solution genes
together, effectively making each solution an agent carrying both the search instructions
and the solution information. These parameter values are generated randomly within
reasonable ranges for the initial population and any duplicate replacement solutions, but
are passed on to newly created offspring by their parent solutions, either with or without
mutation. At the time of solution creation, a solution is randomly assigned an evolution
state — indicating either the SBX operator or the DE operator as the primary. Variation
is achieved by performing both an SBX operation and a DE operation, using three par-
ents. The search parameter values of the primary parent are copied to the offspring, with
the primary operator parameters having a 20% chance of variation. Separating the evolu-
tion states enables the parameters to settle on favourable values. Good parameter value
combinations are found by randomizing and fixing one parameter value, and adjusting the
second by means of evolutionary variation in order to suit the first. For the SBX difference
index, the minimum and maximum were chosen as psbxmin = 1 and psbxmax = d/2, respec-
tively, where d is the dimensionality of the design variable. For the DE difference factor
the minimum and maximum were taken as [pdfmin, pdfmax] = [0.6, 1.2]. For the triangular
mutation, the probability range was taken as [ptmin, ptmax] = [0, 0.02]. The finer details
of ANIMAs operation are provided in Raad [35], since it did not outperform the other
algorithms compared here.

5.9 AMALGAM: A Hyperheuristic

The AMALGAM algorithm, developed by Vrugt and Robinson [45] in 2007, is a generic
evolutionary meta-algorithmic framework which incorporates k sub-algorithms in the so-
lution of a MOO problem. The algorithm employs a population of N solutions whose
offspring are created in a genetically adaptive manner by dividing the creation of N off-
spring amongst the sub-algorithms in a way that is proportional to the success of these
sub-algorithms during previous generations. Each sub-algorithm has access to the entire
population to generate its share of the offspring. The philosophy behind AMALGAM is
that the strengths of different metaheuristics can be combined and exploited dynamically
to produce a faster, more reliable search than is possible with any one of the algorithms on
its own. AMALGAM borrows largely from the NSGA-II [5] to construct a generic multi-
method framework. Vrugt and Robinson demonstrated impressive performance enhance-
ments using four sub-algorithms within the AMALGAM framework, namely NSGA-II,

30 DN Raad, A Sinske & JH van Vuuren

Adaptive Metropolis, PSO and DE.

Sub-algorithms in AMALGAM are made to generate offspring in proportion to their re-
productive success during previous generations. For this purpose it is required to count,
the number of solutions Sjt+1 contributed by the j-th sub-algorithm to the population Pt+1

during generation t. If N j
t is the number of offspring that sub-algorithm j must generate

during generation t, then

N j
t+1 = N

Sjt+1

N j
t

/
k∑

h=1

Sht+1

Nh
t

, (7)

where the ratio of the number of sub-algorithm j’s successful offspring in the new pop-
ulation to the number generated is scaled to the combined success ratios of the entire
algorithm set. The implementation by Vrugt and Robinson employed a minimum size of
N j
t = 5 to avoid inactivating any of the algorithms. New offspring are generated by each

algorithm to create the child population Qt+1, which is then subjected to the NSGA-II
selection scheme. The process is repeated until a termination condition is satisfied.

Alternative formulations for AMALGAM were devised for this paper, in order to ad-
dress some of the shortcomings exposed during testing. The AMALGAM scheme need
not necessarily be deployed within the NSGA-II framework. An alternative formulation
was developed, called AMALGAMS, which employs the SPEA-II environmental selection
strategy. One important issue not addressed in AMALGAM is sub-algorithm efficiency.
In the origional version a very slow sub-algorithm which produces the best offspring will
dominate the search. However, it may be possible that a faster algorithm is capable of
producing equally good solutions if allocated a larger portion of the offspring, resulting
in significant speed enhancements overall. The offspring partitioning formula (7) may be
adapted to

N j
t+1 = N

(
Sjt+1/(N

j
t T

j
t)
)/ k∑

h=1

(
Sht+1/(N

h
t T

h
t)
)

in order to include the individual running times of the sub-algorithms such that relatively
longer running times are penalized, where T jt denotes the running time of algorithm j
during iteration t. This variant was called TAMALGAM. A more intelligent offspring
partitioning scheme might include the use of performance metrics, such as hypervolume
or dominance rank information, in order to better quantify offspring successes. Two
additional formulations were devised. In the first formulation, AMALGAMI, the offspring
success count per algorithm Sjt+1 is replaced by the sum of the squared inverse dominance
rankings of the offspring that survive to the next generation, i.e.

Ŝjt+1 =
∑

i∈Oj
t+1

(
1

rank(i)

)2

,

where Ojt+1 is the set of successful offspring produced by algorithm j. The second for-

mulation, AMALGAMJ, also replaces N j
t by (N j

t)
1
2 in order to reduce the importance of

the number of offspring generated. The two considerations of sub-algorithm efficiency and
finely-grained performance evaluation may be combined to produce additional variants

WDSDO using Metaheuristics and Hyperheuristics 31

TAMALGAMI and TAMALGAMJ. The five best formulations, AMALGAM, AMAL-
GAMS, TAMALGAM, AMALGAMI and TAMALGAMJ, are included in this paper. For
sake of brevity, these are denoted in shortened form as A, AS, TA, AI, and TAJ, respec-
tively.

The AMALGAM variants are implemented with sub-algorithms indicated by the first-
letter subscript (i.e. a subscript ‘n’ denotes NSGA-II, ‘d’ denotes DE, ‘u’ denotes UMDA,
‘p’ denotes PUMDA, and ‘g’ denotes GREEDY). AMALGAM has been implemented with
three different selections of sub-algorithms, the first two comprising three sub-algorithms
(‘ndu’ and ‘ndp’), and the final selection comprising four sub-algorithms (‘ndug’). The
following variants of AMALGAM were implemented in this study: Andp, Andu, Andug,
ASndp, ASndu, TAndp, TAndu, TAndug, AIndp, AIndu, AIndug, TAJndp, TAJndu and TAJndug.

6 Algorithmic Performance Evaluation

Two Pareto-compliant measures of solution quality were selected for this paper. The use
of multiple performance measures in MOO, including ones that are Pareto-compliant, is
recommended by Knowles et al. [25] in a tutorial on performance assessment for MOEAs.
A Pareto-compliant performance indicator is one that only gives preference to one ap-
proximation set, A, over another set, B, if B does not weakly dominate A. Most unary
indicators are non-Pareto-compliant, but the hypervolume metric [55] is a popular excep-
tion.

The first performance measure employed here is a dominance rank quantifier that uses a
binary weak-domination indicator to determine the dominance relationship of one approx-
imation set with respect to another. One may say that a set A is better than a set B if it
weakly dominates B, and is dissimilar from B. Symbolically this is expressed by A /B.
A given approximation set A is compared to every other approximation set in the total
pool P of approximation sets produced by the various algorithms. The dominance rank
of A is then

rank(A) = 1 + |{Bi ∈ P : Bi /A}| .

The lower the ranking, the better the approximation set is with respect to the entire
set pool. The rank must be calculated for each set Aj

i (i = 1, . . . ,m) produced by each
algorithm (j = 1, . . . , n), forming a set of rank samples for each algorithm,

dR =
[{

rank(A1
1), rank(A1

2), . . . , rank(A1
m)
}
, . . . , {rank(An

1), rank(An
2), . . . , rank(An

m)}
]
.

The second performance measure used is the unary hypervolume metric by Zitzler and
Thiele [58], a fine-grained analysis which measures the total hypervolume of the objective
space dominated by a given approximation set, relative to a reference point. Higher hyper-
volumes are more desirable, since more space is dominated. This metric has the advantage
of representing both closeness to the true Pareto-front and solution diversity. Any refer-
ence point used should be dominated by the entire set of known solutions. Hypervolume
is often provided in normalized form.

A third novel non-Pareto compliant performance metric was developed for this paper,
named the ε-archive size. An ε-archive is a grid of user-specified granularity placed over

32 DN Raad, A Sinske & JH van Vuuren

the objective space, such that a single best solution is retained in each grid cell. The
number of solutions (size) of an ε-archive gives a good indication of the solution spread
and evenness along the Pareto-front, but should only be used in combination with a
Pareto-compliant performance measure.

It is traditional to compare the performance of evolutionary algorithms by executing differ-
ent algorithms with similar population sizes for an equal number of generations [3, 38, 40].
This allows results from different studies to be compared independently of the computer
software and hardware used. However, this method becomes impractical when using al-
gorithms which require different population sizes (such as EDAs), or metaheuristics with
adaptive population sizing. Additionally, it may be highly unfair, since an evolutionary
generation may entail an arbitrary amount of numerical processing, possibly including a
local search subcomponent, resulting in very different generational processing times from
one algorithm to the next.

An alternative testing methodology, and the one adopted in this paper, entails using
a time budget, such that an algorithm must do its best within an allotted time-frame.
The identification of a fair time limit was achieved as follows: Algorithms were executed
independently until they ‘converged,’ where convergence is defined as failure to improve
results above a specified threshold over a required number of consecutive generations. In
this paper a threshold of 0.05% change in hypervolume was used, which had to occur for
200 consecutive generations for the algorithm to have ‘converged.’ These convergence time
trials were completed thirty times for each algorithm to yield an average convergence time.
The 90th percentile of the convergence times amongst all the algorithms was used as the
limit in ensuing full time trials. This method may also be used to transfer experiments
to a new computer platform (i.e. attaining new time limits for the new system), provided
similar convergence thresholds and software implementations are employed.

7 WDSDO Experiment Implementation Details

In this paper the following nine WDS benchmarks documented in the literature were em-
ployed to test the relevant algorithms: the New York Tunnel problem (NYTUN), proposed
by Schaake and Lai [39] in 1969, the Two-loop Network (TLN), introduced by Alperovits
and Shamir [2] in 1977, the Hanoi Network (HANOI), first presented by Fujiwara and
Khang [12] in 1990, the Two Reservoir Problem (TRP), proposed by Simpson et al. [40] in
1994, the Blacksburg (BLACK), Fossolo (FOSS), Pescara (PESCA) and Modena (MOD)
networks presented by Bragalli et al. [4] in 2008, and the Exeter Water Network (EXNET),
documented by the Centre for Water Systems in Exeter, UK [8]. These WDS benchmarks
represent different aspects of real-world systems, varying in numbers and dimensions of
components. Detailed descriptions of the benchmarks may be found in Raad [35].

In order to test the algorithms with respect to WDSDO on these benchmarks, determinis-
tic demands were utilised as stated in their problem descriptions. The Network Resilience
surrogate measure was employed, and the optimisation paradigm was taken as the bi-
objective problem of cost minimisation and reliability maximisation. The penalty term
method was used, as per (2), with penalty factors determined as pf = Cmax/0.01, where
Cmax denotes the maximum cost of a WDS design (ensuring that a 1% or greater total nor-

WDSDO using Metaheuristics and Hyperheuristics 33

malized constraint violation will yield a penalty greater than the most expensive network
cost). This method of selecting the penalty term produces large penalty values, which are
scaled to the magnitude of the cost. Smaller penalty factors would be more appropriate if
the focus was on locating the least-cost design, but this would also result in the final pop-
ulation containing a large proportion of infeasible solutions. The above approach works
very well for obtaining entire Pareto-optimal solution sets of feasible solutions. Penalty
factors for the various benchmarks are presented in Table 1. Fair time trials are con-
ducted, using a convergence time trial followed by a full time trial, which employs the
time limits obtained in the convergence trial. Thirty convergence trials were conducted
in order to compute average times, with initial populations generated stochastically by
means of stochastic Latin hypercube sampling [19]. The replacement of duplicate solu-
tions in a population with randomly generated solutions was found to improve algorithm
performance, and was therefore used for all algorithms in this study. Where multiple de-
mand loadings were present, the minimum reliability surrogate value obtained for all the
demand scenarios was taken as the objective to be maximized. Solution quality metrics
were calculated in cost-Network Resilience space, using only feasible solutions in the final
approximation sets.

Population sizes for the different algorithms and benchmark combinations were generated
in accordance with Goldberg’s sizing method of competing populations as described by
Harik and Lobo [18]. In this analysis, UMDA and PUMDA were treated separately from
the other algorithms during population sizing, since they are EDAs and typically require a
population size which is a different order of magnitude, effectively defining two population
size groups. Goldberg’s sizing method was applied ten times for each of the algorithms
in the two size groups, obtaining the most prevalent ‘optimal’ sizes. The largest such
size within each group was then employed for all algorithms within that group, both for
convergence and time trials. The resulting population sizes are shown in Table 1. Hyper-
volume reference points and ε-precision values were required to compute the hypervolume
in cost-reliability space and calculate the ε-archive size metric. Values for maximum cost,
minimum reliability, and ε-precision were generated for each benchmark by considering
the represented ranges of cost and reliability in the achieved approximation sets. These
values also appear in Table 1. All numerical computations were performed on an Intel
Core 2 Duo processor (E6850 3.00GHz) with 3.25 GB of RAM, running on a Windows
XP SP3 operating system. All hydraulic simulations were conducted using the OOTEN
Toolkit for EPANET2 [44].

8 WDSDO Experimental Results

The results from the comparative analysis are summarised in tabular form, including
averages and standard deviations of hypervolume, dominance rank, epsilon archive size,
and normalised convergence times, averaged across the first eight benchmarks, and then
treated separately for the EXNET benchmark. Hypervolume is normalized (NHV) by
the hypervolume of the best attainment set produced after combining all algorithms’
attainment sets, in order to express hypervolume performance as a percentage of best
known hypervolume. Algorithms are ranked firstly on the basis of average dominance rank,

34 DN Raad, A Sinske & JH van Vuuren

WDS Penaltyf Size1 Size2 εC εR Mx Cst Mn NR

TLN 440 000 000 64 128 50 000 0.0005 5 000 000 0
TRP 286 123 962 64 128 15 000 0.002 100 000 000 0

NYTUN 29 410 320 000 64 64 1000 000 0.004 300 000 000 0
HANOI 1 096 979 760 128 64 100 000 0.002 12 000 000 0
BLACK 187 010 000 64 256 10 000 0.0015 1 500 000 0.4
FOSS 166 192 258 64 256 10 000 0.0015 2 000 000 0.4
PESC 1 900 444 000 64 256 75 000 0.0015 15 000 000 0.4
MOD 2 808 336 962 64 256 75 000 0.002 15 000 000 0

EXNET 9 751 805 500 128 N/A 500 000 0.004 5 000 000 000 0

Table 1: Parameters for the WDS benchmarks: Penalty factors (Penaltyf), Group 1 population

size (Size1), Group 2 population size (Size2), ε-precision values for cost (εC) and surrogate reliability

(εR), Hypervolume reference points for cost (Mx Cst) and Network Resilience (Mn NR).

and secondly using average hypervolume, then by the standard deviation of hypervolume,
and finally by epsilon archive size. Time to convergence is expressed in normalised form
(NT) by dividing convergence time by the average for a particular benchmark.

8.1 Summary and Analysis of First Eight Benchmarks in Phase 1

The results for the first eight benchmark tests (TRP, TLN, HANOI, NYTUN, BLACK,
FOSS, PESC and MOD) are summarized in Tables 2 and 3, showing results for the conver-
gence analyses and time trial analyses, respectively, averaged across all eight benchmarks.
Table 2 is sorted in terms of increasing average NT, and reports the averages of average
and standard deviation for dR, NHV and NT. Table 3 is sorted in terms of increasing av-
erage dominance rank, and reports the average rank, the averages of average and standard
deviation for dR, NHV and ε-archive size AS.

The results from the convergence analysis indicate that ADMOEA was the fastest algo-
rithm, requiring on average 0.5279 of the average time to converge in order to achieve on
average 0.9063 of the best known NHV. This can be attributed to its dynamic population
sizing and offspring generation methodologies which typically process fewer solutions per
evolutionary generation. However, an average dominance rank of 43.23 and the highest
standard deviation of 0.0230 for NHV indicates that the ADMOEA speed enhancement
comes at the cost of missed Pareto-optimal solutions. The closest competitor in terms
of time is Andp with 0.7327 of the average time to convergence for an average NHV of
0.9426, and the best SD NT of 0.1945, revealing that it is the most consistent performer
in terms of convergence time. With an average dominance rank of 6.43 Andp still lagged
behind the leading algorithms, showing that the speed enhancement comes at the cost
of reduced performance, but that it may be suitable for use in time critical applications.
The algorithm achieving the best average NHV is Andu, the original formulation which
achieves an average of NHV of 0.9502 in 0.8218 of the average convergence time. With an
average dominance rank of 2.39, this algorithm would seem suitable for general use. The
algorithm with the best average and standard deviation of dominance rank is TAndu, with
values of 1.78 and 1.82, respectively. It also attains a good average NHV of 0.9345 with a
standard deviation of 0.0107. This is achieved at an average convergence time of 0.8754
of the mean. TAJndu and NSGA-II also achieve good performance in below average time,

WDSDO using Metaheuristics and Hyperheuristics 35

Algorithm Avg dR SD dR Avg NHV SD NHV Avg NT SD NT

ADMOEA 43.23 59.02 0.9063 0.0230 0.5279 0.4057
Andp 6.43 6.73 0.9426 0.0113 0.7327 0.1945
AIndp 8.36 10.90 0.9429 0.0111 0.7451 0.2161
TAndp 4.35 4.83 0.9418 0.0100 0.7490 0.1978
TAJndp 7.99 9.75 0.9402 0.0116 0.7817 0.2449
AIndu 7.98 11.31 0.9323 0.0109 0.8175 0.2119
Andu 2.39 2.58 0.9502 0.0138 0.8218 0.2091
TAJndu 2.28 3.48 0.9341 0.0105 0.8413 0.2224
DE 27.49 23.38 0.9289 0.0147 0.8576 0.2449
NSGA-II 2.52 3.89 0.9356 0.0110 0.8673 0.2548
TAndu 1.78 1.82 0.9345 0.0107 0.8754 0.2299
TAJndug 20.49 16.48 0.9277 0.0103 0.9247 0.2615
TAndug 25.20 17.74 0.9250 0.0100 0.9484 0.2621
ANIMA 4.23 8.40 0.9340 0.0130 0.9587 0.2875
PSO 360.65 43.33 0.7492 0.0223 1.0213 0.3592
Andug 50.00 21.92 0.9215 0.0127 1.0743 0.3171
AIndug 45.09 23.98 0.9227 0.0111 1.1240 0.3307
GREEDY 397.72 55.81 0.7571 0.0226 1.1876 0.3220
UMDA 251.35 85.58 0.8148 0.0211 1.2166 0.4595
PUMDA 123.21 68.33 0.8899 0.0198 1.2738 0.2254
ASndp 1.91 2.34 0.9493 0.0147 1.3158 0.4031
ASndu 7.51 9.38 0.9414 0.0101 1.6331 0.5011
SPEA-II 2.45 2.63 0.9467 0.0096 1.7043 0.5546

Table 2: Summary statistics of convergence analyses, with average performance metrics com-

puted over the eight benchmarks TRP, TLN, HANOI, NYTUN, BLACK, PESC, FOSS and MOD.

and may also be considered candidates for general use. The worst performing algorithm in
terms of time is SPEA-II, which requires 1.7043 of the mean convergence time, but yields
good results with a dominance rank of 2.45 and an average NHV of 0.9467. SPEA-II is also
the best in terms of NHV standard deviation, achieving a value of less than 1%. The worst
performing algorithm in the convergence trials is GREEDY with an average dominance
rank of 397.72 and average NHV of 0.7571. It is also slower than the average convergence
rate at 1.1876. The Pareto-ranked algorithms in terms of average convergence time and
average NHV are Andu, AIndp, Andp and ADMOEA. The non-dominated algorithms with
respect to average convergence time and dominance rank are TAJndu, TAndu, TAndp, Andu

and Andp.

The results from the time trial analyses indicate that NSGA-II is the top performing
algorithm in terms of average dominance rank, achieving a value of 1.1. This seems
surprising given its simplicity. However, its average rank is only 9, compared to TAndu

with an average rank value of 5.125. TAndu also achieved the lowest standard deviation for
NHV of 0.26, compared to NSGA-II’s 0.52. The best algorithm in terms of average NHV
is ASndp, achieving a value of 0.9512. The algorithm with the lowest standard deviation
for NHV is TAJndu, achieving a value of 0.0085. These four algorithms are non-dominated
with respect to the various performance criteria, and may be considered candidates for
general usage. The performance results for all algorithms with an average dominance rank
lower than 4 are graphed in Figure 1, with the Pareto-front solutions labelled. SPEA-II
has also been labelled due to its smaller standard deviation for NHV than ASndp.

36 DN Raad, A Sinske & JH van Vuuren

Algorithm Avg Rank Avg dR SD dR Avg HV SD HV Avg AS

NSGA-II 9.000 1.11 0.52 0.9421 0.0092 64.61
TAJndu 5.875 1.15 0.35 0.9423 0.0085 64.82
TAndu 5.125 1.19 0.26 0.9439 0.0092 64.90
ASndp 9.125 1.21 0.61 0.9512 0.0128 63.43
AIndu 6.000 1.25 0.50 0.9428 0.0086 64.55
SPEA-II 12.375 1.36 0.89 0.9476 0.0089 61.61
Andu 9.250 1.37 0.98 0.9423 0.0105 64.55
Andp 8.000 1.73 1.06 0.9474 0.0099 65.13
ANIMA 12.375 1.77 2.71 0.9416 0.0112 64.30
AIndp 9.750 2.57 4.43 0.9483 0.0095 64.91
ADMOEA 12.125 3.83 10.97 0.9321 0.0223 73.41
TAJndp 10.750 6.37 7.58 0.9463 0.0113 65.37
ASndu 12.125 6.97 5.70 0.9360 0.0088 62.17
TAndp 12.375 7.63 8.75 0.9460 0.0117 65.57
TAJndug 10.875 20.87 12.90 0.9330 0.0090 64.51
TAndug 10.125 23.12 12.24 0.9322 0.0095 64.51
DE 12.250 27.81 17.86 0.9470 0.0147 64.48
AIndug 13.250 59.45 13.42 0.9240 0.0094 63.94
Andug 13.625 62.96 15.05 0.9245 0.0093 64.22
PUMDA 17.500 114.73 78.33 0.8933 0.0190 129.06
UMDA 21.000 234.76 90.15 0.8218 0.0193 57.10
PSO 20.875 360.43 41.87 0.7600 0.0190 42.71
GREEDY 22.25 410.64 46.19 0.7614 0.0205 56.23

Table 3: Summary statistics of full time trials, with average performance metrics computed

over the eight benchmarks TRP, TLN, HANOI, NYTUN, BLACK, PESC, FOSS and MOD.

ANIMA performed reasonably well, but did not make it into the top five algorithms.
Its adaptive mechanisms may potentially be refined in a more rational manner in order
to improve performance, possibly by means of machine learning techniques. ADMOEA
fell just short of a top-ten positions, with its greatest weakness being high performance
variability (it has the highest standard deviation for NHV of 0.0223). However, its fast
convergence time may be reason enough to consider it for general usage. The worst
performing algorithms are PUMDA, UMDA, PSO and GREEDY, where the latter is
undeniably the worst algorithm for WDSDO given this sample of benchmarks. The poor
performance of UMDA is probably expected due to its lack of innovation, and that of
GREEDY due to its being a local search.

8.2 EXNET Benchmark Time Trials

EXNET is very large in comparison to the other eight WDS benchmarks, and consequently
requires a significant increase in computational processing time and memory resources to
undergo WDSDO. Conducting full time trials for all the algorithms would take several
months of computing time. Only the four top performing algorithms for the first eight
WDS benchmarks in the full time trials were therefore considered for the EXNET analysis,
namely NSGA-II, TAJndu, TAndu and ASndp. The combined convergence and time trial
analysis with thirty optimisation runs required more than a month of computing time.
The point (0, 5 000 000 000) was selected as the hypervolume reference point.

The results of the convergence analysis are shown in Table 4. ASndp demonstrated the

WDSDO using Metaheuristics and Hyperheuristics 37

TAMALGAMndu AMALGAMSndp

NSGA-II
TAMALGAMJndu

SPEA-II

0

0.5

1

1.5

2

2.5

3

3.5

4

0.93 0.94 0.94 0.95 0.95 0.96

Average Normalized Hypervolume

A
ve

ra
ge

 D
om

in
an

ce
 R

an
k

0

0.005

0.01

0.015

0.02

0.025

S
tandard D

eviation N
H

V

ANHV vs ADR

ANHV vs SDNHV

Figure 1: Summary statistics for time trial analyses: Average normalised hypervolume vs

average dominance rank.

best performance in terms of all metrics, at the cost of the longest average convergence
time of 19 507 seconds (5.4 hours). In addition to the lowest average dominance rank
of 1.4 and the highest average hypervolume of 0.9014, it also provided the most reliable
performance with the lowest standard deviations of 0.84, 0.0444 and 2 638 seconds for
dominance rank, hypervolume and convergence time, respectively. The algorithm with
the fastest convergence time was TAndp, achieving a time of 10 312 seconds (2.9 hours);
however this comes at the cost of significantly reduced performance, with average domi-
nance rank and hypervolume values of 15.7 and 0.7086, respectively. The results produced
by TAJndu and NSGA-II lie somewhere inbetween, and are mutually non-dominated with
respect to dominance rank, hypervolume and convergence time.

Full-length time trials were conducted using thirty optimisation runs and a time limit
of 19 507 seconds for each algorithm. The results of these trials are shown in Table 5.
ASndp maintained a convincing lead, achieving an average dominance rank of 3.23 and
an average hypervolume of 0.8632. It once again demonstrated the lowest standard de-
viation values of 3.62 and 0.0429 for dominance rank and hypervolume, respectively, and
obtained a significantly larger average ε-archive size of 36.53, indicating in combination
with dominance rank that it located a much larger portion of the Pareto-front. The clos-
est competitor was TAndu, achieving an average dominance rank of 12.80 and an average
hypervolume of 0.7143. TAJndu takes third position with an average dominance rank of
14.13 and an average hypervolume of 0.6090. NSGA-II was the worst of the four algo-
rithms by a substantial margin, achieving an average dominance rank of 49.03 and an

38 DN Raad, A Sinske & JH van Vuuren

average hypervolume of 0.5648.

The attainment sets achieved by the various algorithms are graphed in NR-Cost space
in Figure 2. Here it is clear that ASndp located a much larger portion of the Pareto-
front, exclusively providing the global front from NR-values of 0.469 to 0.539. However,
in the region of NR-values from approximately 0.54 to 0.561, TAndu found the majority
of the non-dominated solutions, exclusively representing most of that section of the global
Pareto-front. TAJndu and NSGA-II located dominated sub-fronts, with NSGA-II exhibit-
ing the most localised and dominated attainment front. The algorithms’ attainment fronts
converge at an NR-value of approximately 0.551 and diverge again thereafter. From an
NR of approximately 0.555 onwards, ASndp found only dominated solutions, suggesting
that it may not be the best method for discovering solutions of high reliability. The least
expensive solution (having the lowest Network Resilience), found by ASndp, has a cost of
23 168 000 and a Network Resilience of 0.469 758. The most resilient solution, found by
TAJndu, has a cost of 38 757 400, and a Network Resilience of 0.561 725.

Algorithm Avg dR SD dR Avg HV SD HV Avg T (s) SD T (s)

TAndu 15.7 4.42 0.7086 0.0529 10312 4652
TAJndu 14.5 8.68 0.6526 0.1381 11344 3575
NSGA-II 15.6 6.02 0.7256 0.0715 10821 2942
ASndp 1.4 0.84 0.9014 0.0444 19507 2638

Table 4: Time (T) to convergence (taking as stopping criterion less than 0.05% change in HV

over 200 generations) for the EXNET benchmark, computed over thirty optimisation runs.

Algorithm Rank Avg dR SD dR Avg HV SD HV Avg AS SD AS

TAndu 2 12.80 23.33 0.7143 0.0856 24.27 6.16
TAJndu 3 14.13 26.05 0.6090 0.1302 29.37 8.70
NSGA-II 4 49.03 20.62 0.5648 0.0432 16.70 2.39
ASndp 1 3.23 3.62 0.8632 0.0429 36.53 6.46

Table 5: Mean and Standard Deviation of performance metrics for the full time trial analysis

on the EXNET benchmark, computed over thirty optimisation runs.

9 Conclusion

In this paper, twenty-three alternative algorithms for multi-objective WDSDO were com-
pared with respect to nine WDS benchmarks from the literature. Convergence time trials
were conducted for each algorithm-benchmark pair in order to compare algorithmic effi-
ciency. Full optimisation time trials were then conducted, employing the time limits deter-
mined in the convergence trials, in order to compare the solution quality produced by the
various algorithms. The top ten performing algorithms applied in the full time trials with
respect to the first eight benchmarks included NSGA-II, seven variants of AMALGAM
[45], SPEA-II and ANIMA. Attempts to develop state-of-the-art algorithms which consis-
tently outperform conventional multi-objective evolutionary algorithms (such as NSGA-II
and SPEA-II) were unsuccessful. Compelling evidence was nevertheless provided that ad-
vanced hyperheuristics may be superior for the design of very large or complex WDSs.

WDSDO using Metaheuristics and Hyperheuristics 39

22

24

26

28

30

32

34

36

38

40

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57

Network Resilience

C
o
st
 i
n
 M
il
li
o
n
s
o
f
£

TAMALGAM_ndu

TAMALGAMJ_ndu

NSGA-II

AMALGAMS_ndp

Figure 2: Attainment sets found by TAndu, TAJndu, NSGA-II and ASndp for the EXNET

benchmark.

The AMALGAMSndp variant convincingly outperformed the common “industry standard”
NSGA-II algorithm at designing the large EXNET benchmark. This provides the research
community with a new design algorithm for large / difficult WDSDO problems.

ADMOEA proved the fastest algorithm in terms of convergence, but exhibited unstable
performance and fared relatively poorly in terms of dominance rank. The only algorithms
that were non-dominated with respect to average convergence time, dominance rank and
average hypervolume were Andp and Andu. But TAndu was the strongest performer during
the convergence trials in terms of dominance rank, which it achieved consistently in below
average time, suggesting that it may be the preferred algorithm amongst these for time
critical WDSDO. The top four performing algorithms in the full-length time trials were
NSGA-II, TAndu, TAJndu and ASndp, and were mutually non-dominated with respect to
each other for the various performance metrics, with NSGA-II exhibiting the best aver-
age dominance rank, and ASndp yielding the best average NHV. The GREEDY algorithm
exhibited the worst performance overall, demonstrating that an algorithm which mimics
localised engineering judgement cannot compete with modern meta/hyperheuristics. The
four best algorithms were executed for the very large EXNET benchmark for thirty 5.4-
hour runs each. ASndp proved the best algorithm on the whole, finding a much broader
section of the Pareto-front than the other algorithms, although it was outperformed in the
high Network Resilience region by TAndu, and failed to locate Pareto-optimal solutions
of very high values of Network Resilience. ASndp would seem to be the best algorithm
at providing a broad range of solutions for difficult WDSDO problems, while TAndu ap-

40 DN Raad, A Sinske & JH van Vuuren

pears to be one of the best choices for efficient, consistent performance and achieving
solutions of high reliability. The AMALGAM hyperheuristic and its improved variants
have been shown to be very effective within the context of WDSDO, demonstrating that
the hybridisation of metaheuristics is a valuable tool.

The findings of this paper were moderately different from those of Raad et al. 2009
[34], with AMALGAM no longer demonstrating consistently superior performance over
the other algorithms. This is attributed to the new experimental methodology which in-
cluded more iterations and much stricter convergence criteria, as well as the four additional
WDS benchmarks used (BLACK, PESC, FOSS, and MOD), and improved programming
techniques in terms of memory management. Finally, this paper may serve the purpose
of providing a novel WDSDO framework for the rational investigation of algorithmic ef-
ficiency and solution quality that future multi-objective algorithmic comparison studies
might consider adopting or improving upon.

References

[1] Afshar MH, Akbari M & Mario MA, 2005, Simultaneous layout and size optimisation of water
distribution networks: Engineering approach, Journal of Infrastructure Systems, 11(4), pp. 221–230.

[2] Alperovits E & Shamir U, 1977, Design of optimal water distribution systems, Water Resources
Research, 13(6), pp. 885–900.

[3] Babayan AV, Kapelan Z, Savic DA & Walters GA, 2005, Least cost design of water distribution
network under demand uncertainty, Journal of Water Resources Planning and Management, 131(5),
pp. 375–382.

[4] Bragalli C, D’Ambrosio C, Lee J, Lodi A & Toth P, 2008, Water network design by MINLP,
IBM Research Report, RC24495 (W0802-056) (Mathematics).

[5] Deb K, Pratap A, Agarwal S & Meyarivan T, 2002, A fast and elitist multi-objective genetic
algorithm — NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), pp. 182–197.

[6] Deb K & Agrawal RB, 1994, Simulated binary crossover for continuous search space, (Unpublished)
Technical Report, Department of Mechanical Engineering, Indian Institute of Technology, Kanpur.

[7] di Pierro F, Khu S-T, Savic D & Berardi L, 2009, Efficient multi-objective optimal design
of water distribution networks on a budget of simulations using hybrid algorithms, Environmental
Modelling & Software, 24, pp. 202–213.

[8] Exeter Centre for Water Systems, 2007, Centre for Water Systems, University of Exeter —
Projects Page, [Online], [Cited March 2nd 2007], Available from http://www.projects.ex.ac.uk/..

[9] Farmani R, Savic DA & Walters GA, 2003, Multi-objective optimisation of water system: A
comparative study, Paper presented at the Conference on Pumps, Electromechanical Devices and
Systems Applied to Urban Water Management, 2003, Institute for Water Technology, Valencia.

[10] Farmani R, Walters GA & Savic DA, 2005, Trade-off between total cost and reliability for Any-
town water distribution network, Journal of Water Resources Planning and Management, 131(3),
pp. 161–171.

[11] Farmani R, Walters GA & Savic DA, 2005, Evolutionary multi-objective optimisation in water
distribution network design, Engineering Optimisation, 37(2), pp. 167–183.

[12] Fujiwara O & Khang D, 1990, A two-phase decomposition method for optimal design of looped
water distribution networks, Water Resources Research, 26(4), pp. 539–549.

[13] Gessler J, 1985, Pipe network optimisation by enumeration, Proceedings of the Speciality Confer-
ence on Computer Applications in Water Resources, American Society of Civil Engineers, New York
(NY).

[14] Goldberg DE, 1989, Genetic algorithms in search, optimisation, and machine learning, Addison
Wesley, San Francisco (CA).

WDSDO using Metaheuristics and Hyperheuristics 41

[15] Goldberg DE, Deb K, Kargupta H & Harik G, 1993, Rapid, accurate optimisation of diffi-
cult problems using fast messy genetic algorithms, (Unpublished) Report No. 93004, Illinois Genetic
Algorithms Laboratory, University of Illinois (IL).

[16] Goulter IC, Walski TM, Mays LW, Sekarya ABA, Bouchart R & Tung YK, 2000, Reliability
analysis for design, in Mays LW (Ed), Water distribution systems handbook, McGraw-Hill, New York
(NY).

[17] Halhal D, Walters GA, Ouazar D & Savic DA, 1997, Water network rehabilitation with struc-
tured messy genetic algorithms, Journal of Water Resources Planning and Management, 123(3), pp.
137–146.

[18] Harik GR & Lobo FG, 1999, A parameter-less genetic algorithm, in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-99), Morgan Kaufmann, pp. 258–267.

[19] Hess S, Train KE & Polak JW, 2004, On the use of a modified latin hypercube sampling (MLHS)
method in the estimation of a mixed logit model for vehicle choice, (Unpublished) Manuscript, Impe-
rial College, London.

[20] Izquierdo J, Montalvo I, Peacuterez R & Iglesias PL, 2008, A diversity-enriched variant of
discrete PSO applied to the design of water distribution networks, Engineering Optimisation, 40(7),
pp. 655–668.

[21] Jourdan L, Corne DW, Savic DA & Walters G, 2006, LEMMO: Hybridising rule induction
and NSGA II for multi-objective water systems design, Procceedings of the Eighth International
Conference on Computing and Control for the Water Industry, 2, pp. 45–50.

[22] Kapelan ZS, Savic DA & Walters GA, 2005, Multiobjective design of water distribution systems
under uncertainty, Water Resources Research, 41(1), pp. 1–15.

[23] Keedwell E & Khu ST, 2006, Novel cellular automata approach to optimal water distribution
network design, Journal of Computing in Civil Engineering, 20(1), pp. 49–56.

[24] Kennedy J & Eberhart RC, 1995, Particle swarm optimisation, Proceedings of the 1995 IEEE
International Conference on Neural Networks, Piscataway (NJ), pp. 1942–1948.

[25] Knowles JD, Thiele L & Zitzler E, 2006, A tutorial on the performance assessment of stochastic
multiobjective optimizers, (Unpublished) TIK-Report No. 214, Computer Engineering and Network
Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich.

[26] Knowles J, 2006, ParEGO: A hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimisation problems, IEEE Transactions on Evolutionary Computation, 10(1),
pp. 50–66.

[27] Kukkonen S & Lampinen J, 2004, An extension of generalized differential evolution for multi-
objective optimisation with constraints, Proceedings of the 8th International Conference on Parallel
Problem Solving from Nature (PPSN 2004), Birmingham, pp. 752–761.

[28] Kukkonen S & Lampinen J, 2005, GDE3: The third evolution step of generalized differential
evolution, (Unpublished) KanGAL Report No. 2005013, Kanpur Genetic Algorithms Laboratory,
Indian Institute of Technology, Kanpur.

[29] Lansey KE, 2000, Optimal design of water distribution systems, in Mays LW (Ed), Water distri-
bution systems handbook, McGraw-Hill, New York (NY).

[30] Mays LW (Ed), 2000, Water distribution systems handbook, McGraw-Hill, New York (NY).

[31] Nicolini M, 2004, Evaluating performance of multi-objective genetic algorithms for water distribu-
tion system optimisation, in Phoon S-Y, Liong K-K & Babovic V (Eds), Sixth International
Conference on Hydroinformatics, World Scientific Publishing Company, 1, pp. 850–857.

[32] Olsson RJ, Kapelan Z & Savic DA, 2009, Probabilistic building block identification for optimal
design and rehabilitation of water distribution systems, Journal of Hydroinformatics, 11(2), pp. 89–
105.

[33] Prasad TD & Park N-S, 2004, Multiobjective genetic algorithms for design of water distribution
networks, Journal of Water Resources and Planning Management, 130(1), pp. 73–82.

[34] Raad DN, Sinske A & Van Vuuren JH, 2009, Robust multi-objective optimization for water
distribution system design using a meta-meta-heuristic, International Transactions in Operational
Research, 16(5), pp. 595–626.

42 DN Raad, A Sinske & JH van Vuuren

[35] Raad DN, 2010, Multi-objective optimisation of water distribution systems design using metaheuris-
tics, PhD Dissertation, Stellenbosch University, Stellenbosch.

[36] Rossman LA, 2000, Computer models/EPANET, in Mays LW (Ed), Water distribution systems
handbook, McGraw-Hill, New York (NY).

[37] Saldarriaga JG, Bernal A & Ochoa S, 2008, Optimized design of water distribution network
enlargements using resilience and dissipated power concepts, Proceedings of the 10th Annual Wa-
ter Distribution Systems Analysis Conference (WDSA 2008), Kruger National Park, South Africa,
pp. 298–312.

[38] Savic DA & Walters GA, 1997, Genetic algorithms for least-cost design of water distribution
networks, Journal of Water Resources Planning and Management, 123(2), pp. 67–77.

[39] Schaake JC & Lai D, 1969, Linear programming and dynamic programming applications to wa-
ter distribution network design, (Unpublished) Technical Report 116, Hydrodynamic Laboratory,
Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge (MA).

[40] Simpson AR, Dandy GC & Murphy LJ, 1994, Genetic algorithms compared to other techniques
for pipe optimisation, Journal of Water Resources Planning and Management, 120(4), pp. 423–443.

[41] Storn R & Price K, 1997, Differential evolution: A simple and efficient heuristic for global opti-
misation over continuous spaces, Journal of Global Optimisation, 11, pp. 341–359.

[42] Todini E, 2000, Looped water distribution networks design using a resilience index based heuristic
approach, Urban Water, 2, pp. 115–122.

[43] Tolson BA, Maier HR, Simpson AR & Lence BJ, 2004, Genetic algorithms for reliability based
optimisation of water distribution systems, Journal of Water Resources Planning and Management,
130(1), pp. 63–72.

[44] Van Zyl JE, 2007, OOTEN — Object-oriented Toolkit for EPANET [Online], [Cited October 7th
2009], Available from http://epanet.de/en/ooten/index.html

[45] Vrugt JA & Robinson BA, 2007, Improved evolutionary optimisation from genetically adaptive
multimethod search, Proceedings of the National Academy of Sciences, 104(3), pp. 708–711.

[46] Walski TM, Brill ED, Gessler J, Goulter IC, Jeppson RM, Lansey K, Lee H, Liebman JC,
Mays LW, Morgan DR & Ormsbee LE, 1987, Battle of the network models: Epilogue, Journal of
Water Resources Planning and Mangement, 113(2), pp. 191–203.

[47] Walski TM, 2001, The wrong paradigm — Why water distribution optimisation doesn’t work, Journal
of Water Resources Planning and Management, 127(2), pp. 203–205.

[48] Walski TM (Ed), 2003, Advanced water distribution modeling and management, Haestad Press,
Waterbury (CT).

[49] Walters GA, Halhal D, Savic DA & Ouzar D, 1999, Improved design of Anytown distribution
network using structured messy genetic algorithms, Urban Water, 1(1), pp. 23–38.

[50] Wu ZY & Walski T, 2004, Self-adaptive penalty cost for optimal design of water distribution sys-
tems, Critical Transitions in Water and Environmental Resources Management, American Society of
Civil Engineers.

[51] Wu ZY & Simpson AR, 2001, Competent genetic-evolutionary optimisation of water distribution
systems, Journal of Computing in Civil Engineering, 15(2), pp. 90–101.

[52] Xu C & Goulter IC, 1998, Probabilistic model for water distribution reliability, Journal of Water
Resources Planning and Management, 124(4), pp. 218–228.

[53] Xu C & Goulter IC, 1999, Reliability-based optimal design of water distribution networks, Journal
of Water Resources Planning and Management, 125(6), pp. 352–362.

[54] Yen GG & Lu H, 2003, Dynamic multiobjective evolutionary algorithm: Adaptive cell-based rank
and density estimation, IEEE Transactions on Evolutionary Computation, 7(3), pp. 253–274.

[55] Zitzler E, Deb K & Thiele L, 2000, Comparison of multiobjective evolutionary algorithms: Em-
pirical results, Evolutionary Computation 8(2), pp. 173–195.

[56] Zitzler E, Laumans M & Thiele L, 2002, SPEA2: Improving the Strength Pareto Evolutionary
Algorithm for multiobjective optimisation, in Giannakoglou K, Tsahalis D, Periaux J, Papail-
iou K, Fogarty T (Eds), Evolutionary methods for design, optimisation and control, CIMNE,
Barcelona.

WDSDO using Metaheuristics and Hyperheuristics 43

[57] Zitzler E, Laumanns M & Bleuler S, 2003, A tutorial on evolutionary multiobjective optimisa-
tion, (Unpublished) Technical Report, Computer Engineering and Network Laboratory (TIK), Swiss
Federal Institute of Technology (ETH), Zurich.

[58] Zitzler E & Thiele L, 1999, Multiobjective evolutionary algorithms: A comparative case study
and the Strength Pareto Evolutionary Algorithm, IEEE Transactions on Evolutionary Computation,
3(4), pp. 257–271.

Appendix: List of acronyms

ADMOEA Another Dynamic Multi-objective Evolutionary Algorithm
AMALGAM (A) AMALGAM hyperheuristic
AMALGAMI (AI) AMALGAM with squared inverse dominance rankings
AMALGAMJ (AJ) AMALGAMI with reduced order of number generated
AMALGAMS (AS) AMALGAM with SPEA-II environmental selection
ANIMA ANIMA Self-adaptive Evolutionary Algorithm
BLACK Blacksburg Network
CANDA Cellular Automaton Network Design Algorithm
DE Differential Evolution
DMOEA Dynamic Multi-objective Algorithm
EDA Estimation of Distribution Algorithm
EXNET Exeter Network
FMGA Fast Messy GA
FOSS Fossolo Network
FORM First Order Reliability Method
GA Genetic Algorithm
GREEDY Greedy heuristic MOO algorithm
HANOI Hanoi Network
MCS Monte Carlo simulation
MOD Modena Network
MOEA Multi-objective Evolutionary Algorithm
MOO Multi-objective Optimisation
MOPSO Multi-objective PSO
NHV Normalised Hypervolume
NSGA-II Non-dominated Sorting Genetic Algorithm II
NT Normalised Time
PESCA Pescara Network
PSO Particle Swarm Optimisation
PUMDA Partitioned UMDA
RAM Random Access Memory
SBX Simulated Binary Crossover
SMGA Structured Messy GA
SPEA-II Strength Pareto Evolutionary Algorithm II
TAMALGAM (TA) Time penalised AMALGAM
TAMALGAMI (TAI) Time penalised AMALGAMI
TAMALGAMJ (TAJ) Time penalised AMALGAMJ
TD Triangular Distribution
TLN Two Loop Network
TRP Two Reservoir Problem
UMDA Univariate Marginal Distribution Algorithm
WDS Water Distribution System
WDSDO WDS Design Optimisation

44

