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Abstract

The use of mixed integer programming is a modelling approach well suited to formulate
the mine scheduling optimisation problem for both open pit and underground mining. The
resolution applied for discretising the problem, however, has a direct effect on both the
level of selectivity that can be applied to improve profitability, as well as the computational
feasibility. The proposed model allows for a balance in reducing the resolution used in
discretising the underground mine scheduling problem, while maintaining enough detail that
will allow the generation of mine production schedules that improve profitability through
selective mining. As a secondary contribution, an improved formulation set within a resource
production/consumption framework is presented, which can potentially simplify notation
used in formulating underground mine scheduling optimisation problems.
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1 Introduction

The method of extracting valuable minerals from the earth is dependent on the charac-
teristics of the mineral deposits, referred to as the ore body. The two primary methods of
mining are open pit mining and underground mining. For the latter, specifically in deep
underground gold mining, the ore body is recognised to be a thin sheet or layer-like deposit
referred to as a reef, which in some cases are just a few centimetres thick. Depending on
its inclination with the surface, a reef could reach depths of up to several kilometres. Open
pit mining makes economically more sense when the ore body is more concentrated and
closer to the surface.
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Irrespective of the mining method, the tasks of planning and executing mining activities
are very complex. The optimal use of resources and the timing of production activities
could have an enormous effect on the profitability of a mining operation. Furthermore,
since the life of a mine can be as long as 60 years, long-term planning is essential to make
the right investment choices along the way in order to fully unlock the value of an ore
body. The use of mine planning systems to aid decision making is therefore imperative.
Specifically, the optimal design of the mine layout and the optimal scheduling of mining
activities while taking resource constraints and economic factors into account, are the
main driving forces for continued research into realistic mathematical models and efficient
solution approaches.

In recent years the use of project scheduling techniques within mining has been applied
effectively using readily available project scheduling software tailored for the mining en-
vironment. Some of these systems, however, were previously not capable of producing
schedules that would maximise a predefined objective function such as Net Present Value
(NPV) while satisfying production constraints. Therefore, the term being used in this
study namely, mine scheduling optimisation, refers to the generation of an optimal sched-
ule or plan for executing mining activities in future, by taking activity precedence and
other side constraints, e.g. capacity constraints, as input.

The use of mixed integer linear programming (MILP) is a modelling approach well suited
to formulate the mine scheduling optimisation problem. Compared to open pit applica-
tions (for example [1, 2, 3, 21]), the research published on underground mine scheduling
problems is limited. Earlier references to the use of MILP formulations can be found in
the publications by Carlyle & Eaves [4], Rahal et al. [14] and Smith et al. [19], although no
model formulations were provided in these papers. MILP formulations for underground
mine scheduling problems are presented in the publications by Rubio & Diering [15] and
Schultze & Zimmermann [18], but without any algorithmic contributions for improving
computing times. In the paper by Sarin & West-Hansen [16], a Benders decomposition
approach is followed to improve the solution time of the MILP for small to medium-sized
randomly generated problem instances. In the paper by Topal [20], two preprocessing al-
gorithms are presented for reducing the number of binary decision variables in the MILP
formulation. Also in an attempt to improve computing times, the approach followed by
both Little et al. [10] and Nehring et al. [12] is to aggregate production activities that follow
a natural continuous sequence which results in a reduced number of variables. Similarly,
the approach by Newman & Kuchta [13] is to heuristically generate feasible solutions by
aggregating time periods. By doing this, improvements on computing times are achieved
but to the detriment of optimality. A heuristic approach is presented in Epstein et al. [6]
that involves the iterative solving of the linear programming relaxation and the fixing of
the binary decision variables. A review of underground mine scheduling optimisation can
be be found in Newman et al. [7].

The approach proposed in this paper is related to the work by Little et al. [10], Nehring
et al. [12] and Newman & Kuchta [13], in the sense that the number of variables in the
formulation is reduced by introducing a lower time period resolution while maintaining
enough information to enable the optimisation model to boost profits through selective
mining. As a secondary contribution, a generic formulation of the mine scheduling optimi-
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sation problem cast within a resource production/consumption framework is introduced,
with the purpose of simplifying notation.

The model presented in this study is applicable to underground selective mining where the
ore grade is highly variable and by selecting out only high grade areas to mine a reduction
in cost can be achieved, thus improving profitability. The scope of this work is not limited
to a specific mineral.

In the following section an overview of the technical aspects of underground mining is
provided. In §3 a generic model formulation is given that is set within a resource pro-
duction/consumption framework. The dependence of selective mining on different mining
methods is discussed in §4 and the concept of a mining-method-dependent grade tonnage
curve is introduced. In §5 the newly proposed low resolution resource model with micro
selectivity is introduced and in §6 computational results are provided to show the benefits
in applying this new model. A summary and conclusion is provided in §7.

2 Some technical aspects of underground mining

Figure 1 is a simplified illustration of a typical layout of an underground mine. The main
vertical tunnel is called the shaft from which horizontal tunnels are excavated to give access
to the ore body. The layers of tunnels at different depths are referred to as levels and on
each level several smaller tunnels, called raise lines, give access to the valuable minerals
along the ore body. Blocks of ore-bearing rock alongside raise lines and in between two
levels, are called stoping blocks and are demarcated into smaller pieces to form stoping
panels. The activity of excavating stoping panels is referred to as stoping whereas the
excavation of tunnels giving access to the ore body is referred to as development. On-reef
development refers to the excavation of tunnels (e.g. raise lines) within the ore body with
the result that some minerals are also mined out but with a high dilution factor. Off-reef
development, on the other hand, refers to the excavation of tunnels through waste rock to
give access to the ore body.

Different mining methods can be applied for the excavation of stoping panels. For the
purpose of this paper reference is made to two of the most commonly used mining methods
in shallow dip reef mining, namely, sequential and pillar mining. For a more complete
reference on different mining methods see Hustrulid & Bullock [8]. Figure 2 illustrates the
differences between sequential and pillar mining. For the latter, parts of the stoping block
are left behind as pillars for safety purposes, whereas sequential mining would result in
clearing out the entire stoping block.

The schedule optimisation problem for underground mining boils down to deciding when
to execute a specific mining activity in future, where an activity could relate, for exam-
ple, to the excavation of part of an underground tunnel per unit time or the placement
of machinery that will enable the excavation. This is done for all activities in order to
maximise the NPV of the project while taking into account constraints that relate to the
physical infrastructure of the mine, like hoisting capacity or other resource constraints
such as the available labour force at any given time. The most important set of con-
straints, however, has to do with activity precedence. That is, except for the very first
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Figure 1: An example of a simplified underground mine layout.

Figure 2: An illustration depicting the differences between sequential and pillar mining (adapted

from [9]).

mining activity that would be executed in the mine plan, the execution of all other mining
activities will depend on whether their predecessor activities have been completed. For
this purpose a precedence graph that is constructed as input to the optimisation model,
is used. The structure of such a precedence graph will ultimately depend on the mining
method employed. Figure 3 shows the precedence graph (implied by the arrows) for sim-
ulating a sequential mining method. Notice that in order to get the step-wise effect of the
sequential mining method, the first activity of the second panel (row) is only allowed to
start once the second activity of the first panel has been completed, etc.

For a short-term plan the unit of time would typically be a month or even a week, whereas
for a long-term plan a unit of time could be for instance a year. Clearly, with an increase
in time period resolution an increase in computing times could be expected due to an
increase in the number of variables that have to be considered.
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Figure 3: Precedence graph used for simulating a sequential mining method.

In this paper it is not the intention to model the underground mine production problem
into the finest detail, nor is the focus on specific mining methods that would result in very
specific side constraints. The objective of this study is to provide a generic formulation that
has the primary constraint ingredients such as activity precedence, but that gives a good
trade-off between reducing time period resolution and maintaining enough information
that would allow selective mining based on the grade variability of the ore body.

3 Model formulation and notation

The underground mine scheduling optimisation problem is formulated in this paper as a
MILP. In the section below the proposed formulation is set within a generic resource pro-
duction/consumption framework in an attempt to simplify notation. Thereafter, amend-
ments to the formulation are proposed that will result in a reduction in the number of
variables, but at the same time will maintain enough information to allow the simulation
of selective mining.

3.1 The resource model

The basic idea of the resource production/consumption framework is that each activity is
viewed as either being resource consuming or resource producing or both. By creating a
set of different resources which are either produced (minerals) or consumed (labour hours),
the notation used for the problem formulation can be simplified.

� Let R denote the set of resources. A potential set of resources could include the
number of tonnes from stoping production, the volume of minerals produced through
processing the ore, the amount of explosives consumed for blasting, the number of
labour hours consumed for excavation, etc. Note that a resource r ∈ R is not an
actual numerical value but rather the name of a specific resource.
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� Let A denote the index set of all activities. An activity a ∈ A could relate to
the excavation of part of an underground tunnel per unit time or the placement of
machinery that will enable the excavation, etc. Note that the size of the set A is a
function of the time period resolution used in the discretisation of the problem. For
instance, for a high resolution discretisation where each activity a ∈ A relates to a
task being performed within, say, a single week, the size of A would be considerably
larger compared to a lower resolution discretisation where each activity a ∈ A relates
to a task being performed within, say, a month.

� Let (a− 1) denote the predecessor activity of a ∈ A. For the purpose of simplifying
the presentation of the approach in this article, it is assumed that each activity will
only have a single predecessor.

� Let A(r) denote the set of activities that either consumes or produces the resource
r ∈ R.

� Let δra ≥ 0 be a numerical value for the quantity of resource r ∈ R being pro-
duced/consumed by activity a ∈ A. Note that this quantity is dependent on the
time period resolution and would be determined as part of a preprocessing step. If a
constant rate at which activity a ∈ A is being performed, is considered, an increase
in the time period size would result in a linear increase in δra.

� Let T = {1, 2, . . . , |T |} denote the time period indices.

� Let (t− 1) denote the predecessor time period for t ∈ T .

� Let crt be the value per unit of consuming/producing a resource r ∈ R in a time
period t ∈ T . Note that the coefficient crt could either be negative or positive,
depending on the type of resource. For instance, for a maximisation problem, the
coefficient associated with a resource that denotes the tonnes of rock from stoping
production would be negative, since the production of the resource would incur costs.
However, the coefficient associated with the volume of minerals, would be treated as
positive since revenue is incurred by the production of this resource.

� Let p denote the time period resolution parameter expressed as the number of months
contained within a single period. That is, if p = 1, a monthly calendar is considered,
with each period t ∈ T being exactly one month and if, for example, p = 12, then
an annual calendar is considered where each period t ∈ T is taken to be one year.

� Let Urt be the upper limit on the quantity of resource r ∈ R that may be con-
sumed/produced for time period t ∈ T expressed as a value per month. General-
isation of Urt to other time period resolutions is obtained by multiplying with the
parameter p.

� Let Lrt be the lower limit on the quantity of resource r ∈ R that may be con-
sumed/produced for time period t ∈ T expressed as a value per month. General-
isation of Lrt to other time period resolutions is obtained by multiplying with the
parameter p.

� Let d(p) be the effective NPV rate, for a period of size p, at which future cash-flows
will be discounted with. This will ensure that the discounting is done according to the
correct period sizes when schedules generated with different time period resolutions
are compared.

As a result of formulating the problem within a resource production/consumption frame-
work, it is not necessary to distinguish between different types of mining activities when
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defining the decision variables. The use of the parameters δra will translate the decision
to execute the activity a ∈ A into a measurable quantity related to the resource r ∈ R.
Consequently, if the variable zat ∈ {0, 1} is defined to take on a value of one if the mining
activity a is scheduled to be executed in time period t. A binary integer programming
problem (referred to as the Resource based Mine Scheduling Optimization Problem (RM-
SOP)), may then be formulated with the objective to

maximise
∑
t∈T

(1 + d(p))−t
∑
r∈R

∑
a∈A(r)

crtδrazat, (1)

subject to zat ≤
∑
k∈T
k<t

z(a−1)k a ∈ A, t ∈ T , (2)

∑
a∈A

zat ≤ 1 t ∈ T , (3)

pLrt ≤
∑

a∈A(r)

δrazat ≤ pUrt r ∈ R, t ∈ T . (4)

The objective function (1) will maximise NPV at a discount rate of dp, provided that
appropriate cost coefficients crt are defined for each of the relevant resources r ∈ R and
for each time period t ∈ T . Constraint set (2) enforces the precedence relationship. An
activity a ∈ A can only be performed once its predecessor (a−1) ∈ A has been completed.
Constraint set (3) will only allow an activity to be scheduled once. Note that the inequality
sign in constraint set (3) enables the model to allow selective mining since an activity may
not to be scheduled at all. Constraint set (4) provides upper and lower limits on the
consumption and production of resources respectively. From an implementation point
of view, the benefit of having these generic constraints is that it is easy to add limits
on resource consumption/production by simply adding the said resources to R and by
specifying the limits Lrt and Urt, without having to explicitly define additional constraint
for the model.

An important property of the RMSOP formulation is that computational complexity wors-
ens with an increase in the time period resolution. On the positive side, by increasing the
time period resolution, selectivity is improved due to more detail that becomes available
by discretising the problem into smaller activity pieces. That is, instead of scheduling a
monthly activity for mining with a diluted grade, the period size can be reduced to a week
and only part of the same activity that coincides with a higher grade can be scheduled,
leaving behind the low grade portion. Therefore, a clear trade-off exist between more
information that will allow improved selective mining versus a worsening of computing
times as a result of increasing time period resolution.

3.2 A preprocessing step for variable reduction

The preprocessing performed on the RMSOP in order to reduce the number of variables
is based on the approach described in the publications by Newman & Kuchta [13] and
Topal [20]. The basic idea is that each activity has an earliest possible starting time
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and a latest possible finishing time. This is determined by the chain of predecessors and
successors to the activity. For example, if an activity a4 ∈ A has the chain of predecessor
activities {a3, a2, a1} where a3 is the immediate predecessor of a4, a2 is the immediate
predecessor of a3 and a1 is the immediate predecessor of a2, then activity a4 can start at
the earliest in the fourth period if each of the predecessors in the chain is scheduled to
be performed in each of the preceding time periods. By having an earliest starting time
t0a ∈ T and a latest finishing time t1a ∈ T for each activity a ∈ A, all the variables zat
for all t < t0a and t > t1a can be removed from the problem formulation.

4 Selectivity and mining methods

The application of selectivity in mining is motivated by high variability in grade. Leaving
low grade stoping areas behind leads to improved profitability. However, the mining
method employed could limit the level of selectivity applied. By considering the allowable
sequencing for sequential mining depicted in Figure 3, it is clear that selectivity is spatially
constrained. That is, because the stoping activities are not scheduled in the lower-right
corner, it is necessary to leave behind the rest of the stoping block. Consequently, benefits
will mostly be gained from selectivity within a sequential mining context when stoping
activities in the upper-left area of a stoping block having a lower grade are left behind and
not scheduled to be mined.

Panels Cumulative Cumulative
Period 1 2 3 4 5 6 7 8 9 10 content (kg) tonnes (t)

1 153.3 153.3 12 831
2 193.9 119.7 466.9 51 911
3 181 99.6 153.8 901.3 127 350
4 112.5 41 128.9 76 1 259.7 232 786
5 217.2 76.4 151 82.8 44.9 1 832.0 386 125
6 78.4 150.3 114.6 10.5 16.6 55.1 2 257.5 575 078
7 22 118.9 50.3 116.1 1 1 115.2 2 682.0 799 561
8 83 78.5 35 54 35.5 1 4.2 1 2 974.2 1 048 502
9 62.3 52 43 39 34 35 32.2 35.9 32.2 3 339.8 1 328 043
10 42.3 43.1 38.1 29 45 52.1 33.8 72.2 27 54 3 776.4 1 644 127
11 23.3 44.6 3.6 51.2 1 34 12.8 53 19 39 4 057.9 1 983 774
12 1 4.7 1 32 15 24 1 20.6 23 25 4 205.2 2 335 749

Table 1: Example data for creating a spatial grade tonnage curve for monthly stoping activities

when considering a sequential mining method.

The concept of a grade tonnage curve which has been used for decades by mining practi-
tioners is central to the practice of selective mining. It represents the relationship between
the level of selectivity and the expected grade. This relationship is represented as a cu-
mulative graph, obtained by ranking demarcated ore blocks according to their grade in
descending order, cumulatively adding their volume and plotting the cumulative volume
versus the average grade over the accumulated blocks. This method does not take the
mining method into account and assumes the effect of cherry picking whereby high grade
portions can be removed even though the mining method may not permit it. For the
purpose of this paper, a mining-method-dependent grade tonnage curve (henceforth MMD
grade tonnage curve) is therefore used, which is surprisingly not very often used in mine
planning. The only reference that could be found on the topic is the paper by Silva &
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Soares [17]. The construction of an MMD grade tonnage curve is illustrated by means of
example data listed in Table 1, where a single stoping block comprising 10 stoping panels
being mined over a period of 12 months, is considered.

Figure 4: An MMD grade tonnage curve created with example data from Table 1.

The entries for the matrix formed by the period versus panel intersection, reflect the
mineral content obtained by mining part of a panel in a specific time period. That is,
the entries correspond to the mineral content associated with each stoping activity. Fur-
thermore, from Table 1 it is clear that mining of the second panel only starts one period
after the first panel, due to the sequential mining method adopted. The column on the
right-hand side of Table 1, labelled Cumulative content (kg), is obtained by summing the
mineral content for each period over all the panels. Since it is assumed for this example
that all stoping activities are of the same dimension, i.e. they all correspond to the excava-
tion of exactly the same tonnages per time period, the column on the far right-hand side
labelled Cumulative tonnages (t) is obtained by summing the tonnages for each period
over all the panels.

The MMD grade tonnage curve depicted in Figure 4 is obtained by plotting the columns
Cumulative tonnages (t) against Cumulative content (kg). From the graph there is a clear
change in the slope of the function as mining advances through the stoping block, implying
that profitability could be improved by leaving behind a portion of the stoping block due
to a decline in grade. The benefit of having such a summarised view of the stoping block is
that instead of having variables that relate to each of the activities that could be scheduled
in one of many alternative periods, a single variable that will denote the extraction of part
of the stoping block could be introduced.

5 A low resolution resource model with micro selectivity

The use of an MMD grade tonnage curve facilitates the formulation of the mine scheduling
optimisation problem with a lower time period resolution, resulting in a reduced number
of activities and eventually a reduced number of variables. Since the MMD grade tonnage
curve is constructed out of a higher resolution discretised problem, enough information is
taken into account to allow selectivity on a micro level.
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The approach is thus to first discretise the problem into, say, monthly activities. The
monthly stoping activities are then grouped by stoping blocks and an MMD grade tonnage
curve is then constructed for each stoping block by using the monthly stoping activities as
was illustrated in Table 1. It should be noted that the monthly discretisation should be
performed without taking any capacity constraints into account such that the only factors
influencing the shape of the MMD grade tonnage curves would be the mining method and
the grade distribution. The next step is to discretise the problem according to a lower time
period resolution, e.g. by using annual activities. These activities will be used as the set A
in the problem formulation. The last step is then to associate the annual stoping activities
with the stoping blocks such that several annual stoping activities can be mapped to a
single MMD grade tonnage curve. Note that in order to maintain linearity each MMD
grade tonnage curve is approximated with a piece-wise linear approximation. Figure 5
illustrates the approximation of an MMD grade tonnage curve using three line segments.
The points (x0, y0), (x1, y1), (x2, y2) and (x3, y3) are called the knots of the piece-wise linear
function. In order to formulate this into the model the following notation is required.

Figure 5: A linear approximation of an MMD grade tonnage curve.

� Let B denote the set of all stoping blocks.

� Let A(b) denote the set of stoping activities associated with a stoping block b ∈ B.

� Let the points (xbi, ybi), i ∈ I = {0, 1, 2, . . . , N − 1} be the knots for the piece-wise
linear approximation of the MMD grade tonnage curve associated with the stoping
block b ∈ B.

The auxiliary variables xb ≥ 0 are introduced to incorporate the MMD grade tonnage
curve into the problem formulation, denoting the tonnes of the stoping block b ∈ B that
will be extracted and yb ≥ 0 denoting the corresponding mineral content that will be pro-
duced according to the MMD grade tonnage curve associated with stoping block b ∈ B.
To account for the mineral content and tonnes extracted per period, the variables xat ≥ 0
and yat ≥ 0 are defined such that xb =

∑
a∈A(b)

∑
t∈T xat and yb =

∑
a∈A(b)

∑
t∈T yat for

all b ∈ B. To align these newly introduced auxiliary variables with the proposed generic
resource based framework, the subset of resources Rs ⊆ R is introduced which is exclu-
sively being associated with stoping activities. For the subsequent formulations, r1 ∈ Rs
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denotes the resource associated with the kilograms of minerals produced and r2 ∈ Rs the
resource associated with the tonnes of stoping rock produced. By associating the variable
yat with the resource r1 and the variable xat with the resource r2, it is possible to correctly
calculate the revenue and costs respectively. These associations are established through
the use of the quantities δr1a and δr2a denoting the actual kilograms of minerals produced
and the tonnes of stoping rock produced by executing activity a ∈ A, respectively. The
coefficients cr1t is defined to reflect the (positive) mineral prices and cr2t to reflect the
(negative) stoping production cost, for all t ∈ T .

The modelling technique employed here to represent the MMD grade tonnage curves as
piece-wise linear approximations (see e.g. [5] and [11]), requires the introduction of the
auxiliary variables λi ≥ 0, with i ∈ I and lj ∈ {0, 1}, with j ∈ I \ {0} = {1, 2, . . . , N − 1}.
The latter is for selecting the most appropriate line segment for local approximation with
respect to the objective function, whereas the former is needed to express the decision
variables xb and yb as convex combinations of the knots (xbi, ybi), i = 0, 1, 2, . . . , N − 1.

The formulation of the RMSOP is adapted to obtain the Low Resolution model with Micro
Selectivity (LRMS). The objective then becomes to

maximise
∑
t∈T

(1 + d(p))−t


∑

r∈R\Rs

∑
a∈A(r)

crtδrazat +
∑

a∈A(r1)
r1∈Rs

cr1tyat +
∑

a∈A(r2)
r2∈Rs

cr2txat

 , (5)

subject to zat ≤
∑
k∈T
k<t

z(a−1)k a ∈ A, t ∈ T , (6)

∑
a∈A

zat ≤ 1 t ∈ T , (7)

pLrt ≤
∑

a∈A(r)

δrazat ≤ pUrt r ∈ R, t ∈ T , (8)

yat ≤ δr1a
∑
k∈T
k≤t

zak b ∈ B, a ∈ A(b), t ∈ T , r1 ∈ Rs, (9)

xat ≤ δr2a
∑
k∈T
k≤t

zak b ∈ B, a ∈ A(b), t ∈ T , r2 ∈ Rs, (10)

δr1(a−1)zat ≤
∑
k∈T
k<t

y(a−1)k b ∈ B, a ∈ A(b), (a− 1) ∈ A(b),
t ∈ T , r1 ∈ Rs

(11)

xb =
∑

a∈A(b)

∑
t∈T

xat b ∈ B, (12)

yb =
∑

a∈A(b)

∑
t∈T

yat b ∈ B, (13)

(14)
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xb =
∑
i∈I

λibxib b ∈ B, (15)

yb =
∑
i∈I

λibyib b ∈ B, (16)∑
i∈I

λib = 1 b ∈ B, (17)

λ0b ≤ l1b b ∈ B, (18)

λib ≤ lib + l(i+1)b b ∈ B, i ∈ I \ {0, N − 1}, (19)

λ(N−1)b ≤ l(N−1)b b ∈ B. (20)

The objective function (5) comprises the costs associated with non-stoping activities in-
dexed through the resource set R\Rs and revenues associated with the stoping activities
indexed through the resource r1 ∈ Rs (r2 ∈ Rs). Note that the second and third terms in
the objective function do not need the multipliers δra for the variables yat and xat, since
these variables already reflects the mineral content and stoping tonnages respectively,
obtained through the MMD grade tonnage curve relationship.

Constraint sets (6), (7) and (8) are exactly the same as constraint sets (2), (3) and (4) from
the RMSOP and will have the same purpose within the LRMS formulation. Constraint
set (9) is responsible for allowing the mineral content variables yat to take on a value
only if the corresponding activity has been scheduled to be executed. Furthermore, these
constraints will also limit the variables yat to a level of δr1a to maintain the proportionality
of the activity a ∈ A(b) with respect to the stoping block b. Analogous to this constraint
set (10) governs the values that the variables xat may take on relative to the activity
variables zat. The purpose of the constraint set (11) is to allow an activity to be executed
only if its predecessor has been completed, i.e. if the mineral content variable y(a−1)t
has reached its limit δr1(a−1). Note that these constraints require that δr1(a−1) be strictly
positive to prevent them from being fulfilled trivially. The assumption, therefore, is that
each aggregated activity a ∈ A(b) would always be a mineral producing activity within
the block b. Constraint sets (12) and (13) aggregate the time dependent variables xat and
yat to the stoping block totals xb and yb. Constraint sets (15) and (16) in turn express
these stoping block totals as convex combinations of the piece-wise linearisation knots of
the MMD grade tonnage curve. Evidently, constraint set (17) maintains the necessary
convexity conditions and constraint sets (18), (19) and (20) are responsible for enabling
the appropriate convexity variable λib to take on a value based on the selection of a specific
line segment lib.

An important feature of the LRMS model, compared to the RMSOP model, is that prece-
dence relationships might be distorted during aggregation. Specifically, in cases where
branching occurs within the precedence of a high resolution discretisation, it might be
that for the corresponding low resolution discretisation the branches are now either al-
lowed to be executed during the same period as its predecessor or much later after the
total aggregation has been completed, depending on the aggregation policy applied.
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6 Empirical results

Empirical tests were performed to determine whether the LRMS model would improve
on computing times by considering a lower time period resolution, while enabling micro
selectivity through the use of MMD grade tonnage curves. The data used were generated
randomly for a range of problem instances with a biased grade distribution that will favour
selective mining. That is, the grade tonnage curves were created to reflect a decrease in
grade as excavation advances through the stoping block over time making it economically
more attractive to be selective. Selective mining may, however, be less attractive with an
increase in mineral price (provided constant costs) due to improved profit margins. The
interplay between the level of selectivity and increasing mineral prices were also examined
as part of this empirical study.

Problem instance Mineral price (×1) Mineral price (×1.25) Mineral price (×1.5) Mineral price (×1.75) Mineral price (×2)
Resolution #Blocks NPV gap (%) NPV gap (%) NPV gap (%) NPV gap (%) NPV gap (%)

10 9× 106 62.7 5.7× 107 19.3 1.3× 108 15.0 2.2× 108 10.5 9.9× 109 0.11
20 2× 107 > 100 1.2× 108 32.6 2.6× 108 19.9 4.4× 108 14.8 1.9× 1010 0.29
30 0 > 100 1.6× 108 48.7 3.8× 108 23.4 6.3× 108 17.2 2.7× 1010 0.32

Monthly 40 0 > 100 1.5× 108 > 100 4.8× 108 25.1 8.1× 108 17.8 3.5× 1010 0.35
(RMSOP) 50 0 > 100 3.1× 105 > 100 5.8× 108 24.9 1.1× 109 19.3 4.2× 1010 0.46

60 — — — — — — — — — —
100 — — — — — — — — — —
200 — — — — — — — — — —

10 0 0 7.0× 107 0 6.1× 107 0 1.4× 108 0 2.2× 108 0
20 0 0 1.8× 107 0 1.3× 108 0 2.8× 108 0 4.4× 108 0
30 0 0 2.8× 107 0 1.9× 108 0 4.0× 108 0 6.3× 108 0

Annually 40 0 0 3.3× 107 0 2.4× 108 0 5.1× 108 0 8.0× 108 0
(RMSOP) 50 0 0 4.0× 107 0 2.8× 108 0 6.1× 108 0 9.5× 108 0

60 0 0 4.6× 107 0 3.2× 108 0 7.0× 108 0 1.1× 109 0
100 0 0 6.7× 107 0 4.5× 108 0 9.8× 108 0 1.5× 109 0
200 0 0 1.0× 108 0 6.4× 108 0.8 1.4× 109 0.3 2.1× 109 0.20

10 2.0× 107 2.8 7.4× 107 1.8 1.3× 108 2.5 1.9× 108 1.1 2.7× 108 0.70
20 6.0× 107 12.9 1.6× 108 6.6 2.7× 108 5.4 4.0× 108 2.4 5.6× 108 1.30

Annually with 30 1.0× 108 23.5 2.5× 108 11.6 4.1× 108 8.4 6.0× 108 4.2 8.2× 108 2.30
MMD grade 40 2.0× 108 25.8 3.4× 108 14.1 5.4× 108 11.6 7.8× 108 7.0 1.1× 109 3.80
tonnage curve 50 2.0× 108 29.2 4.3× 108 17.5 6.7× 108 14.5 9.6× 108 9.8 1.3× 109 5.60

(LRMS) 60 3.0× 108 28.8 5.3× 108 19.4 8.0× 108 17.0 1.1× 109 11.7 1.5× 109 7.60
100 5.0× 108 33.6 8.9× 108 29.6 1.3× 109 27.7 1.8× 109 20.5 2.3× 109 14.30
200 1.0× 109 52.4 1.6× 109 51.9 2.2× 109 44.2 2.8× 109 37.9 3.6× 109 28.80

Table 2: Objective function values and integrality gaps for solving the mine scheduling optimi-

sation problem with a time limit of two hours. A “—” denotes that no feasible solution could be

found within the two hour time limit.

A problem instance is defined by the time period resolution, i.e. either monthly or annu-
ally, and in the case of an annual resolution whether an MMD grade tonnage curve was
used or not and lastly, the size of the problem instance expressed in terms of the number
of stoping blocks considered. Table 2 shows the results for solving the mine scheduling
optimisation problem for a range of problem instances and a range of mineral prices. The
column labelled “Mineral Price (×1)” is an arbitrarily selected base price at which a high
degree of selectivity can be observed. By increasing the mineral price by increments of
25% results are obtained for the columns labelled “Mineral Price (×1.25)” up to “Mineral
Price (×2)”. An execution time limit of two hours were imposed on all problem instances
and the objective function values listed under the columns labelled “NPV” are, therefore,
the best net present values found within this time limit. The entries listed under the
columns labelled “gap(%)” are the optimality gaps found within the time limit, calculated
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as |ZL−ZU |/ZU with ZL and ZU the best lower and upper bounds respectively. Evidently
an optimality gap of zero would imply that the specific problem instance was solved to
optimality within the time limit.

All problem instances were solved using CPLEX 12.1 on an HP Elitebook 8540p with a
Core i7 processor and 8GB RAM. The most notable result from Table 2 is the inability
of CPLEX to generate feasible solutions within the set time limit for the RMSOP model
when considering a monthly resolution and problem sizes exceeding 50 stoping blocks. In
contrast, much larger problem instances could be solved with the LRMS model for all
mineral price cases. Also very prominent is the inferior results produced by the RMSOP
model with an annual time period resolution. Specifically, for the base mineral price (×1),
optimisation terminated optimally but with only a zero NPV for all problem sizes due to
the inability of the RMSOP model to effectively harness the potential of selectivity as a
result of the aggregation of information. In these cases the costs overshadowed revenue
with the result that the most economical plan is to refrain from scheduling any mining
activities. For other mineral price cases the RMSOP model with an annual time period
resolution did provide non-zero NPV values that were, however, much lower compared to
the corresponding results for both the RMSOP model with monthly periods as well as the
LRMS model.

The benefits of employing an MMD grade tonnage curve in conjunction with the LRMS
model is evident from the base mineral case (×1). All NPV entries for the LRMS model
exceed that of the other two cases where the RMSOP model was used for both a monthly
and an annual time period resolution. For an increased mineral price the benefits of using
the LRMS model diminishes to such an extent that for the (×2) mineral price case no
improvements in objective values are obtained over the result from the RMSOP model
with monthly periods. However, for the said mineral price case, the RMSOP model with
a monthly time period is still unable to produce any feasible integer solutions within the
two hour time limit for problem sizes exceeding 50 stoping blocks, whereas with the LRMS
model solutions could be computed.

In summary, the major benefit of using the LRMS model with MMD grade tonnage curves
can be observed for problem instances where low profit margins drive selectivity and
where the size of a problem instance in terms of the number of stoping blocks exceeds the
computable capacity of a high resolution model formulation.

7 Summary and conclusion

The primary contribution of this paper is the introduction of the LRMS model which
is based on a low resolution time discretisation, but with the capability of harnessing
information captured within grade tonnage curves to allow selectivity on a micro level. The
LRMS model outperforms high resolution discretised problem formulations specifically in
low profit margin cases were selectivity is needed to boost profitability and in cases where
the dimension of a problem instance is detrimental to computational feasibility.
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